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Abstract

The typical cell of a Voronoi tessellation generated by n + 1 uniformly distributed

random points on the d-dimensional unit sphere S
d is studied. Its f -vector is identified

in distribution with the f -vector of a beta’ polytope generated by n random points

in R
d . Explicit formulas for the expected f -vector are provided for any d and the low-

dimensional cases d ∈ {2, 3, 4} are studied separately. This implies an explicit formula

for the total number of k-dimensional faces in the spherical Voronoi tessellation as

well.

Keywords Beta polytope · Beta’ polytope · Spherical stochastic geometry · Typical

cell · Voronoi tessellation

Mathematics Subject Classification 60D05 · 52A22 · 52B05

1 Introduction

Let E be a metric space and {xi : i ∈ I } a finite (or, more generally, locally finite)

collection of points in E , where I is some index set. The Voronoi cell of a point xi is

the set of all points in E whose distance to xi is not greater than the distance to any

other point x j with i �= j . The Voronoi tessellation or Voronoi diagram associated

with the set {xi : i ∈ I } is then just the collection of all such Voronoi cells. The study

of Voronoi tessellations has attracted a lot of attention in computational as well as
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in stochastic geometry. To a great extent this is because of their various applications

ranging from the modeling of biological tissues or polycrystalline microstructures in

metallic alloys to classification problems in machine learning. We refer the reader to

the monographs [4,28–30] for details and many more references.

In this note we consider Voronoi tessellations of the unit sphere that are generated

by a (finite) collection of uniformly distributed, independent random points. Unlike

their Euclidean counterparts, for which there exists an extensive literature (see [29,

30,34,35] and the references cited there), the mathematical properties of spherical

Voronoi tessellations are poorly understood. Just a few results for Voronoi tessellation

on the 2-dimensional unit sphere are available in the classical reference [27]. On the

other hand, Voronoi tessellations induced by points on a general manifold become

increasingly important in computational geometry, see [4,11]. Our goal is to partially

fill the resulting gap by considering the combinatorial structure of what is called the

typical cell of a Voronoi tessellation on the d-dimensional unit sphere for general

d ≥ 2. More precisely, we shall study the f -vector of the typical spherical Voronoi

cell. We do this by establishing and exploiting a new connection of such typical Voronoi

cells with the classes of random beta and beta’ polytopes. These have recently been

under intensive investigation [6,7,10,14,20–25]. In fact, as it will turn out, the f -vector

of the typical spherical Voronoi cell can be identified in distribution with the f -vector

of (the dual of) a particular random beta’ polytope. Also, explicit expected values

can be determined from this distributional identity and some known results for beta’

polytopes. We establish in addition a link between the expected f -vector of typical

spherical Voronoi cells and that of a special beta polytope. Of special interest are the

low-dimensional cases d ∈ {2, 3, 4} which will be examined separately.

We would like to point out that our paper continues a recent line of research in

stochastic geometry which focuses on the study of non-Euclidean geometric random

structures. As examples we mention the studies of random convex hulls in spherical

convex bodies or on half-spheres [3,5,21,23], the results on random tessellations by

great hyperspheres [1,16,17,27], the central and non-central limit theorems for Poisson

hyperplanes in hyperbolic spaces [15], the papers [12,18] on splitting tessellations on

the sphere, the asymptotic investigation of Voronoi tessellations on general Rieman-

nian manifolds [9], and the general limit theory for stabilizing functionals of point

processes in manifolds [32].

2 The Typical Voronoi Cell and Its f -Vector

2.1 The Typical Voronoi Cell

We are now going to introduce our framework. Let S
d be the d-dimensional unit

sphere, which we think of being embedded in R
d+1 in such a way that it is centered at

the origin of R
d+1. A generic point in R

d+1 is denoted by x = (x0, x1, . . . , xd). The

dimension of the sphere, d ∈ N, is fixed once and for all. The normalized spherical

Lebesgue measure on S
d is denoted by σd . Let X1, . . . , Xn be n ∈ N independent

random points sampled on S
d according to σd and defined over some underlying

probability space (�,A, P). The binomial process ξn := {X1, . . . , Xn} is the point
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Fig. 1 Simulations of spherical Voronoi tessellations on S
2 with 50 cells (left) and 200 cells (right)

process on S
d with atoms at X1, . . . , Xn . We can now construct the spherical Voronoi

tessellation based on ξn as follows. If ρ( · , · ) denotes the geodesic distance on S
d ,

we let Ci,n be the Voronoi cell of a point X i ∈ ξn , that is,

Ci,n :=
{

z ∈ S
d : ρ(X i , z) ≤ ρ(X j , z) for all j ∈ {1, . . . , n}

}

, i ∈ {1, . . . , n}.

As in the Euclidean case (see [34, Chap. 10]), one shows that the sets C1,n, . . . , Cn,n

are in fact spherical polytopes covering S
d and having disjoint interiors. Here, we recall

that a spherical polytope is defined as an intersection of S
d and a polyhedral convex

cone, and that the latter is defined as an intersection of finitely many closed half-spaces

whose bounding hyperplanes contain the origin. The collection {C1,n, . . . , Cn,n} of all

Voronoi cells of points of ξn is what we call the spherical Voronoi tessellation mn,d ,

see Fig. 1 for two sample realizations.

In this note we are interested in the typical cell of such a spherical Voronoi tes-

sellation. Roughly speaking, the typical cell arises by picking one of the cells Ci,n

uniformly at random and rotating it so that its “center” X i becomes the north pole

e := (1, 0, . . . , 0) of S
d . To make this precise, let N = Nn be a random variable with

uniform distribution on the set {1, . . . , n} and assume that N is independent of the

binomial process ξn . Also, for every point v ∈ S
d we fix some orthogonal transfor-

mation Ov : R
d+1 → R

d+1 such that Ovv = e and assume that the matrix elements

of Ov are Borel functions of v. Then, the typical cell of the Voronoi tessellation mn,d

is a random spherical polytope Vn,d defined by

Vn,d := OX N
CN ,n . (2.1)
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Since X1, . . . , Xn are exchangeable, the tuple (ξn, X N ) has the same joint law as

(ξn, X1) and we arrive at the following distributional equality:

Vn,d
d= OX1C1,n .

