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behorende bij het proefschrift van Willem Remco Pasterkamp
getiteld:
"The Tyre As Sensor To Estimate Friction"

Een frictieschatter die gebaseerd is op het band- of
voertuiggedrag kan betrouwbare schattingen opleveren
wanneer het frictiepotentieel in aanzienlijke mate benut
wordt (dit proefschrift).

Het verkrijgen van een goede schatting van de frictie
tussen band en wegdek onder zo veel mogelijk
omstandigheden vereist een combinatie van directe en
indirecte methoden (dit proefschrift).

Wanneer de snelheidsbeperking en de handhaving daarvan
geen voor de automobilist als redelijk ervaren doel dienen,
zal de automobilist niet geneigd zijn zich aan de
snelheidsbeperking te onderwerpen.

Het in gebruik nemen van de vluchtstrook tijdens het
spitsuur voor normaal verkeer c.q. de afsluiting daarvan
buiten het spitsuur suggereert dat men tijdens het spitsuur
geen pech onderweg kan krijgen.

De verkeersveiligheid is wellicht meer gebaat bij het
tegengaan van telefoneren tijdens het autorijden door de
bestuurders dan bij het verder perfectioneren van de
handhaving van de maximumsnelheid (The New England
Journal of Medicine 1997, Vol. 336, pp. 453-458).

Wanneer de reclameuitzendingen op radio en televisie
onderbroken worden door andere programma’s, dienen
deze eenzelfde gemiddeld volumeniveau te handhaven.



10.

Flexibilisering van arbeidstijden wordt gefrustreerd door
de niet-flexibele instelling van de meeste kinderopvang-
mogelijkheden.

Een dichtbevolkt land als Nederland zou zich meer moeten
specialiseren in relatief milieuvriendelijke bedrijfstakken
zoals financiele en administratieve dienstverlening en
softwareontwikkeling in plaats van milieubelastende
bedrijfstakken als landbouw en transport. In dit kader is
een efficiente elektronische snelweg voor de toekomst
wellicht van groter belang dan de Betuwe- of de HSL-lijn of
een nieuwe luchthaven.

Paars maakt kleurenblind.
Wanneer Sir Alexander Fleming volgens de ISO 9000

normen gewerkt zou hebben, zou hij de penicilline niet
ontdekt hebben.
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Introduction

1.1. Motivation and background

The automobile has undergone rapid developments since it was introduced about a
century ago. It has evolved into an efficient, reliable and fast vehicle and has
become the main means of transport in the industrialised part of the world.
Nowadays, the challenges to the vehicle researchers are primarily to enhance the
safety and the driving comfort of the vehicle, to enhance the traffic circulation and
to reduce environmental pollution by the vehicles. These goals are interrelated to a
certain extent. For example, reducing the workload on the driver will generally
reduce the number of accidents he causes, and part of the traffic congestion is due to
traffic accidents. Traffic congestion, in turn, causes unnecessary environmental
pollution.

Over the last few decades, the safety of the vehicle has been enhanced not only by
improvements in the construction and the mechanics of the vehicle, but, thanks to
the rapid developments in the computer and electronics technology, also by the
incorporation of modern control systems. The most popular examples are probably
anti-lock brake systems (ABS) and traction control systems (TCS), but four-wheel
steering (4WS), active yaw control (AYC) and active suspension have also been
introduced into the market. Nowadays attention is focussed on adaptive intelligent
cruise control with automatic distance keeping between vehicles, and
communication with other vehicles or road administrators about road and traffic
conditions.

These control systems can only perform to their full potential if they have access to
accurate information about the behaviour of the vehicle. A very important aspect of
this behaviour is the interaction between the tyres of the vehicle and the road. The
ability of the tyres to transmit forces between tyre and road limits the operating
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range of the vehicle. These forces between tyre and road are mainly transmitted by
a friction mechanism. If the friction value changes, dramatic changes in vehicle
behaviour may result. For example, obstacle avoidance may be impossible at lower
friction levels, whereas it is possible at higher friction levels (Figure 1.1). A simple
analysis of the stationary circular motion of a point mass shows that the radius of
the circle is inversely proportional to the centripetal acceleration. For a vehicle, the
maximum achievable acceleration is approximately proportional to the friction level.
Consequently, a 10% decrease in friction level results in an 11% increase of the
minimum curve radius while a 50% decrease in friction level doubles the minimum
curve radius.

[

u’high

Hiow
[ -

Figure 1.1: Increase of minimum curve radius due to decrease of friction

From the viewpoints of safety and from of performance, it is therefore highly
desirable to know the capacity of the tyre to transmit forces to the road, both to
provide information to the driver (warning signals etc.) and as a sensory input to
advanced vehicle control systems.

The different applications make different demands on the friction estimator in
terms of accuracy, reliability and speed. For example, on the one hand, most active
control systems, such as AYC, are only activated if the vehicle under consideration
is recognized as being in a near-critical situation. This implies that an accurate,
reliable friction estimate needs to be available in time before the control is
activated, but does not need to be available if the vehicle is in a non-critical
situation, i.e. driving straight forward without accelerating or decelerating. For
AYC systems, ’in time’ means in the order of a second, while for ABS systems ’in
time’ means in the order of 0.01 seconds. On the other hand, although a road
administrator needs to know the current state of friction of the road very reliably at
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all times, an estimate of this in the order of minutes is acceptable, and it does not
need to be very precise. It is therefore important for the designer of a friction
estimator to state the purpose of the friction estimate.

1.2. Problem statement

The ability of the tyre to transmit forces mainly depends on the properties of the
tyre itself, the orientation of the tyre relative to the road, the load on the tyre that
presses the tyre onto the road surface and the friction between tyre and road.
Excepting only the friction between tyre and road, these factors are all relatively
easy to determine.

Although various methods have been developed to identify tyre/road friction, the
final solution to this problem has certainly not yet been found. As will be explained
in Chapter 2 in more detail, we may distinguish two different approaches to the
friction determination problem: a direct one and an indirect one. The first approach
comprehends methods that are directly related to the friction process, for example
using forces and accelerations, while the second approach contains methods that
monitor some parameters that are related to the frictional process, such as wetness
and temperature of the road. Although the methods developed by the second
approach may be easily implementable in vehicles and may be relatively
inexpensive, the position of this research is to take the first approach, because it has
a direct relation to the friction process. It is to be expected though, that both
approaches may complement each other.

We would like to look as closely as possible at the source of frictional forces, which
brings us to regard the tyre itself as a possible sensor to identify the friction. This
implies that as far as possible the friction identification should be separated from
the rest of the vehicle behaviour. The clear advantages of this approach are firstly,
that the friction identification becomes independent of possibly changing vehicle
parameters, and secondly, that it is possible to identify tyre to road friction for
individual wheels, as opposed to friction identification for the entire vehicle or per
axle. Thus, the main subject of this thesis is:

Investigation of the possibility to use the tyre as a sensor for on-line
identification of tyre to road friction characteristics.

It is intended that the friction identification system should be used primarily for
driver warning and vehicle control applications implemented on-line in the vehicle.
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1.3. Outline of Thesis

Various methods designed to identify the friction coefficient between tyre and road
have already been developed. An overview of these methods is presented in Chapter
2. The contribution of this thesis is presented in the subsequent chapters. Chapter 3
discusses the theoretical background of the method based on the tyre modelling
theory and Chapter 4 discusses the identification methods employed. Experimental
application of the friction identification method and experimental results are
discussed in Chapter 5. Chapter 6 gives some examples of possible applications of
this identification method in advanced vehicle control systems, illustrated by a case
study. Conclusions and recommendations are formulated in the final Chapter 7.




Survey on Friction Estimators

2.1. Introduction

This chapter provides a survey of the various existing methods to determine the
friction potentials described in the literature. However, before doing this, we will
first introduce the concept of friction potentials of a single tyre and of a total vehicle.
The various methods to determine the friction potentials are then discussed, and
some conclusions are drawn from the survey.

2.2. Friction potentials

2.2.1. Friction potential of the tyre

In [23], the friction potential of a tyre in the longitudinal direction on a specific road
is defined as the maximum braking force divided by the vertical tyre load at a
nominal vertical load and in the absence of side slip or camber:

Fx,max

F, @.1

Hy =

Fz =Fz,nom

Similarly, we can define the friction potential of the tyre in the lateral direction in
the absence of longitudinal slip or camber:

Fy,max
F,

Ho = (2.2)

Fz :Fz,nom

Although the friction potentials of the tyre in longitudinal and lateral directions are
slightly different, usually u, > i, they are often assumed to be equal. A combined
friction potential, describing both longitudinal and lateral friction potentials,
however, is always a compromise.
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2.2.2. Friction potential of the vehicle

The ability of the vehicle to exploit the friction potentials of the tyres is most
important for the interaction of forces between vehicle and road. The friction
potential of the total vehicle can be defined by the maximum attainable vehicle
accelerations in both longitudinal and lateral directions. This can be illustrated by
an acceleration diagram (Figure 2.1).

a

X

acceleration

friction potential

left turn right turn

actual driving
state

braking
Figure 2.1: Acceleration diagram

In this diagram, the horizontal axis represents lateral acceleration and the vertical
axis represents longitudinal acceleration. The outer contour in the diagram, the
friction potential of the vehicle, represents maximum attainable combinations of
accelerations in both directions in steady state conditions, e.g. braking in a curve.
The contour is symmetrical with respect to the o -axis if the vehicle is symmetrical
with respect to its longitudinal axis. In that case, making a left curve is similar to
making a right one. The maximum feasible accelerations for driving and braking
are not the same. Therefore, the contour is not symmetrical with respect to the a,-
axis. The actual driving state has to be inside the contour and the distance from the
actual point in this diagram to the outer contour represents the safety margin.
Therefore, the innermost light grey shaded area represents a high safety margin,
while a driving state in the dark shaded outermost area represents driving with a
very small safety margin.