In the following, it will be more convenient to consider a binomial process with

n + 1 rather than with n points. The next proposition states that the typical Voronoi

cell Vn+1,d of the binomial process ξn+1 has the same distribution as the Voronoi

cell of the north pole e in the point process ξn ∪ {e}. Note that it also proves that the

distribution of the typical cell does not depend on the choice of the family of orthogonal

transformations (Ov)v∈Sd .

Proposition 2.1 We have the distributional equality

Vn+1,d
d=

{

z ∈ S
d : ρ(e, z) ≤ ρ(X j , z) for all j ∈ {1, . . . , n}

}

. (2.2)

Proof Conditioning on X1 = v and integrating over all v ∈ S
d , we can write the

distribution of Vn+1,d as follows:

P[Vn+1,d ∈ B] =
∫

Sd

P
[

OX1C1,n+1 ∈ B
∣

∣ X1 = v
]

σd(dv),

for every Borel set B in the space of compact subsets of S
d endowed with the usual

Hausdorff distance. Recalling the definition of C1,n+1, we can write

P
[

OX1C1,n+1 ∈ B
∣

∣ X1 = v
]

= P

[

Ov

{

z ∈ S
d : ρ(v, z) ≤ min

j=2,...,n+1
ρ(X j , z)

}

∈ B
]

= P

[{

y ∈ S
d : ρ(v, O−1

v y) ≤ min
j=2,...,n+1

ρ(X j , O−1
v y)

}

∈ B
]

= P

[{

y ∈ S
d : ρ(e, y) ≤ min

j=2,...,n+1
ρ(Ov X j , y)

}

∈ B
]

= P

[{

y ∈ S
d : ρ(e, y) ≤ min

j=1,...,n
ρ(X j , y)

}

∈ B
]

,

where we defined y := Ovz and used that (Ov X2, . . . , Ov Xn+1) has the same joint

law as (X1, . . . , Xn). Since the right-hand side does not depend on v ∈ S
d , we arrive

at

P[Vn+1,d ∈ B] = P

[{

y ∈ S
d : ρ(e, y) ≤ min

j=1,...,n
ρ(X j , y)

}

∈ B
]

,

which completes the proof. ⊓⊔

For stationary tessellations in the Euclidean space R
d , where the number of cells is

almost surely infinite, one usually defines the typical cell using the concept of Palm
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distribution, which is a common device in stochastic geometry [34]. The Palm approach

can be applied on the sphere, too. Following [33], the Palm distribution P
e
ξn+1

of the

binomial process ξn+1 with respect to a fixed point on the sphere (which we choose to

be the north pole e) can formally be defined as follows. For v ∈ S
d we let �v denote

the set of all orientation-preserving orthogonal transformations O : R
d+1 → R

d+1

such that Ov = e. Note that �e is a group which can be identified with SO(d). By νe

we denote the unique Haar probability measure on �e and define the image measure

νv(A) := νe({O O−1
v : O ∈ A}), A ⊂ �v , on �v , where Ov ∈ �v is arbitrary (in

fact, the definition is independent of the choice of Ov , see [33]). The Palm distribution

P
e
ξn+1

with respect to the point e is given by

P
e
ξn+1

( · ) :=
1

n + 1
E

∑

v∈ξn+1

∫

�v

1(O−1ξn+1 ∈ · ) νv(dO).

From [26, Lem. 6.14] it is known that

P
e
ξn+1

( · ) = Pξn (ξn ∪ {e} ∈ · ),

where Pξn denotes the distribution of the binomial process ξn . This is the analogue for

binomial processes of the celebrated Slivnyak–Mecke theorem for Poisson processes

[26, Lem. 6.15]. In particular, it shows that the definition of the typical cell given

above coincides with the definition based on the Palm approach.

2.2 Total Number of Faces

Our goal is to describe the f -vector of the typical Voronoi cell Vn,d . More precisely,

consider a spherical polytope P ⊂ S
d represented as an intersection of S

d and a

polyhedral convex cone C . The k-dimensional faces of P are defined as intersections

of (k + 1)-dimensional faces of C with S
d , where k ∈ {0, 1, . . . , d}. We denote by

Fk(P) the set of k-dimensional faces of P and by fk(P) := |Fk(P)| their number.1

Here, |A| stands for the number of elements of a set A. The d-dimensional vector

( f0(P), f1(P), . . . , fd−1(P)) is called the f -vector of P .

Before stating the results on the expected f -vector of the typical Voronoi cell, let us

point out its connection to another natural quantity. The total number of k-dimensional

faces of the tessellation mn,d is denoted by

fk(mn,d) :=
∣

∣

∣

∣

∣

n
⋃

i=1

Fk(Ci,n)

∣

∣

∣

∣

∣

, k ∈ {0, 1, . . . , d}.

1 If P is degenerate (that is, if it contains a pair of diametrally opposite points), the above definitions may

lead to results which look unnatural. For example, if C is a half-plane, d = 1, and P is a semicircle,

then C has one one-dimensional face and hence f0(P) = 1 (rather than 2, which seems more natural).

In the following, the reader may assume that n ≥ d + 2, which implies that the typical Voronoi cell Vn,d

is non-degenerate and these difficulties disappear. Another possibility is to consider conical tessellations

instead of the spherical ones.
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Note that even if some face F belongs to more than one cell Ci,n , it is counted only

once in the above definition.

Proposition 2.2 For all n ≥ d + 1 and k ∈ {0, . . . , d}, we have

E fk(mn,d) =
n

d − k + 1
E fk(Vn,d).