2.3. Classification of friction estimators

For the classification of the various friction estimation methods, described in the
literature, we use the diagram of Figure 2.2.
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Friction Estimators

| 1

Direct Methods Indirect Methods
i Vehicle
Active Passive

] Tyre

Braking Tyre Tread
Road Condition

Steering —  Tyre/ Wheel

“—  Road Surface

] Vehicle

Figure 2.2: Classification of friction estimation methods

The first classification is into direct methods (also called effect based [23] methods)
and indirect methods (also called parameter based methods). The first category
contains methods that are directly related to the frictional process, for example,
methods using forces, torques and accelerations. These methods will be considered
in section 2.4. The second category contains methods that monitor one or several of
the many environmental parameters that affect the frictional process, such as
wetness or temperature. These indirect methods will be discussed in section 2.5.

2.4. Direct determination of the tyre friction potential

2.4.1. Active versus Passive Methods

The direct methods can be subdivided into active and passive methods. In this
respect, active means deliberate excitation of the tyre or the vehicle such that the
responses can be used to determine the friction potential. Passive methods do not
use deliberate excitation of the system, but use the responses that are obtained
from accidental excitation of the system. Thus, they do not intervene in the vehicle
dynamics.

In practice, active methods employ steering or braking of one or more wheels of the
vehicle. For example, research has been conducted on perodically changing the toe-
in angles of the front wheels. The vehicle response to this excitation provides a
measure for the friction coefficient. Also, in severe cornering manoeuvres, the inner
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rear wheel may be braked up to wheel lock, or rather up to activation of the ABS
system, to provide a friction estimate. Since this wheel is almost unloaded, the
resulting brake force is relatively small, having only a minor oversteer influence on
the vehicle behaviour.

An advantage of these active methods is that a very accurate prediction of the
friction potential of the tyre can be made. However, the disturbance of the vehicle
dynamics, which possibly affects safety and driving comfort, the inevitable
additional tyre wear and the energy loss involved, should generally be regarded as
unacceptable, except possibly in emergency situations.

For these reasons, we will disregard active methods and concentrate on passive
methods. These passive methods can be subdivided into three main categories that
relate to the choice of system boundaries. The first category focuses on the frictional
process between tread elements and road surface at a micro-level. The second
category, which also contains the contribution of this thesis, considers the entire
wheel together with the tyre as a single element, transmitting forces and torques
between road and vehicle. The methods in the third category do not consider
individual wheels, but rather the front and rear axles, and use the overall vehicle
responses to generate friction estimates. These three categories are described in the
next sub-sections.

2.4.5. Determination of the tyre friction potential using tread element behaviour

Roth (16, 57] developed a method to measure tyre to road friction based on the
concept that the "global” forces on the tyre (longitudinal and lateral forces) result
from the integral of "local” forces (i.e. local stress) over the contact patch,

Fi=[[oi(xy)dxdy (2.3)
yx
where F; is the global planar tyre force in some direction i and o;(x,y) is the local
horizontal stress in that direction. It is not possible to directly measure the local
stresses in the contact patch directly. Instead, the deformation of tread elements
was used as an indirect signal for this,

F; = [ [ e;TTD(x,y) dxdy (2.4)
yx
where TTD stands for Tyre Tread Deformation and ¢ for the tread stiffness in that
direction.

A special tyre sensor called FIT (Friction Indicating Tread) was developed for this
purpose. This sensor, based on a Hall-generator, was vulcanised into a tread
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element of the tyre (Figure 2.3) and measures the deformation of the tread element
as it travels through the contact patch.

Crosscut A-B

Hall element

Belt

Magnet

Tread element

Side view

tread elemert=izyrririey

I L! i,
_ {_‘{_ _ f@ﬁ/ L P
A B road”

Figure 2.3: Friction Indicating Tread sensor [16]

From the TTD-data, three characteristics were calculated, one for friction potential
and two for friction demand, in longitudinal and lateral directions respectively. The
reported results show that both the friction potential and the friction demand, the
part of the friction potential that is being utilized, could be estimated. Since the
tread elements will always be deformed as they travel through the contact patch,
even in free rolling conditions, at least very low friction conditions could be detected.

A second and a third generation of sensors have been developed [3]. The Hall
element and the magnet are no longer separated by the belt in the third generation
of sensors. This permits the use of standard steel belt tyres, as opposed to the
Kevlar belt tyres that had to be used for the first generation of sensors. Moreover,
since the new sensors are located entirely within the tread element, they are
practically insensitive to deformations of the belt.

Although this method is very attractive from a scientific point of view and the
results are quite good, the required sensors and accompanying equipment probably
limit the applicability of this method to research purposes, for example by tyre
manufacturers.
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2.4.2. Determination of friction potential using tyre or wheel behaviour

General considerations

The majority of friction estimators use the nonlinear tyre force versus (longitudinal
and/or lateral) slip relation and its dependency on the friction coefficient to
determine both the friction potential and the friction demand. The general force
versus slip characteristic of a tyre is shown in Figure 2.4 for two different friction
values. The characteristic shown 1is for Ilongitudinal slip. Although the
characteristics for longitudinal and lateral slip are somewhat different, the general
shape of the curve is similar. From left to right we first have an almost linear region
(I), where the tyre force is approximately linearly dependent on the slip value and
practically independent of friction value. This region is followed by a nonlinear
region (I) where the increase in tyre force is less than proportional to the increase
of slip and reaches a maximum. Then, the tyre force flattens out or decreases in the
third region (III). The slip values at which the regions change from one to another
depend on the friction coefficients. These regions have been indicated in Figure 2.4
for both high and low p.
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Figure 2.4: General tyre force versus slip characteristics for two friction values

The wheel slip and the tyre force need to be determined for the friction estimation.
The wheel slip in longitudinal direction is defined by
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"st
=—_S5% 2.5
K V. (2.5)
where the longitudinal slip speed V., is defined by

Ver =V, - Q2r, (2.6)

and V, is the vehicle forward speed, € is the wheel angular velocity, and r, is the
effective rolling radius of the wheel. Using the wheel speed sensors of the anti-lock
brake system, the angular velocity of each wheel can be determined, while the
effective rolling radius has an approximately constant value.

In the case of traction, the wheel slip is easily determined from the difference in
angular velocity of driven and freely rolling wheels. In the case of braking, the
vehicle speed could be determined from integration of the longitudinal acceleration
if an accelerometer were installed, which is usually not the case with current ABS
systems. Instead, usually the difference in angular velocity between front and rear
wheels is used, keeping in mind that the rear wheels are much less braked than the
front wheels to prevent rear wheel lock-up. A correction is made for the error in the
rear wheel angular speed.

The tyre tractive forces are determined either from the motor management in the
case of traction or engine retarding, assuming equal distribution of the tractive
force over the driven wheels, or by measuring the driving torques by placing gauges
on the drive shafts. Tyre braking forces are determined from the brake pressure,
either on the slave cylinders at the wheels, or on the master cylinder at the booster,
using the pre-set brake force distribution. This method is inaccurate owing to the
possible variation in transmission from brake pressure to actual braking force
between tyre and road. Alternatively, the longitudinal acceleration could be used. In
the case of driving, this assumes equal distribution of the tractive force over the
driven wheels. In the case of braking, the pre-set brake force distribution between
front and rear wheels is used and the brake forces on left and right wheels are
assumed to be equal on each axle.

Built-in friction estimators in ABS and TCS control

Existing ABS and TCS use built-in friction estimators to determine the maximum
circumferential force that the tyre can transmit. Usually, the friction coefficient is
not actually estimated, but a related parameter, such as the maximum brake
pressure before wheel lock-up, is used. Also, the spin-up of the wheel after release of
the brake in the ABS cycle can be used to determine the friction coefficient: if the
brake is released, the angular acceleration of the wheel is caused by the frictional
force between the tyre and the road only. The friction coefficient is then easily
calculated if the moment of inertia and the wheel load are known. However, by their
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nature, these systems can only supply friction information when they are activated,
that is at critical situations. That is obviously too late to give the driver a warning.

Friction estimation using micro slip

Dieckmann [11, 12] used the longitudinal slip of the wheel due to the traction forces
needed to overcome the normal resistance of motion while driving at constant speed
to determine the friction potential, that means in area I of Figure 2.4. The slip was
determined by measuring the difference in rotational speed of the driven and freely
rolling wheels during straight line driving. For his front wheel drive test car, these
traction forces were about 130 N per wheel at a constant speed of 70 km/h, which
was about 3 % of the wheel load. The wheel slip needed to generate these forces was
less than 1 %.. A new method was developed to measure these small wheel slips.
Using this method, the wheel slip could be measured to an accuracy of 0.1 %o, still
using the standard ABS wheel pulse sensors. The tractive forces were derived from
the motor management. This implies that only the summed tractive forces over both
driven wheels could be determined. Thus it was not possible to recognise so-called u-
split roads, where the friction coefficients of the left and right wheels are different.

The longitudinal slip stiffness of the tyre under small slip was calculated from the
quotient of longitudinal force and slip. The principle for the detection of the friction
potential of the tyre is that lower longitudinal slip stiffness of the tyre (more slip at
the same amount of tractive force) corresponds to a lower friction potential. This
was verified by experiments and simulations and appears to hold, but other sources
report a number of other factors that also affect the tyre longitudinal slip stiffness.
The most important factors appear to be inflation pressure and road surface
texture. Bachmann [2] noted that tyre temperature is also important; the
longitudinal tyre stiffness is slightly greater in wet conditions due to lower tyre
temperature. Therefore, information about the tyre temperature might be needed
for friction monitoring based on measurement of the microslip of the wheel.