Proof We use a double-counting argument. Let M :=
∑n

i=1 fk(Ci,n) be the number

of pairs (Ci,n, F), where Ci,n is a cell of the tessellation mn,d , and F ⊂ Ci,n a k-

dimensional face of Ci,n . On the one hand, the above definition (2.1) of the typical

cell implies that

E fk(Vn,d) = E fk(OX N
CN ,n) = E fk(CN ,n)

=
1

n

n
∑

i=1

E fk(Ci,n) =
1

n
E

n
∑

i=1

fk(Ci,n) =
EM

n
.

On the other hand, the spherical Voronoi tessellation is normal, that is, every k-

dimensional face belongs to d − k + 1 cells of dimension d, with probability one

(cf. [34, Thm. 10.2.3] for a similar statement in the Euclidean case). It follows that

almost surely

M = (d − k + 1) fk(mn,d).

By taking the expectations and comparing both identities, we arrive at the claim. ⊓⊔

2.3 Reduction to Beta’Polytopes

As anticipated above, our goal will be to identify the expected f -vector of the typical

Voronoi cell Vn+1,d generated by n + 1 uniformly distributed random points on the

d-dimensional unit sphere. We do this first in terms of the f -vector of random beta’

polytopes, a notion we are going to explain next. For β > d/2 we define the probability

density f̃d,β on R
d by

f̃d,β(x) := c̃d,β (1 + ‖x‖2)−β , c̃d,β =
Ŵ(β)

πd/2Ŵ(β − d/2)
, (2.3)

where ‖ · ‖ denotes the Euclidean norm in R
d . We let P̃

β

n,d := conv (X̃1, . . . , X̃n) be

the convex hull of n ∈ N independent random points X̃1, . . . , X̃n distributed in R
d

according to the density f̃d,β . This random polytope is known as a so-called beta’

polytope. In our notation we follow [22,24,25], where these polytopes were studied.

As in the spherical case, we denote by ( f0(P), f1(P), . . . , fd−1(P)) the f -vector of

a polytope P ⊂ R
d , where fk(P), k ∈ {0, 1, . . . , d}, is the number of k-dimensional

faces of P . Our main result relates the f -vector of Vn+1,d to that of P̃
β

n,d with β = d

and can be formulated as follows. The proof is postponed to Sect. 4.
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Theorem 2.3 For each n ≥ d + 1 we have that

(

fk(Vn+1,d)
)d−1

k=0

d=
(

fd−k−1(P̃d
n,d)

)d−1

k=0
,

where
d= denotes equality in distribution of random vectors.

2.4 Reduction to Beta Polytopes

Recall that X1, . . . , Xn are independent and uniformly distributed random points on

S
d . Denote their convex hull in R

d+1 by P−1
n,d+1 := conv (X1, . . . , Xn). This random

polytope is a particular case of a beta polytope with parameter β = −1 studied in

[22,24,25]. We follow the notation used there. Our next theorem expresses the expected

f -vector of Vn,d in terms of that of P−1
n,d+1.

Theorem 2.4 For each n ≥ d + 1 and k ∈ {0, 1, . . . , d} we have that

E fk(Vn,d) =
d − k + 1

n
E fd−k(P−1

n,d+1).

Remark 2.5 There is a duality between the faces of the spherical Voronoi tessellation

mn,d and the faces of the convex hull of X1, . . . , Xn , which was stated already in the

work of Edelsbrunner and Nikitenko [13, pp. 3226–3227]. It says that for arbitrary

ℓ ∈ {0, . . . , d} and 1 ≤ i0 < . . . < iℓ ≤ n, the convex hull of X i0 , . . . , X iℓ is a face of

the convex hull of X1, . . . , Xn if and only if the spherical Voronoi cells Ci0,n, . . . , Ciℓ,n

have a non-empty intersection. This intersection is then a common face of these cells

of dimension d −ℓ, with probability 1. In the proof given below, we provide a detailed

explanation of this duality based on [34, pp. 472–473].

Proof of Theorem 2.4 First of all, let us provide a general representation for the faces

of the spherical Voronoi tessellation mn,d . Take some i ∈ {1, . . . , n} and consider the

cell

Ci,n = S
d ∩

{

y ∈ R
d+1 : 〈y, X i 〉 ≥ 〈y, X j 〉 for all j ∈ {1, . . . , n}

}

. (2.4)

Here, 〈 · , · 〉 stands for the standard scalar product in R
d+1. In order to represent the

relative interiors of the faces of this cell, we need to turn some of the inequalities

〈y, X i 〉 ≥ 〈y, X j 〉 into equalities, while making the remaining inequalities strict; see,

e.g., [31, 7.2(e) on p. 135]. Thus, the relative interiors of the faces of mn,d admit a

representation of the form

S :=
{

y ∈ S
d : 〈y, X i0〉 = . . . = 〈y, X iℓ〉 > 〈y, X j 〉 for all j /∈ {i0, . . . , iℓ}

}

(2.5)

for some ℓ ∈ {0, . . . , n} and 1 ≤ i0 < . . . < iℓ ≤ n. Conversely, any set S of the above

form (2.5) is a relative interior of a face of mn,d provided S �= ∅. Observe that for

ℓ > d the vectors X i1 − X i0 , . . . , X iℓ − X i0 linearly span R
d+1 with probability 1 and

hence the only solution of 〈y, X i0〉 = . . . = 〈y, X iℓ〉 is y = 0 (implying that S = ∅).
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Thus, we may assume that ℓ ∈ {0, . . . , d}. Then, the vectors X i1 − X i0 , . . . , X iℓ − X i0

are linearly independent almost surely and hence the dimension of the set S defined

in (2.5) is d − ℓ, provided S �= ∅.

Let us now provide a description of the faces of the polytope conv (X1, . . . , Xn).

For ℓ ∈ {0, . . . , d} and 1 ≤ i0 < . . . < iℓ ≤ n let E be the affine subspace through

the points X i0 , . . . , X iℓ . In the following, we exclude an event of probability 0 and

assume that E is ℓ-dimensional. Let E0 be the translate of E passing through the origin

of R
d+1, that is, E0 is the linear hull of X i1 − X i0 , . . . , X iℓ − X i0 . Put

F = E⊥
0 = {y ∈ R

d+1 : 〈y, X i0〉 = . . . = 〈y, X iℓ〉}

and note that F is a linear subspace of dimension d +1−ℓ. The intersection of F with

S
d is a (d−ℓ)-dimensional great subsphere of S

d consisting of all points y ∈ S
d having

equal geodesic distances to X i0 , . . . , X iℓ . For y ∈ F ∩ S
d write r(y) := ρ(y, X i0) =

. . . = ρ(y, X iℓ). Denote by Cap(y, r(y)) := {z ∈ S
d : ρ(y, z) ≤ r(y)} the closed

spherical cap centered at y with geodesic radius r(y) and put

S :=
{

y ∈ F ∩ S
d : Cap(y, r(y)) ∩ {X1, . . . , Xn} = {X i0 , . . . , X iℓ}

}

, (2.6)

which is just an equivalent form of (2.5).

We now claim that S �= ∅ if and only if conv (X i0 , . . . , X iℓ) is a face of

conv (X1, . . . , Xn). Indeed, if S �= ∅, then there is y ∈ S
d such that a = 〈y, X i0〉 =

. . . = 〈y, X iℓ〉 and 〈y, X j 〉 > a for all indices j /∈ {i0, . . . , iℓ}. Consider the hyper-

plane H := {z ∈ R
d+1 : 〈z, y〉 = a}. Then, H is a supporting hyperplane for

conv (X1, . . . , Xn) and conv (X i0 , . . . , X iℓ) = conv (X1, . . . , Xn) ∩ H is the corre-

sponding face of conv (X1, . . . , Xn), thus proving the forward direction of the claim.

To prove the backward direction, one assumes that conv (X i0 , . . . , X iℓ) is a face of

conv (X1, . . . , Xn) corresponding to some supporting hyperplane H which must be

of the form H := {z ∈ R
d+1 : 〈z, y〉 = a} for some y ∈ S

d and a ∈ R. It follows that

a = 〈y, X i0〉 = . . . = 〈y, X iℓ〉 and (without restriction of generality) 〈y, X j 〉 > a

for all j /∈ {i0, . . . , iℓ}. This proves our claim. Although we shall not need it, notice

also the following consequence of (2.5) and (2.4): the closure of S coincides with

Ci0,n ∩ · · · ∩ Ciℓ,n .

Summarizing, we proved that there is a bijective correspondence between the

(d − ℓ)-dimensional faces of mn,d , the ℓ-dimensional faces of conv (X1, . . . , Xn),

and the tuples 1 ≤ i0 < . . . < iℓ ≤ n for which the set S defined in (2.5) or (2.6) is

non-empty. Thus, taking ℓ := d − k we conclude that

fd−k(P−1
n,d+1) = fk(mn,d) almost surely. (2.7)
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On the other hand, by Proposition 2.2 we have

E fk(mn,d) =
n

d − k + 1
E fk(Vn,d).

Putting these results together completes the proof of Theorem 2.4. ⊓⊔

3 Explicit Formulas and Special Cases

3.1 Explicit Formula for the Expected f-Vector

The expected f -vectors of beta and beta’ polytopes have been explicitly determined

in the series of works [19–22,25]. The main results we shall rely on are stated in [22,

Thms. 7.1 and 7.3]. Combining these formulas with Theorems 2.3 or 2.4 we arrive at

the following explicit expression for the f -vector of the typical Voronoi cell Vn+1,d .

Theorem 3.1 For all d ≥ 2, n ≥ d + 1, and ℓ ∈ {1, . . . , d} we have

E fd−ℓ(Vn+1,d) =
1

π

(

Ŵ((d + 1)/2)
√

π Ŵ(d/2)

)n−ℓ
∑

m∈{ℓ,...,d}
m≡d (mod 2)

Ĩd(n, m)(md − 1) J̃d(m, ℓ)

(3.1)

=
1

π

(

Ŵ((d + 1)/2)
√

π Ŵ(d/2)

)n−ℓ
∑

m∈{ℓ,...,d}
m≡d (mod 2)

Id−1(n, m)((m + 1)(d − 1) + 1) Jd−1(m, ℓ),

(3.2)

where

Ĩd(n, m) :=
(

n

m

)∫ +π/2

−π/2

(cos x)dm−1(F̃d(x))n−m dx,

J̃d(m, ℓ) :=
(

m

ℓ

)∫ +∞

−∞
(cosh y)−dm+1(F̃d(iy))m−ℓ dy,

Id−1(n, m) :=
(

n

m

)∫ +π/2

−π/2

(cos x)(d−1)(m+1)(Fd−1(x))n−m dx,

Jd−1(m, ℓ) :=
(

m

ℓ

)∫ +∞

−∞
(cosh y)−(d−1)(m+1)−2(Fd−1(iy))m−ℓ dy,

F̃d(z) = Fd−1(z) :=
∫ z

−π/2

(cos y)d−1 dy, z ∈ C.

Remark 3.2 Note that the imaginary unit i =
√

−1 appears because the J -quantities

are related to the analytic continuation of the I -quantities [22]. The integral in the

definition of F̃d(z) = Fd−1(z) is taken along any contour connecting −π/2 and z.
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Observe also that the quantities J̃d(m, ℓ) and Jd−1(m, ℓ) are real-valued as one can

see by making the substitution y �→ −y in the defining integrals and using the fact

that F̃d(iy) is the complex conjugate of F̃d(−iy), for all y ∈ R.