Overall, since this method relies on extremely small slip values and tyre forces, it
seems likely that the method is sensitive to all kinds of disturbances.

Friction estimation using wheel slip behaviour and fuzzy logic

Like Dieckmann, Ito [31] also used the slip needed to develop traction forces to
maintain a constant speed. He also derived the traction forces from the motor
management and the wheel slip from the ABS-sensors. He observed that a larger
amount of longitudinal slip was needed while driving on packed snow than on dry
asphalt roads. But in addition to the average magnitude, he also observed a relation
between variations in the amplitude of slip fluctuations and the road condition, see
Table 2.1.
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Small Torque Large Torque
Slip level Amplitude of Slip level Amplitude of
_slip fluctuation slip fluctuation
Dry Asphalt small small small small
Packed Snow small small large large

Table 2.1: Road surface characteristics

Using these road surface characteristics, a fuzzy membership function and a set of
rules governing the fuzzy logic control could be constructed, as depicted in Tables
2.2 and 2.3. A rather rough estimate of the tyre-to-road friction could be made by

using these fuzzy rules.

LMH LMH LMH Low High
Traction force Slip level Amplitude of Road surface
slip fluctuation condition

Table 2.2: Fuzzy membership functions

Traction force Slip level Amplitude of slip | Road condition
fluctuation
Medium High High Low
Medium Low Low High
High High High Low

Table 2.3: Fuzzy rules set (abridged)

Ito also studied the effects of several disturbances on the estimation procedure.
Corrections were made for combined slip, while the effects of tyre type, tyre
inflation pressure variations and road gradient proved to be small enough to be
neglected for this rather rough estimator.

The interesting aspect of this method is the use of statistical information (average
value and variation of slip) in the friction estimation. These slip variations may be
primarily due to the roughness of the packed snow compared to the smooth asphalt
road. In that respect, this method could also be classified as an indirect method.

The same holds true for the method developed by Gustaffson [25]. He also
recognised road surface types by monitoring not only the differences, but also the
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variances of the measured wheel speeds. This approach, which can be seen as a
useful refinement of the work by Dieckmann, was extensively tested and appeared
to be able to distinguish at least three different friction levels. The classifier
however was sensitive to tyre wear and tyre replacement.

Friction estimation using the rotational wheel dynamics

Kiencke [32] showed the possibility to use brake pressure and wheel slip to estimate
the tyre to road friction coefficient using the wheel dynamic behaviour.

r

Figure 2.5: Single Wheel Model

Figure 2.5 shows a simple single wheel model without vertical dynamics. The
frictional force F, in the contact area between tyre and road depends on the friction
coefficient p as a function of the slip s and the normal load Fy, on the wheel:

Fy = us)Fy 2.7
The torque balance of the wheel is formulated by
de)w :Fxrw ——Mb =,u(s)erN _Mb (2.8)

where I, is the moment of inertia about the spin axis of the wheel, M, is the brake
torque, r,, is the rolling radius of the wheel and w is the angular velocity of the
wheel. The friction coefficient follows from

u(s)= Ly + My (2.9)
Fyry
The brake torque is proportional to the braking pressure:
My, =cpy (2.10)

where p, is the brake pressure and c is a constant that is usually different for front
and rear wheels. The angular velocity of the wheel and the brake pressure were
measured while the normal load was determined using a simple single mass vehicle
model and the measured longitudinal and lateral accelerations. The tyre to road
friction was determined using Recursive Least Squares (RLS).
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The developments by Liu [35] are along the same lines. Apart from the RLS
method, he also employed an extended nonlinear adaptive observer method, that
apparently performed better than RLS.

2.4.2. Determination of friction potential using vehicle behaviour

Introduction

Instead of using the wheel responses, we may use the responses of the total vehicle
to determine the friction coefficient. Usually, the implementation of these methods
is relatively easy, since they are typically based on the use of vehicle accelerations.
It is to be expected that there will be an increase in the application of
accelerometers in modern vehicles (e.g. for Vehicle Dynamic Control purposes), that
can also be used for friction estimation. However, since these methods use the total
vehicle response, only a general average estimate of the tyre to road friction
coefficient can be made. For example, a u-split road cannot be recognised. Moreover,
since the sensory inputs used by these methods are located further away from the
actual frictional interaction in the tyre-road contact area, it is to be expected that
the mechanisms in between the tyre and the sensor (the suspension and the vehicle
body) will have a filtering effect. This however, may not be undesirable.

This section describes a steady state method using Neural Networks, and a
dynamic, observer-based method. Both methods happen to focus mainly on the
lateral vehicle behaviour, as opposed to the previous section, that merely focused on
the longitudinal behaviour.

Determination of friction from steady state vehicle behaviour using neural networks

Pal [45] used the steady state vehicle response to estimate the tyre to road friction.
He used vehicle speed V, steering angle 6, yaw rate r and slip angle § to feed a
neural network (the use of neural networks will be further explained in Chapter 4).
This neural network created a static mapping from the measured signals to the
friction estimate. Pal used two different types of networks, both with one hidden
layer of 6 neurons. Type A had a single output, while type B had multiple outputs
(Figure 2.6). In type A, u was set directly as the output of the network, whereas in
type B u was determined from a number of outputs O, i=1..n, corresponding to the
available number of training sets with different friction values. The teaching signals
formed a unit diagonal matrix with dimensions equal to the number of the
aforementioned training sets, as shown in table 2.4 for the case n=3.
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Teaching Signal Output
u=1.0 p=0.4 p=0.1 Signal
1 0 0 04
0 1 0 O9
0 0 1 O3

Table 2.4: Teaching signals for type B architecture

hidden
layer

type A type B

Figure 2.6: Neural network architectures

Finally, ¢ was determined by using Egq. 2.11. This equation is a probabilistic
weighted measurement of L.

i 0; teach
[ 2t ]
K predicted = =5 2.11)

2.0;

=1
Results indicated that the prediction of i using a type B network was slightly more
accurate than the prediction using the type A network. It remains unclear whether
this was owing to the probabilistic approach, or to the increased number of
parameters of the type B network.

Determination of friction from dynamic vehicle behaviour

Ray [52, 53, 54] used Extended Kalman Filtering (EKF) to estimate vehicle state
and tyre forces from an incomplete, noise corrupted measurement set, without a
priori knowledge of road conditions or tyre forces. The observer contains an eight
degree of freedom vehicle model. The states of the observer are the longitudinal and
lateral speeds, the yaw and roll rates, the angular velocities of the four wheels and
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the roll angle. The observer is fed by measurements of the angular velocities of the
wheels, the brake pressures and the deduced brake torques and the steer angle. The
outputs are the yaw rate, the wheel speeds and the longitudinal and lateral
accelerations. The observer does not contain a tyre model. Instead, the tyre forces
are estimated as parameters. These estimated states and tyre forces are then used
in a Bayesian hypothesis selection procedure together with a nominal tyre model to
determine the most likely road coefficient of friction. This tyre model may also be
determined by off-line processing of estimated vehicle states and tyre forces using
EKF.

The results presented by Ray indicate that friction estimation is possible above the
level of 0.3 g deceleration in straight line braking and 0.4 g lateral acceleration in
cornering on a high friction (4 = 0.9) road. Unfortunately, no experiments were
conducted on low friction surfaces. Moreover, the estimator needed about 1.5
seconds to converge to a stable result.

A somewhat simplified but faster version of this method was used by Klaarenbeek
[33, 62]. This work only focused on the lateral behaviour of the vehicle. Moreover,
the lateral acceleration was used as a sensory input, as opposed to estimation of the
lateral acceleration by Ray. The other inputs were the vehicle speed and the
steering angle. The observer uses a single track vehicle model with a simple
exponential non-linear tyre model. The estimated states are the vehicle slip angle,
the yaw rate and the friction coefficient. The output is the lateral acceleration. The
output of the observer is compared to the measured lateral acceleration, and the
error between measured and calculated acceleration is used to correct the internal
vehicle model. The estimated friction is then obtained from the observer states.

The method was only tested in a simulation environment. From simulation
experiments, it seems reasonable to assume that the estimator will be effective from
about the same level of lateral acceleration as the estimator of Ray. The virtue of
this method is its relative simplicity, while only the lateral acceleration is used as
an extra sensory input.

2.5. Indirect determination of tyre friction potential

2.5.1. Classification of parameters

The parameters influencing friction can be classified as belonging to either the
vehicle (e.g. wheel load and speed), the fyre (e.g. design, compound, inflation
pressure and temperature), the road condition (e.g. dry, wet or icy) or the road
surface (e.g. smooth or rough). The first two categories have been well investigated,
and their parameters can be measured relatively easily. Moreover, these
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parameters do not change rapidly. The latter two categories have been less well
investigated. Their parameters are difficult to measure from the vehicle and may
change very rapidly, e.g. potholes or icy patches.

The parameters of the vehicle have limited influence on the friction, except for the
easily measured vehicle speed. The tyre-related parameters also have limited
influence, although their influence increases in the presence of a lubricant (a winter
tyre has much more grip on ice than a regular tyre). The road condition can change
the friction dramatically: the road friction can drop from about 1.2 for a dry asphalt
road to about 0.5 for a wet asphalt road and even to 0.05 for an icy road. The
influence of the road surface is rather small as long as it is dry. If, however, the road
surface is wet, the differences between road friction onn old cobblestone road and on
a good asphalt surface can reach a factor of around 3.

For these reasons, the parameters related to the vehicle and the tyre are usually
assumed to be constant and are not continuously monitored. Most systems focus on
the road condition and the road surface.

2.5.3. Determination of the road condition

Gérich [22, 23] developed a system that makes a qualitative distinction of the local
road surface condition in dry, wet or icy. The road condition is determined in three
steps. First the road is assumed to be dry. Then whether the road is icy or not is
determined. If it is not icy, it is determined whether the road is wet.

Icy road detection

The strategy to detect ice on roads is based on the fact that the slip stiffness of a
tyre significantly decreases on icy roads, compared to dry and wet road. This means
that at a specific slip value, the friction force is considerably smaller on an iced road
than on a dry or wet road. The friction forces and the slip values are determined by
using the measured wheel angular velocities, the longitudinal and lateral
accelerations and the yaw rate. Using a database containing the results of many
test runs, the decision is made if the road is icy or not. This icy road detection is
actually related to the direct, wheel-based methods.

Wetness sensors

Two optical wetness sensors were developed by Eichhorn [15] and Holzwarth [29].
The first one is based on the principle of diffuse light reflection using a semi-
conductor laser. The second one is based on the different absorption of water for
different wavelengths in the near infrared range.

In addition, an acoustical system was developed [23] that measures the acoustic
vibrations of the mudguards, using accelerometers. It appears that the frequency
content of this sound changes in a typical manner if the tyre swirls water on to the
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mudguard when driving on a wet road. For all velocities, the most significant
changes in frequency contents are within the 2.5 and 4.5 kHz range. The magnitude
of the sound depends on the wheel speed.

Tyre noise [16, 57] depends on virtually all parameters in the friction process
between tyre and road. The noise certainly contains information about the friction,
but the information is contaminated by the effects of many other parameters. Some
of these can be accounted for, (e.g. the type of tyre and the driving speed,) but
others, such as the kind of road surface (material and texture), are hard to find
without additional information.

2.5.4. Determination of road surface

A sensor was developed that can deliver a profile cut of the road like that which
would be produced by a tactile surface analyser, but in this case it is based on
optical triangulation using a semi-conductor laser [16]. The sensor performs a high
speed distance measurement; in conjunction with the speed of the car, the profile
cut is obtained.

A system similar to the acoustical system for wetness detection was developed to
measure macro roughness by using accelerometers on the rear suspension arms
[23], measuring vertical accelerations. The frequency range of interest is in between
70 and 120 Hz.

2.6. Calculation of the friction potential of the vehicle

Once the maximum feasible tyre forces as a function of the tyre load are known, the
maximum achievable accelerations in longitudinal and lateral direction can be
calculated using a vehicle model [23]. The main parameters of this vehicle model
are the vehicle mass, the position of centre of gravity, the braking force ratio, the
roll moment ratio and the aerodynamical and rolling resistance forces. Using these
maximally achievable accelerations, contours indicating the friction potential of the
vehicle, as shown in Figure 2.1, can be constructed.

In the case of maximum braking deceleration, the effects of a possibly active ABS-
system have to be accounted for in the calculations. In general, the maximum
longitudinal forces will not be fully exploited when an ABS system is active. The
maximum lateral acceleration is affected by the load and the load distribution of the
vehicle.

The shape of the contours is primarily defined by the mass distribution of the
vehicle in relation to vehicle concept and loading. The road conditions have only
minor influence on the shape. For these contours, it is assumed that the vehicle is
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driving on a homogeneous road surface and that the vehicle is symmetrical about its
longitudinal axis. The thus derived driving limits may serve as a basis for
determination of the driving safety margin and driver information systems.

2.7. Conclusions of this chapter

The known friction estimators can be divided into active and passive methods. For
reasons of safety, comfort and loss of energy, the active methods are not desirable ,
except possibly in emergency situations.

The passive methods can be subdivided in indirect and direct methods. The first
group includes monitoring all relevant parameters, such as road wetness and
temperature, that are somehow correlated to the tyre to road friction. The
advantages of such systems are, firstly, that they always provide an estimate no
matter the vehicle driving state, and secondly, that depending on the monitored
parameters they can be relatively cheap and easy to implement. The disadvantage
of such systems is that they do not actually monitor the frictional force interaction
between tyre and road surface, but instead one or several of the many parameters
that are correlated with the frictional process between the tyre and the road.
Chances are that a slippery road surface may not be recognised since it may be due
to an unmonitored parameter, such as rotting leaves on the road surface.

From a scientific point of view, it seems preferable to have direct estimators, that
estimate the friction using forces or accelerations that are due to the frictional
process between tyre and road. However, these systems usually only provide
reliable friction estimates in the range of intermediate to high friction utilisation.
For most vehicle dynamics control systems the friction information is only needed in
this range. If, however, friction information is needed at very low levels of friction
utilisation, indirect methods can provide useful additional information.

It is noted that the direct methods using the wheel or tyre behaviour barely use the
lateral tyre forces and the self aligning torques that are also generated. The
research presented in this thesis exploits these sources of information and is thus a
contribution to the category of direct methods.
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3.1. Introduction

This thesis describes the development of a friction estimator that is implementable
in a standard vehicle and can run in real time under normal operating conditions.
In this chapter, we will first build the theoretical foundation for the estimator, and
then gradually work towards an implementation of the estimator in the subsequent
chapters.

Assuming a non-zero friction coefficient between the tyre and the road surface, a
tyre, rolling over a road surface and subjected to a vertical load and a side slip
angle, generates a side force and possibly also a torque around the tyre’s vertical
axis, the self aligning torque. As will be explained in this chapter, this torque is due
to the asymmetrical buildup of side force over the contact area. The side force and
the self aligning torque are linearly independent functions of the tyre-to-road
friction coefficient u as soon as the tyre is partially or entirely sliding over the road
surface. This phenomena can be exploited to identify the friction coefficient.

The proposed friction identification method is founded on the simple brush tyre
model, which in the next sections will be discussed for pure and combined slip and
for camber. The simple brush tyre model yields qualitatively good results compared
to the actual tyre behaviour but quantitatively, its performance is rather poor.
However, it does have the major advantage of being a well understood physical
model. The purpose of discussing the brush tyre model is therefore, to gain insight
into the proposed identification method. In quantitative sense much better results
can be obtained by using an empirically derived tyre model. The friction
identification method will also be discussed using such a model.
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3.2. Friction Estimation Using the Brush Tyre Model

The simple steady-state brush tyre model is well known in literature (e.g. (43, 44]),
therefore only a recapitulation on the theory will be given here.

3.2.1. Pure Side Slip

The brush tyre model assumes elastic bristles or tread elements connected to the
rim at one end and touching the road surface at the other end. This implies the
assumption of infinite tyre carcass stiffness. This simplification may be partially
compensated by adapting (reducing) the element stiffness so that a more realistic
model behaviour is obtained. The effects of tyre width are neglected; the contact
patch is modelled as a contact line (Fig. 3.1).

Figure 3.1: Contact line of steady state side slipping brush type tyre model

The length of the contact line is assumed to be proportional to the root of the normal
load F;

a? = Q?F, (3.1)
where a is half the contact length and € is a constant.
Adhesion

If the direction of the wheel speed vector V encloses a slip angle o with respect to-
the wheel rim (x-axis), the tread elements deflect as they travel through the contact
area. As long as the friction y between a tread element and the road surface is large
enough to deflect the tread element, it is in the adhesion zone: the tread element
remains in contact with the same point of the road surface and the contact line is
parallel to the wheel speed vector. The tread element generates a side force in
proportion to its deflection. The following expressions are obtained:

v =(a~x)tana (3.2)

Cp U for e, v<pg, (3.3)

Uyaa =Cp
where g, is the side force distribution, g, is the normal load distribution and ¢ p 18

the lateral tread element stiffness per unit length.
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For a—0 and/or p—eo, these expressions hold for the entire contact region, we have
complete adhesion. Due to the asymmetry in the side force distribution with respect
to the y-axis, the resultant side force Fy acts at a point shifted over a distance ¢, the
pneumatic trail, from the centre C of the contact line, thus creating the self aligning
torque M. In the case of complete adhesion, the pneumatic trail has a constant
value. Then, the side force, self aligning torque and pneumatic trail become:

a
Fy=[qydx  =2c,d’« (3.4)
-a
< 2
-M, =- quxdx :§cpa3a (3.5)
-
po M, 1, (3.6)
F, 3

By differentiating Egs. 3.4 and 3.5 to ¢, we obtain the cornering stiffnesses for the
side force and the self aligning torque:

Cr, =2cpa” 3.7

Cu, :—z—cpa3 (3.8)

Summarising, we conclude that in the case of complete adhesion, side force and self
aligning torque do not depend on friction i, but both are linearly related to the side
slip angle a.

Adhesion and sliding

If the friction coefficient p has a finite value and the load distribution g, gradually
drops to zero at both edges of the contact area, we may have both adhesion and
sliding in the contact area. The tread element will be under the regime of adhesion
(Equations 3.2 and 3.3) up to the transition point x4, where the friction force is not
able to deflect the tread element sufficiently. From that point up to the trailing edge
of the contact area, the tread element slides over the road surface. In the sliding
zone, the generation of side force by the tread elements is governed by the friction
coefficient ¢t and the load distribution:

Qy, =M, for e, vz g, (3.9

For simplicity, a parabolic load distribution over the contact line is assumed:

2
7z =§4£{1—(f] } (3.10)
a a

The transition point %, is found by equating expressions 3.3 and 3.9,
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Vyoq = yg (3.11)
and introducing the dimensionless parameter ¢
_ 2cp¢22|tan of (5.12)
3F,
or with Eg. 3.1 rewritten to:
9 =2c,Q"|tanq] (3.13)

which shows that ¢ is invariant to normal load or friction coefficient and only varies
with the slip angle, we find for the transition point:

%y =a(_2£_ ) (3.14)

u
Since the transition point needs to be within the contact length, it is clear that
0 < ¢ < u. By integrating over the contact patch the contributions of adhesion over
(x¢r,a] and sliding over [-a, x|, we obtain expressions for side force, self aligning
torque and the pneumatic trail as functions of friction and side slip for the partially
sliding tyre:

1
F,= ;EFz(p(&uZ ~3up+ q)2)sgn(a) (3.15)
1
-M, = #—3an¢(;1 - (p)3 sgn(ct) (3.16)
o Mo au-p) (3.17)
Fy  p(3u®-3up+0?)

Equations 3.15 to 3.17 show that the side force and self aligning torque are two
linearly independent functions of the side slip angle a and the friction coefficient u
provided the tyre is partially sliding. This means that if o and g are the only two
unknown variables, they can be obtained by solving the set of nonlinear equations
3.15 and 3.186.