Proof of Theorem 3.1 We can give two proofs based on reduction of the spherical

Voronoi tessellation to beta’ and beta polytopes. These proofs yield (3.1) and (3.2),

respectively. Let us start with the approach based on beta’ polytopes. By Theorem 2.3,

we have

E fd−ℓ(Vn+1,d) = E fℓ−1(P̃d
n,d).

By [22, Thm. 7.3] applied with α = β = d, we obtain

E fℓ−1(P̃d
n,d) =

2 · n!
ℓ!

(

Ŵ((d + 1)/2)

d
√

π Ŵ(d/2)

)n−ℓ

×
∑

m∈{ℓ,...,d}
m≡d (mod 2)

b̃{n, m}
(

m −
1

d

)

ã

[

m −
2

d
, ℓ −

2

d

]

,

where

b̃{n, m} =
dn−m

(n − m)!

∫ +π/2

−π/2

(cos x)dm−1(F̃d(x))n−m dx,

ã

[

m −
2

d
, ℓ −

2

d

]

=
dm−ℓ+1

(m − ℓ)!
·

1

2π

∫ +∞

−∞
(cosh y)−dm+1(F̃d(iy))m−ℓ dy,

and where F̃d is as above. After straightforward transformations, we arrive at (3.1).

On the other hand, we can give an alternative proof based on Theorem 2.4 which

states that

E fd−ℓ(Vn+1,d) =
ℓ + 1

n + 1
E fℓ(P−1

n+1,d+1).

The expected f -vector of the beta polytope is given explicitly in [22, Thm. 7.1].

Applying this theorem with β = −1 and α = d − 1, we obtain

E fℓ(P−1
n+1,d+1) =

2 · (n + 1)!
(ℓ + 1)!

(

Ŵ((d − 1)/2)

2
√

π Ŵ(d/2)

)n−ℓ

×
∑

m∈{ℓ,...,d}
m≡d (mod 2)

b{n + 1, m + 1}
(

m + 1 +
1

d − 1

)

× a

[

m + 1 +
2

d − 1
, ℓ + 1 +

2

d − 1

]

,
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where

b{n + 1, m + 1} =
(d − 1)n−m

(n − m)!

∫ +π/2

−π/2

(cos x)(d−1)(m+1)(Fd−1(x))n−m dx,

a

[

m + 1 +
2

d − 1
, ℓ + 1 +

2

d − 1

]

=
(d−1)m−ℓ+1

(m − ℓ)!
·

1

2π

∫ +∞

−∞
(cosh y)−(d−1)(m+1)−2(Fd−1(iy))m−ℓ dy.

After some transformations, we arrive at (3.2). ⊓⊔

Remark 3.3 In particular, we obtained an indirect proof that the right-hand sides of

(3.1) and (3.2) are equal. Finding a direct proof of this equality seems non-trivial.

Let us also mention that, according to our numerical computations, the individual

summands in (3.1) and (3.2) are, in general, not equal.

Proposition 3.4 Let d ≥ 2, n ≥ d + 2, and k ∈ {0, . . . , d − 1}. If d is even, then

E fk(Vn,d) is a rational number. If d is odd, then E fk(Vn,d) is a linear combina-

tion of the numbers π−2r , where r = 0, 1, . . . , ⌊(n − d + k − 1)/2⌋, with rational

coefficients.

Proof This follows from Theorem 2.4 together with [22, Thm. 7.2]. The same result

could be deduced by combining Theorem 2.3 with [22, Thm. 7.4]. ⊓⊔

Remark 3.5 Along with the Voronoi tessellation it is natural to consider the so-called

spherical hyperplane tessellation which is defined as follows. As before, let X1, . . . , Xn

be n independent, uniformly distributed random points on S
d , where n ≥ d + 1. Let

X⊥
i = {z ∈ R

d+1 : 〈z, X i 〉 = 0} be the hyperplane orthogonal to X i . The hyper-

planes X⊥
1 , . . . , X⊥

n dissect the sphere S
d into spherical polytopes which constitute

the spherical hyperplane tessellation. The spherical Crofton cell Zn,d is defined as

the almost surely unique cell of this tessellation that contains the north pole e. We

have Zn,d = S
d ∩ (G1 ∩ · · · ∩ Gn), where Gi is the half-space bounded by X⊥

i and

containing the north pole e. The expected f -vector of the spherical Crofton cell Zn,d

can be computed as follows. We observe that the dual of the convex cone G1 ∩· · ·∩Gn

is the positive hull Dn := pos (X−
1 , . . . , X−

n ) of the points X−
i := −X i · sgn 〈X i , e〉.

The points X−
1 , . . . , X−

n are independent and uniformly distributed on the lower half-

sphere S
d
− := {z ∈ S

d : 〈z, e〉 ≤ 0}. The corresponding f -vectors satisfy

E fk(Zn,d) = E fk+1(G1 ∩ · · · ∩ Gn) = E fd−k(Dn) = E fd−k−1(S
d ∩ Dn)

for all k ∈ {0, . . . , d − 1}. The expected face numbers of the random spherical poly-

topes S
d ∩ Dn that appear on the right-hand side have been explicitly computed in [21].

These polytopes are also closely related to the beta’ polytopes P̃
β

n,d , but this time with

β = (d + 1)/2, see [21,23].
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3.2 Low-Dimensional Cases

Let us consider the low-dimensional cases separately. For example, in dimension

d = 2, if we take ℓ = 1 in Theorem 3.1 we arrive at the following result of Miles [27].

Corollary 3.6 For d = 2 and n ≥ 3 we have

E f0(Vn+1,2) = E f1(Vn+1,2) = 6 ·
n − 1

n + 1
= 6

(

1 −
2

n + 1

)

. (3.3)

Proof According to Theorem 3.1, E f1(Vn+1,2) = Ĩ2(n, 2) · 3 · J̃2(2, 1)/(π2n−1).