We conclude that the side force and self aligning torque are two linearly
independent functions of the side slip angle « and the friction coefficient u, provided
the tyre is partially sliding.
Sliding
Total sliding of the tyre starts if xz equals @, which results in the condition

o=u (3.18)
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In this case, the side force distribution is symmetrical about the y-axis. This implies
that ¢ and consequently also M, equal zero. We have:

F, =uF, sgn(a) (3.19)

M,=0 (3.20)
__ M, _

t = F, 0 (3.21)

Thus we find that in the case of total sliding, the side force is proportional to the
friction coefficient u and only related to the side slip angle o with respect to the
sign. The self aligning torque and the pneumatic trail equal zero.

3.2.2. Friction estimation in the case of pure side slip

The previous section shows that for the brush tyre model, given the tyre parameters
(o and cp) and the load F,, the friction u can be determined through combination of
side force and self aligning torque by numerically or graphically solving Eqgs. 3.15
and 3.16 in the case of partial sliding, or just from the side force by solving Eq. 3.19
in the case of total sliding. In the case of complete adhesion, p cannot be
determined. The side slip angle « can be determined from either the side force or
the self aligning torque using Eq. 3.4 or 3.5 in the case of complete adhesion, or
from the combination of side force and self aligning torque using Egs. 3.15 and 3.16
in the case of partial sliding. In the case of total sliding, the side slip angle can not
be determined from the side force or the self aligning torque.

3000} p=1.0
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Figure 3.2: F, and M, versus « for various friction levels
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Figure 3.2 illustrates how we can use the tyre, in this case modelled by the brush
tyre model, as a sensor to estimate the side slip angle and the friction coefficient.
The graph shows the lateral force and the self aligning torque versus the side slip
angle for various friction levels u for the brush type tyre model. A pair of values F. Y
and M, depicted with dashed lines in Fig. 3.2, corresponds to a pair of values o and
p. Thus, for given F, and M,, we can find the corresponding values of o and p.

A more suitable way of presenting this principle is by a so-called Gough-plot, as
shown in Figure 3.3 for various side slip angles and friction levels using the brush
tyre model at a constant normal load. Lines of constant friction coefficient (solid),
constant side slip angle (dotted) and constant pneumatic trail (dash-dotted) are
shown in this diagram. '
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Figure 3.3: Gough plot for different friction levels and side slip angles

Over a wide range of variables, the values of & and y can be derived from F, and
M: a pair of values (Fy, M;) results in a unique pair of values (¢, y1), corresponding
to a value of ¢. This holds for the case of partial sliding. Complete adhesion is found
where the lines of constant friction coincide. In theory complete adhesion only exists
with vanishing slip angle or infinite friction, but from the graph it will be clear that
even at finite friction levels where their curves almost coincide it becomes more
difficult to distinguish between various friction levels. Along the y-axis, the lines of
constant side slip angle coincide. This is the case of total sliding and the different
side slip angles cannot be distinguished, but the friction coefficient can be identified.

In order to indicate normal driving conditions in terms of utilised friction potential,
Figure 3.3 also shows a thick line of constant utilised friction potential u; = 0.5,
where 1, is defined by
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_F (3.22)
Hu = ur, '

For the brush tyre model, this becomes

Uy = %(3;12 -3ue+ (pz)sgn(_a) ‘ (3.23)

At high friction road surfaces, exceeding this rather arbitrarily chosen value of 50%
utilisation of friction potential would require rather severe cornering manoeuvres.
Otherwise, only the relatively small part of the graph enclosed by this line and the
curve of the highest possible friction coefficient (in this case g = 1.0) remains
available for friction estimation. On the other hand, on low friction road surfaces,
one might easily exceed this 50% utilisation of friction potential.

Sensitivity of side force and self aligning torque to a and u
For the case of combined adhesion and sliding (Equations 3.15 and 3.16) the
oM

. . oF, .
following expressions for —= and —% are obtained:
o ou

oF 2

3—: ~F, sgn(a)%g—(Su - 20) (3.24)

Mz 30, s S (i) (3.25)
o =580 3 :

Equations 3.24 and 3.25 give rise to some interesting graphs, as depicted in Figure
3.4. Here, the sensitivity S of side force and self aligning torque to changes in
friction coefficient is graphed as a function side slip angle and friction coefficient.
Both graphs are normalized with respect to vertical load.

oF, /F,ou oM, / aF,ou

1 ey 0.2
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0 0 ‘ “?\
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u —20 e 20 -10

Figure 3.4: Sensitivity of side force (left) and self aligning moment (right) to
changes in friction coefficient
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The left graph, showing sensitivity of side force to friction coefficient, shows a flat
area at zero magnitude around zero side slip which narrows for decreasing friction
coefficient. This area is due to the insensitivity of the side force to friction coefficient
in the adhesion region. As sliding in the contact area increases, the magnitude of
the sensitivity rises, up to a limit at total sliding, where it flattens out at the
maximum level. At vanishing friction coefficient, there is hardly any adhesion in the
contact area, therefore the flat area around zero slip angle vanishes too.

The same reasoning holds true for the right graph in Figure 3.4. Around zero slip
angle, there is a more or less flat region, again due to adhesion. Partial sliding in
the contact area gives rise to sensitivity of the aligning torque to the friction
coefficient. At total sliding however, the aligning torque becomes zero and
irrespective of friction coefficient; therefore there is zero sensitivity to friction
coefficient again.

Obviously, friction estimation based upon combination of side force and self aligning
torque can only be succesful if at least one of these two sensitivities have a non-zero
magnitude, that is, there has to be some sliding in the contact area, which
underlines the conclusions drawn in section 3.2.

Dimensionless variables

Figure 3.3 is only valid for one specific vertical load. By introducing the
dimensionless variables

F, = By (3.26a)
FZ
M= (3.26b)
aF,
*
gt M, (3.26¢)
Fy
which for the brush tyre model become
F; = %(3#2 —-3up+ (pz)sgn(a)
(3.27a)

= ¢[3 - 3% + (%f]sgn(a)
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3 (3.27b)
¢
—gl1-2 p
fegf
O 9)°
u(3® - 3up+¢?)
3
( _ Q] (3.27¢)
U

the Gough plot can be made invariant to load, as shown in Figure 3.5.

“ t=1 mm /' 5mm ',»" 10 mm

614 /
) : 0=10 deg.”
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M, / aF,

Figure 3.5: Gough plot for different friction levels and side slip angles, invariant to
load

Invariant lines

Apparently, t* is a function only of ¢/ . Inspired by early work [18], we may further
manipulate the axes to simplify the Gough-diagram to a single curve, invariant to
load or friction coefficient. By rewriting Eq. 3.23, we find that, apart from the sign,
also y, is a function of ¢/u only:

2
Iy, :£[3—32+[£J ]sgn(a) (3.28)
" Tu o \u
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Since this third order function is monotonically increasing, the function is
invertible, aithough the solution is tedious. Thus, it is possible to describe ¢* as a
function of u,. We may now draw a graph of y, versus t* as shown in Figure 3.6. The
resulting graph is a single curve, invariant to load or friction coefficient, which can
be quite accurately approximated by a second order polynomial. As we would expect
from Egs. 3.21 and 3.6, the magnitude of ¢ varies between 0 at full sliding and 1/3
at full adhesion.

0.8

0.6

il

04y

0.2

0 0.1 0.2 0.3 0.4
it*l
Figure 3.6: Utilised friction potential versus normalized pneumatic trail (brush
tyre model)

The procedure to estimate friction would have been to calculate the variable ¢* from
measured F, and M, and available contact length, evaluate the polynomial and
deduce the friction coefficient y from the resulting y, by using Eq. 3.22. It is noted
that ¢* represents the pneumatic trail normalized for the contact length, and since
the contact length is in this model only a function of vertical load, it can also be
interpreted as the pneumatic trail normalized for the vertical load.

3.2.3. Sensitivity analysis for friction estimation in the case of pure side slip

The friction coefficient and side slip angle are estimated using measured signals
with limited accuracy, due to imperfections in the measurement system and noise.
The sensitivity to measurement errors is calculated for the case of pure side slip
using an approach based on Taylor series [14, 19]:

Method
Suppose N is a function of n independent variables uy, uy, ..., u,,
N = f(uq,us,...,u,) (3.29)

These variables u; (i=1,2,...,n) are measured with a possible error of +Au;. These
errors result in a total error in the final result:

Ni—AN:f(uliAul,ug iAuz,...,uniAun) (3.30)
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Developing the function fin a Taylor series results in:
fluy £ Auy,ug t Aug,...,up, + Auy) = fuy,ug,...,u,)

+Auy %— + Aug Eif_i' FAu, —— (3.31)
1 2 n

1 92

Generally speaking, the higher order terms are negligible if the magnitudes of Au;
are small. The "'worst-case’ total absolute error E, is then formulated as

F o

A2 o] E
2 n

E, =|Auy if— + +...HAu, (3.32)

1

The magnitudes of the partial derivatives indicate which variables have major
influence on the error in the final result.

Application to the estimation of L and o

Applying this theory to the estimation of side slip angle and friction coefficient, we
estimate the friction coefficient y, the side slip angle « and the vertical load F, from
the independent variables F,, M, and F, and we write in analogy to Eq. 3.29:

u:u(Fy,Mz,Fz,...) (3.33a)

a=aFy,M,,F,..) (3.33b)

and rather trivial:
F,=F,(F,) (3.33c)

We may restrict this analysis to the variables side force, self aligning torque and
vertical load. The worst case total errors are then formulated as

au au ou
E, , =|AF, —+|AM +|AF, — 3.34
e =Y OR, 2L, | o, (8:34a)
dor oo oo
=|AF, —— +|AM , ——| +|AF, —— 3.34b
a,a y aFy +\ ¥4 aMz + z an ( )
JF. oF, oF,
E = |AF 2|+ |AM 2|4 |AF, —£ 3.34
F,a Y oF, +\ e *\ * 3F, (3.34¢)
Considering Eq. 3.33c, we obviously conclude that
Ep o =|AF,| (3.35)
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The determination of the other errors requires the determination of the partial
derivatives in these expressions. This is facilitated by using the earlier introduced
dimensionless variables (Eq. 3.26). For the friction coefficient we have

oF, 8Fy* JF,

du _ du M,
_ (3.36b)
M, oM} M,

au_auaiy*Jr u M

i i (3.36¢)
oF, oF, oF; oM, oF,
and similarly for the side slip angle we have
IF,
o _oa %y (3.37a)
JF,, oF, oF,
do doe oM,
= 3.37b
M, oM, M, ( :
F, :
do _ da Fy o M, (3.370)

- * ¥ *
dF, oF, oF, oM, IF;
In order to simplify the algebra in this discussion, we consider only the case of
a>0.
Sensitivity of p with respect to F,, M, and F,

A Gough-diagram (Fig. 3.7) shows the dimensionless side force versus the negative
dimensionless aligning torque for two friction values, y and p+Au. It is important to
note that additional curves can be created by multiplication of the original curve
with respect to the origin.

We define a point P, pointed to by a vector p, and a point P, at p+Ap. We have

M —AM?
- Ap = 3.38
i [F; ’ {AF;} (338

The vector Ap can be resolved into the vectors Ap,. along the line of constant #* and
4p,, along the curve of constant u:
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Fy*
+AWL ;
T
. AP
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U
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\
P
j 'AMz,p*
| -AM_ ¥

_Mz*

Figure 3.7: Gough-diagram of dimensionless side force versus aligning torque for
two friction levels

The component vectors become

A
Appx = _,up
u
T
* (3.40)
. oF,
Apy =-AM, .
o-M;)
For the components of Ap we have
*® A * *
—AM = -ﬂﬁ(—Mz) -AM},
* (3.41)
. oF.
4k = a2
U (—MZ)
u
and by elimination of —AM , we obtain
N
UAF, + UAM, "
3(-M3)
A= B (3.42)
F*
Fy+M; oy -
3(-M3) )
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so that for infinitesimally small A’s we have

ailf* = a (3.43)
Y . .. OF
Fy +Mz——y;~
o(-M;)
I
oF;
o #a(—zt;;)
o £ (3.43b)
F*
: Fy +M, oy -
9(—Mz)#

The partial derivative BF; / 3(—M :) in these expressions describes the slope of the
u

tangent to the curve of constant friction coefficient. Along this curve, the side slip
angle o is the only running variable. We may write

oF;
* 805
IFy - B (3.44)
), o
do

i
For the brush tyre model we find (for 0 < g < u)

aF* 2
Y| -2 @%1-2 3.45
Jtana| ¥ [ ,u] (8.452)
-Mz) o 2
2[;_ @ 49
_Z 1-Z Y 3.45b
stana| 377 ( u] ( u) (3455

u

and the slope of the tangent to the curve of constant friction coefficient becomes

F*
Fy | _ 3¢ (3.46)

8(—M§)# Cu-4¢

We note that for finite y, the slope becomes 3 for vanishing ¢, that is at zero slip
angle, which agrees with Eq. 3.6. Furthermore, for ¢=y, that is at total sliding, the
slope becomes -1. With Eq. 3.46, Eq. 3.43 now becomes (with 0 < < u)
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o _ _(ET w(p—40)

oF, ?) 8u2-4up+g?
2

M {ﬂ] st

oM, 0) 6u2-4dup+o>

Furthermore, we have

oF, 1

aFy Fz

M, _ 1

oM, aF,

oy g

oF, F2°

M, 3

(3.47a)

(3.47b)

(3.48a)

(3.48b)

(3.48¢)

(3.48d)

and substituting Egs. 3.15, 3.16, 3.47 and 3.48 in Eq. 3.36 we find

u _ E(u-49)

oF.

o 3,u4

v Fp?(6u®-4up+o?)

oM, o an(p2(6/.12 —-4dup+ (p2)

JF, o}

u(6u® ~12u%p + 14p0% - 5¢°)

2
o _ [B] _ Mp-d9) 1
6u2 - 4pp+¢® F7

oF, (612 - 40+ ¢%)

(3.49a)

(3.49b)

_Jz 3 3 M

6,u2 —-4u¢ +<p2 2aF22 Z
(3.49¢)

We note that both Ju/dF,and du/dF,are inversely proportional to F, while

du/d M, is inversely proportional to aF,,

or with Eq. 3.1, inversely proportional to

F,.JF, . Furthermore, the following table shows the values that the sensitivities

=- M
an ZCLFZZ £

take for the extreme values of ¢.
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-0 o=Hu
ou/oF, —0o0 1/F,
du/oM, —0 -1/aF,
op/oF, > -1/F,

Table 3.1: Sensitivities for extreme values of ¢

These results are also illustrated by Figure 3.8. The graphs of this figure were
generated at a given value of F, and thus of @ of 4000 N and 0.1131 m, respectively.
The meshgrids in these graphs are triangular because of the limitation that ¢
cannot exceed y in magnitude.
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Figure 3.8: Sensitivity of y-estimate with respect to the independent variables F,
M, and F, at a given vertical load

For ¢ — 0, we have vanishing sliding in the contact patch, that is we approach total
adhesion. It is the area where the curves of constant friction in the Gough-diagram
(Fig. 3.7) approach each other. It is easily understood that very small errors in the
values of side force or aligning torque can make large differences in the friction
estimate near the origin of the Gough-plot. The larger the actual friction coefficient,
the stronger this effect is. Since an error in the vertical load results in an erroneous
perception of the side force and the aligning torque, errors in the load also affect the
friction estimate primarily in the case of adhesion.

Considering the fact that the side force and aligning torque are an order in
magnitude larger than the aligning torque, it becomes clear that primarily the
sensitivity to errors in the aligning torque in the case of total adhesion is very large.
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This is further illustrated by Figure 3.9, showing the sensitivities of the friction to
relative errors in side force, aligning torque and vertical load.

—

u

Figure 3.9: Relative sensitivity of ji-estimate with respect to the independent
variables F,, M, and F, at a given vertical load

Sensitivity of a with respect to F,, M, and F,

For the sensitivity of a with respect to the independent variables, we follow a
derivation similar as for the sensitivity of y in the previous section. Figure 3.10
shows the dimensionless side force versus the negative dimensionless aligning

torque for two side slip angles or, since ¢ only depends on a, two ¢-levels ¢ and
@+ Ap. Again, additional curves can be created by multiplication of the original

curve with respect to the origin.

Fy* v p
Dy~
oA VQ‘: a
/
P
o ADg,

P -AM, ¥

“AM*

.Mz*

Figure 3.10: Gough-diagram of dimensionless side force versus aligning torque for
two side slip angles
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Once more, we have a point P and a point P_, for which Eq. 3.38 holds. We derive

A
Apy = —(pP
%
! (3.50)
Ap, AM 11 oy |
(D == Z,(O *
o(-M3)
4
For the components of Ap we have
A #
-AM} = 7"’(—M;“) - AM},
* (3.51)
* A * * aF
aFy =2 Fy - aMy Y
¢ o(-m3)
@
and by elimination of —AM :JP we obtain
. oF,
QAR + @AM, ———
o(-)
Ap = ¢ (3.52)
“ aF,
Fy+M,——
o(-M3)
¢
so that for infinitesimally small A’s we have
op _ @ ' (3.53a)
oF, *
y . OF.
Fy+M,—7 .
o-M;)
4
*
0 dF,
3 o(-;)
v _ ¢ (3.53b)
F;+M,
y z *
o(-M;) ,

38



Chapter 3, Model Based Friction Estimation

The partial derivative BF; / 8(—M ;)

in these expressions describes the slope of the
¢

tangent to the curve of constant side slip angle. Along this curve, the friction
coefficient p is the only running variable. Thus, we derive:

ﬂ
oF, : l _ ¢ (3.54)
o(-M;) \ o(-M;)
du

¢
Using the brush tyre model we find

* 2
Fyl _ (_‘P_J (3 - 25’1) (3.55a)
o 2 U
¢
oM 2 2
(-3z) :3(g] [ _gj (3.55b)
o U u

®

and the slope of the tangent to the curve of constant side slip angle becomes

oF, 1(3u—2¢) (3.56)

o(-m3) , 3(u-—0p)?