Moreover, F̃2(z) = 1 + sin z, which implies that J̃2(2, 1) = π . In addition,

(

n

2

)−1

Ĩ2(n, 2) =
∫ π/2

−π/2

(cos x)3(1 + sin x)n−2 dx

=
n−2
∑

k=0

(

n − 2

k

) ∫ π/2

−π/2

(cos x)3(sin x)k dx

=
n−2
∑

k=0

(

n − 2

k

)

2(1 + (−1)k)

(k + 1)(k + 3)
=

2n+1

n(n + 1)
,

which implies

E f1(Vn+1,2) =
3

2n−1

(

n

2

)

2n+1

n(n + 1)
= 6 ·

n − 1

n + 1
. ⊓⊔

As observed already by Miles [27], it is not surprising that E f0(Vn+1,2) → 6, as

n → ∞, which is the expected number of vertices of the typical cell of a Poisson–

Voronoi tessellation in the plane, see [34, Thm. 10.2.5].

Remark 3.7 We note that (3.3) can alternatively be obtained by purely combinatorial

means. Indeed, by the Euler relation and the fact that the Voronoi tessellation on the

sphere is almost surely simple (which, for d = 2, means that each vertex of the

tessellation belongs to exactly three edges), we have

f2(mn+1,d) − f1(mn+1,d) + f0(mn+1,d) = 2 and 2 f1(mn+1,d) = 3 f0(mn+1,d)

almost surely. Also, f2(mn+1,d) = n + 1 since each cell corresponds to its center.

Altogether, it follows that

f0(mn+1,d) = 2(n − 1) and f1(mn+1,d) = 3(n − 1)

almost surely. Taking the expectations and recalling Proposition 2.2 yields (3.3).
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Table 1 Exact and approximate values for the expected number of vertices of the typical Voronoi cell

generated by n ∈ {4, . . . , 9} random points on S
3 and n ∈ {5, . . . , 9} random points on S

4

n = 4 n = 5

E f0(Vn+1,3) 4 20
3 − 3 289

360 π2 ≈ 5.74

E f0(Vn+1,4) – 5

n = 6 n = 7

E f0(Vn+1,3) 10 − 3 289

120π2 ≈ 7.22 14 − 23 023

360 π2 + 569 556 559

6 048 000 π4 ≈ 8.49

E f0(Vn+1,4) 18 975
2 261 ≈ 8.39 3 835

323 ≈ 11.87

n = 8 n = 9

E f0(Vn+1,3) 56
3 − 23 023

180 π2 + 569 556 559

1 512 000 π4 24 − 23 023

100 π2 + 569 556 559

504 000 π4 − 200 082 581 646 233

118 540 800 000 π6

≈ 9.57 ≈ 10.52

E f0(Vn+1,4) 340 886
22 287 ≈ 15.29 8 124

437 ≈ 18.59

On the other hand, in dimensions d > 2 the f -vector of mn+1,d is not deterministic.

For d = 3 and d = 4, we present exact formulas for the expected f -vector of the

typical spherical Voronoi cell and refer to Table 1 for some exact and numerical values

for small values of n.

Corollary 3.8 For d = 3 and all n ≥ 4 we have

E f0(Vn+1,3) =
256

35π

(

1

2π

)n−3(
n

3

) ∫ +π/2

−π/2

(cos x)8(2x + sin 2x + π)n−3 dx,

E f1(Vn+1,3) =
3

2
E f0(Vn+1,3), E f2(Vn+1,3) =

1

2
E f0(Vn+1,3) + 2.

Proof The first formula follows from Theorem 3.1 with d = 3 and ℓ = 3:

E f0(Vn+1,3) =
1

π

(

2

π

)n−3

Ĩ3(n, 3) · 8 · J̃3(3, 3).

It remains to note that F̃3(z) = (2z + sin 2z + π)/4, which implies that J̃3(3, 3) =
32/35 and

Ĩ3(n, 3) =
(

1

4

)n−3(
n

3

) ∫ +π/2

−π/2

(cos x)8(2x + sin 2x + π)n−3 dx .

Since Vn+1,3 is a simple polytope with probability one, we have that almost surely

2 f1(Vn+1,3) = 3 f0(Vn+1,3). Finally, the formula for E f0(Vn+1,3) follows from

Euler’s relation, which says that almost surely f0(Vn+1,3)−f1(Vn+1,3)+f2(Vn+1,3)=2.

⊓⊔
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Corollary 3.9 For d = 4 and all n ≥ 5 we have

E f0(Vn+1,4) =
6435

2048

(

3

48

)n−4(
n

4

) ∫ +π/2

−π/2

(cos x)15(8 + 9 sin x + sin 3x)n−4 dx,

E f1(Vn+1,4) = 2E f0(Vn+1,4), E f2(Vn+1,4) = 6
n − 1

n + 1
+

6

5
E f0(Vn+1,4),

E f3(Vn+1,4) = 6
n − 1

n + 1
+

1

5
E f0(Vn+1,4).

Proof The identity for E f0(Vn+1,4) follows from Theorem 3.1. In fact, taking d = 4

and ℓ = 4 we obtain

E f0(Vn+1,4) =
1

π

(

3

4

)n−4

Ĩ4(n, 4) · 15 · J̃4(4, 4).

Moreover, F̃4(z) = (8 + 9 sin z + sin 3z)/12, which in turn implies that J̃4(4, 4) =
429 π/2048 and

Ĩ4(n, 4) =
(

1

12

)n−4(
n

4

) ∫ +π/2

−π/2

(cos x)15(8 + 9 sin x + sin 3x)n−4 dx .