We note that for g — ¢ (at 4> @), that is when the F,-value becomes the peak value
and total sliding is reached, the slope tends to «. For the theoretical case of p — <,
the slope becomes one. For y =1, and assuming that u > ¢, the slope attains a value

depending on ¢, equal to 3—_222- With Eq. 3.56, Eq. 3.53 now becomes
3(1-9)

P2L0) 3u2

e 5 (3.57a)
dF, 6u”-4up+e
3
3u—-2

% _ w731 =20) (3.57b)

M; (642 -4pp+9?)u-0)

For positive a we have
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Q= min(g c sz tanao, /.L], >0,

3 (3.58)
@
o = atan L, QS U
[ZCPQ2]
so that
AL
do__ Bep@ 3 (3.59)

% - 4c}2,Q4 +9(p2 - 2ch2

where the approximation is quite reasonable for the (positive) working range of the
tyre. Combining Egs. 3.1, 3.48, 3.57 and 3.59, we finally find

de_ dox_dp OFy
oFy 99 JFy oF,
B 18u2ch2
F, (4c§Q4 + 9(p2)(6,u2 —4up+ (pz)
2

(3.60a)

2cpa2(6u2 —4up+ (pz)

do_da_dp M}
M, 99 oM, oM,
_ 6u3ch2(3u—2q))
aF, (4c2@* +9¢%)(61% - 410 + 0% )(u - 9)°
_ 3u”(3p - 29)
2c,0% (6% - 4pp + 9% )(u - 0)°

(3.60b)

do. _dor| dp Fy L 90 oM
dF, Jp|dF, I, M; JF,
- 9¢,Q%up(31 - 0) 5,600
F, (4c§Q4 + 9(p2 )(6;42 —4up+ <p2) oue
_ 9ue(3u-9¢)
4cpa2(6u2 -4up+ (pZ)

The values that these partial derivatives take for tan(a), or approximately for ¢, for
the extreme values of 4 and ¢ are laid down in Table 3.2.
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u—0 u=o
dafdF, 0 3/Cpqy
doi/oM, 0 >
dot/dF, 0 -o/F,

Table 3.2: Sensitivities for extreme values of [

These results are illustrated for a constant vertical load by the graphs in Figure
3.11.

N
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Figure 3.11: Sensitivity of a-estimate with respect to the independent variables Fy,
Mz and Fz at a constant vertical load

In contrast to the sensitivities of the y-estimate, the a-estimate is most sensitive to
errors in the independent variables at total sliding. In the Gough-diagram (Fig.
3.10), this is the area along the y-axis where all the curves of constant side-slip
coincide. The relative importance of the errors becomes more apparent in the next
graph, Figure 3.12, using relative errors. Now it becomes clear that primarily the

errors in side force affect the o-estimate.
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B 0o ¢ B 0o ¢ L 0o ¢

Figure 3.12: Relative sensitivity of a-estimate with respect to the independent
variables Fy, Mz and Fz at a constant vertical load

3.2.4. Pure Longitudinal slip

The calculation of longitudinal force due to longitudinal slip is analogous to the
calculation of side force due to side slip. The pure longitudinal force does not
generate a self aligning moment. The pure longitudinal slip will be regarded as a
special case of combined lateral and longitudinal slip.

3.2.5. Combined Lateral and Longitudinal Slip

In the case of combined lateral and longitudinal forces generated by the tyre, the
lateral and longitudinal carcass stiffnesses of the tyre can no longer be neglected.
Due to carcass deformations in these directions, the lines of action of the lateral and
longitudinal forces are shifted. This gives rise to contributions to the self aligning
torque in addition to the torque generated by side force as in the case of pure side
slip. Expressions for combined slip for the simple brush tyre model will be derived
under the assumption of isotropic friction coefficient u and tread element stiffness
c,- Furthermore, we introduce the longitudinal and lateral carcass stiffnesses C,,
and C,, respectively and we assume an infinite torsional stiffness of the carcass
about the vertical axis. A top view of the contact line of the brush tyre model under
combined drive and side slip is shown in Figure 3.13.
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Figure 3.13: Contact line of steady state combined slipping brush type tyre model

In this figure, the wheel is thought to travel over the road surface with the total
speed vector V. The wheel is rotating around its y-axis causing the tread elements
to travel through the contact area at a speed of V., =Q-r, in the direction of the
wheel, where Q is the rotational speed of the wheel and r, is the so-called effective
rolling radius. In this context r, is considered to be a model parameter independent
of the tyre slip, conform [42], but unlike for example [13]. Consequently, we have a
slip speed vector \73 =V -V,. As long as the tread elements adhere to the road
surface, they will deflect at the same rate as the total slip speed vector. In this
analysis, all vectors can be decomposed into their components in x and y directions.
Since V, is always in x-direction, V.=V, and V_=0. We may now introduce a
dimensionless slip vector

V.
5:("’6 :i[ sx] (3.61)
Oy Vi VSy
The usual definition for the longitudinal slip reads
7 (3.62)
Vi

By this definition of k, x is positive for positive longitudinal force (driving) and
negative for negative longitudinal force (braking). For the side slip angle we have

-V
8y (8.63)
Vx

tan(a) =

so that the slip vector & relates to x and a by

K
G =
¥ 1+x
—tan(o)
_ 3.64
Y 1+x (364

o= chz +0'y2
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The parameter ¢ is redefined as
2

: 2cpa o (3.652)
= 3F, .65a

or with Eq. 3.1,
0= —2—ch20 (3.65b)

3
In analogy to the case of pure side slip, the magnitude of the total force is given by

1
F= u—2F2(3u2¢~ 3u¢2 +qo3) for 0oy

(3.66)
F =uF, for >0y
Where o is the slip value at which total sliding starts,
S1F, (3.67)

Og = )
2¢ pa

Assuming isotrope stiffnesses, the direction of the force vector F is opposite to &

— (Fy o
F—(Fy]——F-E (3.68)

and the components F, and F, are obtained by combining equations 3.66 and 3.68.

Without carcass compliance, the longitudinal force would not give any contribution
to the self aligning torque. The self aligining torque would only be generated by the
side force F, acting at arm ¢, just as in the case of pure side slip

M, =-tF, (3.69)

3
a{u-9) (3.70)

t=
u(3u® - 3up +¢?)

However, deformation of the carcass due to the tyre forces shifts the working lines
of F, and F, with respect to the contact centre, thus creating additional torques with
respect to the vertical axis through the contact centre. This is illustrated by Figure
3.14, where the carcass stiffnesses are modelled by springs. Since no torsional
compliance was assumed, only the aligning torque is affected by the carcass
deflection.
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Figure 3.14: Simplified effect of finite carcass stiffnesses to the brush tyre model

In addition to the carcass deformation, even at zero side force the working line of
the longitudinal force is usually offset from the center by a small distance s, possibly
of the order of magnitude of 1 to 1.5 centimeters for passenger car tyres. A
representation of both these phenomena which produces qualitatively good results
is given by

’ Ex £y
M,=M, +FxFy c."C +F.s 3.71)
cx cy

where the factors £ <1 have been introduced to account for forward and sideways
rolling effects of the carcass [41]. At this point, it is worthwile to eliminate the
dependence of the forces and torques on the vertical load. In analogy to 3.26, we
define the dimensionless total planar force

F'=_- 3.72
F, (3.72)
and for the brush model under combined slip we have
F;=%=f*
;’ (3.73)
Y o
For the self aligning torque we derive
M [ A— 1 ) £
M,="2-__F;+—{FF,|-%-—Y |+F 3.74
?  aF, a ?  aF, { * y(ch Ccy] xs} @.74)

Figure 3.15 shows F," (solid ) and F,” (dashed) versus o and M, versus « for various
friction levels at pure side slip (thick lines) and at a small value 0.4 % brake slip
(thin lines). This figure illustrates that such a small amount of longitudinal slip
while cornering has very little effect on the side force (not noticeable in the figure)
but has a substantial effect on the self aligning torque due to the carcass compliance
and to the offset s. It appears that M,” may even change sign. In the estimation

45



The Tyre As Sensor To Estimate Friction

procedure for o and u as described earlier, the longitudinal forces need to be taken
into account in order to prevent erroneous results.

Figure 3.15: Influence of small braking slip on side force and self aligning torque

The next figure shows how Gough-plots change due to the combined slip. The plots
have an extra dimension due to the longitudinal force, as shown in Figure 3.16. In
this figure, a 0.4 % brake slip has been used as before.

1tp=1

0.8t n=0.8

0 "
-0.05 0 0.05 0.1
—M *
zZ

Figure 3.16: Gough plot for combined slip at various friction levels in 3D-view (left)
and in projection on the M ; - F; plane (right)

As before, the curves of constant friction coefficient for pure side slip have been
drawn with thick curves, while the curves of constant friction for the small brake
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slip have been drawn with thin curves. The projection on the M, — F; plane reveals
how the Gough-plot for pure side slip has become distorted due to the combined slip.

The estimation of o, k¥ and g can now be described as functions of three input
variables F,”, F," and M,". We obtain

o =o(F;,Fy,M;)
x =x(Fy,Fy, M) (3.75)
u=u(F;, Fy, M)

As in the case of pure side slip, we have a unique solution (¢, k, ) when there is
some sliding in the contact area.