To derive the other identities, we use the three linearly independent Dehn–Sommerville

equations for simplicial 5-dimensional polytopes [8, Cor. 17.8]. Applied to P−1
n+1,5 they

say that almost surely

2 = f0(P−1
n+1,5) − f1(P−1

n+1,5) + f2(P−1
n+1,5) − f3(P−1

n+1,5) + f4(P−1
n+1,5),

2 f1(P−1
n+1,5) = 3 f2(P−1

n+1,5) − 6 f3(P−1
n+1,5) + 10 f4(P−1

n+1,5),

5 f4(P−1
n+1,5) = 2 f3(P−1

n+1,5).

Using (2.7) these identities translate into the almost sure relations

2 = f4(mn+1,4) − f3(mn+1,4) + f2(mn+1,4) − f1(mn+1,4) + f0(mn+1,4),

2 f3(mn+1,4) = 3 f2(mn+1,4) − 6 f1(mn+1,4) + 10 f0(mn+1,4),

5 f0(mn+1,4) = 2 f1(mn+1,4)

for the random Voronoi tessellation mn+1,4 on S
4. In addition, we have that almost

surely f4(mn+1,4) = n + 1, since each cell of mn+1,4 corresponds to its center. This

implies that f1(mn+1,4), f2(mn+1,4), and f3(mn+1,4) can be expressed in terms of

f0(mn+1,4) only. In fact, we have that almost surely

f1(mn+1,4) =
5 f0(mn+1,4)

2
, f2(mn+1,4) = 2(n − 1) + 2 f0(mn+1,4),

f3(mn+1,4) = 3(n − 1) +
f0(mn+1,4)

2
.
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We finally apply Proposition 2.2 to conclude that 5E f0(mn+1,4) = (n+1)E f0(Vn+1,4)

and

E f1(Vn+1,4) =
4

n + 1
E f1(mn+1,4) =

4

n + 1
·

5

2
· E f0(mn+1,4) = 2E f0(Vn+1,4).

The identities for E f2(Vn+1,4) and E f3(Vn+1,4) follow similarly:

E f2(Vn+1,4) =
3

n + 1
(2(n − 1) + 2E f0(mn+1,4)) = 6

n − 1

n + 1
+

6

5
E f0(Vn+1,4),

E f3(Vn+1,4) =
2

n + 1

(

3(n − 1) +
1

2
E f0(mn+1,4)

)

= 6
n − 1

n + 1
+

1

5
E f0(Vn+1,4).

This completes the argument. ⊓⊔

Remark 3.10 It is interesting to note that if we applied the Dehn–Sommerville equa-

tions directly to the typical Voronoi cell Vn+1,4 (which is almost surely a simple

polytope), this would not yield enough relations to express all E fi (Vn+1,4) through

E f0(Vn+1,4). It is known [8, § 17] that both, in dimensions 4 and 5, the f -vectors

of simplicial (and simple) polytopes depend on two free parameters. Applying the

Dehn–Sommerville relations to the 5-dimensional beta polytope has the advantage

that we know the number of vertices to be n + 1, which reduces the number of free

parameters to 1.

4 Proof of Theorem 2.3

4.1 Preliminaries

Let us first introduce some notation. Recall that ξn = {X1, . . . , Xn} is a binomial

process on S
d induced by n ∈ N independent random points X1, . . . , Xn with the

uniform distribution σd . For each i ∈ {1, . . . , n} we let hi ∈ [−1, 1] be the projection

of X i onto the 0-th coordinate of R
d+1 which is shown as the vertical direction in

Fig. 2. Also, we denote by θi ∈ [0, π ] the angle between e = (1, 0, . . . , 0) and X i .

Formally,

hi = 〈X i , e〉 = cos θi ,

where 〈 · , · 〉 denotes the standard scalar product in R
d . We can then decompose X i

as follows:

X i = e cos θi + Ui sin θi , i ∈ {1, . . . , n}, (4.1)

where Ui is a suitable unit vector in the d-dimensional hyperplane e⊥ = {x0 = 0}
which we identify with R

d . The next lemma, which is well known, characterizes

the joint distribution of hi and Ui . It is just a probabilistic restatement of the slice

integration formula for spheres, see [2, Cor. A.5]. The density of hi can be found in

[23, Lem. 7.6] or deduced from [24, Lem. 4.4].
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e

0

X ih i

i{x 0 = 1}
L i

d

θi
2

θi
2

R

Fig. 2 Illustration of the construction used in the proof of Theorem 2.3

Lemma 4.1 For each i ∈ {1, . . . , n} the random variable hi has density

f (h) =
Ŵ((d + 1)/2)
√

π Ŵ(d/2)
(1 − h2)d/2−1, h ∈ [−1, 1],

with respect to the Lebesgue measure on [−1, 1]. The random variable Ui is uniformly

distributed on the unit sphere in {x0 = 0} ≡ R
d . Finally, hi and Ui are independent.

4.2 Proof of Theorem 2.3

The starting point of our proof is the representation of the typical Voronoi cell on S
d

given in Proposition 2.1:

Vn+1,d
d=

n
⋂

i=1

{z ∈ S
d : ρ(e, z) ≤ ρ(X i , z)}.

Recalling that the geodesic distance on S
d is given by ρ(x, y) = arccos 〈x, y〉, x, y ∈

S
d , and using that the function u �→ arccos u is decreasing on [−1, 1], we can write

the above representation as

Vn+1,d
d=

n
⋂

i=1

(L+
i ∩ S

d), (4.2)
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d

e

− e

Cn

C °n

{x0 = − 1}

{x0 = 0}Qn

LjLi

Fig. 3 Illustration of the cones Cn and C◦
n as well as the random polytope Qn

where L+
1 , . . . , L+

n ⊂ R
d+1 are half-spaces defined by

L+
i := {z ∈ R

d+1 : 〈e, z〉 ≥ 〈X i , z〉}
= {z ∈ R

d+1 : 〈X i − e, z〉 ≤ 0}, i ∈ {1, . . . , n}.

The bounding hyperplane of L+
i is denoted by

L i := {z ∈ R
d+1 : 〈X i − e, z〉 = 0}, i ∈ {1, . . . , n};

see Fig. 2. Note that L i passes through the origin of R
d+1 and that e ∈ L+

i . Consider

the convex random polyhedral cone

Cn :=
n

⋂

i=1

L+
i ⊂ R

d+1;

see Fig. 3. By definition, the k-dimensional faces of the spherical polytope Cn ∩ S
d

(which is the right-hand side of (4.2)) are in bijective correspondence with the (k +1)-

dimensional faces of the polyhedral cone Cn . Thus, we arrive at the distributional

equality
(

fk(Vn+1,d)
)d−1

k=0

d=
(

fk(Cn ∩ S
d)

)d−1

k=0
=

(

fk+1(Cn)
)d−1

k=0
. (4.3)

The dual or polar of the convex cone Cn is defined as

C◦
n := {x ∈ R

d+1 : 〈x, y〉 ≤ 0 for all y ∈ Cn}.

123



Discrete & Computational Geometry (2021) 66:1330–1350 1347

Since the (k + 1)-dimensional faces of Cn are in bijective correspondence with the

(d − k)-dimensional faces of C◦
n , it follows from (4.3) that

(

fk(Vn+1,d)
)d−1

k=0

d=
(

fd−k(C
◦
n)

)d−1

k=0
. (4.4)

Since Cn is defined as the intersection of the half-spaces L+
1 , . . . , L+

n , the dual cone

is the positive hull of the outward normal vectors of these half-spaces, that is

C◦
n = pos (X1 − e, . . . , Xn − e).

Since the 0-th coordinates of the vectors X i − e are strictly negative almost surely, it

follows that C◦
n \ {0} is contained in {x0 < 0} almost surely. Recall from (4.1) that

X i −e = e(cos θi −1)+Ui sin θi . We may ignore the case when some θi = 0 because

it has probability 0. Normalizing the vectors spanning C◦
n in such a way that their 0-th

coordinate becomes −1, we get

C◦
n = pos

(

−e +
U1

R1
, . . . ,−e +

Un

Rn

)

,

where

Ri :=
1 − cos θi

sin θi

= tan
θi

2
, i ∈ {1, . . . , n}.

It follows from C◦
n \ {0} ⊂ {x0 < 0} that almost surely the (d − k)-dimensional faces

of C◦
n are in one-to-one correspondence with the (d − k − 1)-dimensional faces of the

polytope obtained by intersecting C◦
n with the tangent space to S

d at its south pole −e.

Define the polytope

Qn := (C◦
n ∩ {x0 = −1}) + e = conv

(

U1

R1
, . . . ,

Un

Rn

)

⊂ {x0 = 0}. (4.5)

Recalling (4.4) we can write

(

fk(Vn+1,d)
)d−1

k=0

d=
(

fd−k−1(Qn)
)d−1

k=0
. (4.6)

To complete the proof of Theorem 2.3, it remains to verify that the random polytope

Qn has the same distribution as the beta’ polytope P̃d
n,d in R

d with parameter β = d.

Lemma 4.2 For each i ∈ {1, . . . , n} the random variable Ri has density

g(r) =
2d Ŵ((d + 1)/2)

√
π Ŵ(d/2)

·
rd−1

(1 + r2)d
, r ≥ 0, (4.7)

with respect to the Lebesgue measure on [0,∞). Also, we have Ri
d= 1/Ri .
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Proof The identity

Ri =
1 − cos θi

sin θi

=
sin θi

1 + cos θi

implies that

R2
i =

1 − cos θi

sin θi

·
sin θi

1 + cos θi

=
1 − cos θi

1 + cos θi

=
1 − hi

1 + hi

. (4.8)

Since hi has the same distribution as −hi by Lemma 4.1, we have Ri
d= 1/Ri .

Furthermore, for each r ≥ 0,

P[Ri ≥ r ] = P

[

√

1 − hi

1 + hi

≥ r

]

= P

[

hi ≤
1 − r2

1 + r2

]

=
Ŵ((d + 1)/2)
√

π Ŵ(d/2)

∫ (1−r2)/(1+r2)

0

(1 − h2)d/2−1 dh,

where the last identity comes from Lemma 4.1. Differentiation with respect to r thus

proves that the density of Ri is

g(r) =
Ŵ((d + 1)/2)
√

π Ŵ(d/2)

(

1 −
(

1 − r2

1 + r2

)2)d/2−1
4r

(1 + r2)2

=
2d Ŵ((d + 1)/2)

√
π Ŵ(d/2)

·
rd−1

(1 + r2)d
,

which completes the argument. ⊓⊔

We are now in position to complete the proof of Theorem 2.3. Recall from

Lemma 4.1 that U1, . . . , Un are i.i.d. and uniformly distributed on the unit sphere

in R
d . The same Lemma 4.1 (see also (4.8)) states that this family is independent of

the collection R1, . . . , Rn of random variables which are also i.i.d. and have density

g(r) given by (4.7). Altogether, recalling (4.5), it follows that

Qn
d= conv

(

U1 R1, . . . , Un Rn

)

,

and that U1 R1, . . . , Un Rn are independent random points in R
d with Lebesgue density

f̃d,d(x) :=
Ŵ(d)

πd/2Ŵ(d/2)
(1 + ‖x‖2)−d , x ∈ R

d .

(The value of the constant follows from the Legendre duplication formula but is actu-

ally not needed for the argument). This is the beta’ density from (2.3) with β = d.

Hence, Qn has the same distribution as the beta’ polytope P̃d
n,d , and the proof of

Theorem 2.3 is complete.

123



Discrete & Computational Geometry (2021) 66:1330–1350 1349

Remark 4.3 As a byproduct of the above proof, note that the beta’ distribution with

β = d stays invariant under inversion with respect to the unit sphere.
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