3.2.6. Camber

The effects of camber on the side force behaviour of the tyre may be easily
understood by considering the left drawing of Fig. 3.17, showing a wheel subject to a
camber angle }, running along a straight line. For simplicity, the side slip angle is
assumed to be zero. The right drawing of Fig. 3.17 is a top view of the contact line.
In this projection, the bottom parts of the brush elements will follow the straight
line due to adhering forces between the tread elements and the road surface, while
the top parts of the brush element will follow part of an ellipsoid curve, namely the
projection of the wheelcircle on the road (actually, the deflection of the brush
elements will be less than what follows from this projection because of the laterally
deflected carcass belt). Assuming generation of side force as a function of brush
element deflection, as before, it is clear that the camber angle gives rise to a side
force on the tyre, even at zero side slip angle. However, this analysis does not
explain the generation of aligning torque by camber.

lJ'qz

Y trajectory
z of the belt

Figure 3.17: Cambered wheel in front view(left) and contact line in top view (right)
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To understand the aligning torque behaviour with camber, the tyre width has to be
taken into account. Suppose we have a cambered wheel running over a straight
course (Fig. 3.17). Considering a contact patch of finite length and width, it is easily
understood that owing to the varying rolling radius over the contact width,
differences in circumferential velocity will arise in the contact patch. Since the
forward speed of the tyre is forced to be the same over the width of the tyre,
opposite longitudinal slips will arise at both sides of the neutral axis. In conjunction
with the friction between the tread elements and the road surface and the tread
stiffness in longitudinal direction, this gives rise to a twisting couple around the
vertical axis of the tyre. This couple is present even at zero side slip angle.

A rough analysis using a simple discrete brush tyre model with tyre width [20]
shows the effects of camber qualitatively (Fig. 3.18). A more thorough discussion of
the phenomena related to static and dynamic camber behaviour can be found in
[28]. Obviously, the offsets from zero of the side force and the aligning torque are to
be taken care of in the friction estimation procedure. It should also be noted
however, that the effects of camber on automobile tyres are relatively small
compared to the effects of side slip angle. Moreover, camber angles imposed on
automobile tyres do not usually exceed a magnitude of 5 degrees.
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Figure 3.18: Effects of camber on side force and aligining torque in a Gough-plot
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3.3. Friction Estimation using the Delft Tyre Model

3.3.1. The Delft Tyre Model

The Delft Tyre Model (DTM), also known as Magic Formula Tyre Model, is an
empirical tyre model, which means that it is built to describe measured tyre data as
closely as possible, rather than being built on tyre modelling theory. The first
version of this model was presented in 1987 [4], and since then, the DTM has been
updated frequently. The 1997-version is described in [44]. The base form of the
formula for pure slip reads

y=D sin[C atan{Bx - E(Bx - atan(Bx))}] (3.76)
with
Y(X)=yx)+ S, (3.77)
x=X+ Sh ’

where Y is the output variable F_ or F,, and correspondingly X is the input variable
k or o and

B: stiffness factor
C: shape factor

D: peak value

E: curvature factor
S,: horizontal shift

S,

vertical shift

The behaviour of Eq. 3.76 is easily explained by first noticing that the base form of
this formula is a sine function, scaled by a factor D, equal to uF, where p is a
function of F,, which determines the peak value. The argument of the sine is
controlled by the arctangent function, which is bounded by [-7/2,7/2], multiplied
by a factor C. Thus, this factor C determines to what extent the sine function is
used. For small values of x, atan(Bx)~ Bx so the term multiplied by E is not
significant and the product BCD forms the longitudinal or lateral slip stiffness. The
factor B scales the input variable x and the factor £ determines the shape around
the peak of the curve.

The calculation of the aligning torque for pure side slip is executed by calculating
the product of pneumatic trail and side force and adding a term for residual torque:

M,=~t-F,+M,, (3.78)
The pneumatic trail is calculated by the counterpart of Equation 3.76:

to,) =D, cos[Ct atan{Btat - Ey(Bo; - atan(Btoct))}] (3.79)
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;=0 +Sg (3.80)

Although these formulae only describe the pure slip case, the DTM is capable of
describing the tyre characteristics when subjected to both pure and combined slip,
as described in [44], with or without the presence of camber, and is therefore
suitable to describe the actual behaviour of the tyre in this research. However, the
DTM itself is outside the scope of this thesis and is used only as a tool.

The different cases of pure and combined slip will be described in analogy to section
3.2. Note that, because the brush tyre model used hypothetical parameters, while
the DTM model uses actual tyre parameters optimized for a specific tyre, the graphs
in this section can only be compared to those of section 3.2 qualitatively.

3.3.2. Pure Side Slip

In analogy to Figure 3.2, Figure 3.19 shows side force vs. slip angle for various
friction levels for the case of pure side slip and zero camber at positive slip angles
only and without residual forces and torques.
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Figure 3.19: Side force and aligning torque versus side slip at various friction levels
for pure side slip

Comparing this figure to Figure 3.2, it becomes clear that the tyre behaviour is not

essentially different from the brush tyre model for these conditions. Once again, a
pair of values F, and M, corresponds to a pair of and y. This is again presented in

Figure 3.20 in a Gough-plot, similar to Figure 3.3.
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Figure 3.20: Gough plot for various friction levels

In analogy to section 3.2.2, we may try to find a curve invariant to load or friction
coefficient. However, it is much more complicated than in the case of the brush tyre
model, for various reasons. For example, the friction coefficient is load dependent
and the tyre behaviour is asymmetrical with respect to slip angle. Considering
positive slip angles only, and setting residual forces and torques to zero, a bundle of
curves such as in Figure 3.21 can be constructed.
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Figure 3.21: Normalised side force against normalized pneumatic trail (DTM) for
different values of F, and p.
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In this figure, the side force has been normalized for load and friction, where the
friction is a approximately second order function of load. Thus, we have the utilized
friction at the y-axis. This load dependency has also been accounted for on the x-
axis. However, even with the applied restrictions and corrections, the curves for
different values of load and friction are still fairly widely spread, especially as a
function of y, and therefore this result is considered to be of little value to use as a
basis for the estimation of w.

3.3.3. Residual Forces and Torques

So far residual forces and torques have not been considered. Since they are
relatively small, it may be safely assumed that they are generated by adhesion
friction only and thus independent of the friction coefficient, as shown in Figure
3.22.
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Figure 3.22: Gough plot for various friction levels, including residual forces and
torques (DTM)

For the friction estimation method, they represent small shifts that have to be
taken care of, especially for small slip angles. Only for very small friction
coefficients will a considerable proportion of the total friction potential be uitlized by
the residual forces and torques. In this case, the residual forces and toruges induce
sliding in the contact patch and consequently become dependent of the friction
coefficient. In the extreme case of zero friction, the residual forces and torques
vanish completely. (N.B.: the scaling factors in the expressions for the residual
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forces and torques of the DTM’97 had to be changed for these purposes, because
they erroneously assumed a linear dependency of the residual forces and torques on
the friction coefficient. For our purposes, the residual forces are assumed to be
independent of the friction coefficient as long as they do not exceed the total
available friction potential uF,).

3.3.4. Pure Longitudinal slip

As described previously, friction estimation using the method developed in section
3.2 is not possible in the case of pure longitudinal slip and will be given no further
consideration in this thesis.

3.3.5. Combined Lateral and Longitudinal Slip

As in Figure 3.15 for the brush tyre model, side force and longitudinal force can be
plotted versus side slip angle at various friction levels and small longitudinal slip
values. A Gough plot can also be made for the DTM model at combined slip (Figure
3.23).

oL :
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Figure 3.23: Lateral and longitudinal forces versus side slip angle (left) and a
Gough plot for three friction levels and small longitudinal slip values
(right)

3.3.6. Camber

Influence of camber is considered in Figure 3.24. This figure shows that small
camber angles result in shifts of the curves. These shifts are relatively more
important at low levels of side force and aligning torque. Again, this behaviour is in
accordance with the brush tyre model behaviour at camber (Figure 3.18).
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Figure 3.24: Gough plot for three friction levels and small camber angles

3.4. Tyre Transient Behaviour

In this research, low frequency dynamic phenomena only may be of interest. The
most important low frequency dynamic behaviour of the tyre is caused by the
relaxation length. Usually, the transient behaviour of the tyre due to the relaxation
length I, is modeled as a first-order low-pass filter on the side slip angle o in the
case of side slip or on x in the case of longitudinal slip. Before the forces are
calculated in a steady state tyre model (Fig. 3.25), the slip passes this filter.

o, K D Steady-State| Forees, Torques
) > Tyre Model >

Figure 3.25: Modeling of relaxation length behaviour

The transfer function of the filter reads:
1

H(s)=—— (3.81)
ws+1
The time constant 7 is defined as
lrel
=== 3.82
T v ( )

The relaxation length mainly depends on the vertical load. A typical value of l,, for
a mid size passenger car tyre for side slip is 0.60 [m] at a vertical load of 4000 [N].
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At a speed of 20 [m/s] this results in a time constant T of 0.030 [s] and a bandwidth
of the first order lag filter of 5.3 [Hz].

Clearly, this transient behaviour is of minor importance at moderate and high speed
on smooth road surfaces; at low speed or at uneven roads however, it may become
important.

3.5. Conclusions of this chapter

The brush tyre model was derived for pure side slip and combined side and
longitudinal slip. It was found that in the case of pure side slip both the side slip
angle and the friction coefficient can be calculated from the side force and the
aligning torque for a given load and tyre model parameters provided there is partial
sliding of the brush elements in the contact patch. If there is no sliding in the
contact area at all, the side slip angle can be estimated, but the friction coefficient
cannot be estimated. On the other hand, if there is total sliding, only the friction
coefficient can be estimated.

The sensitivity analysis revealed that the friction estimate is primarily sensitive to
measurement errors in the case of complete adhesion. In that case the sensitivity of
the friction estimate to inaccuracies in the determination of the self aligning torque
is prominent. The side slip angle estimate is primarily sensitive to measurement
errors in the case of pure sliding. The sensitivity of the side slip angle estimate to
errors in the determination of the side force is the largest.

The sensitivity of the estimation method to common disturbances, such as combined
slip, camber and residual forces and torques, and measurement inaccuracies, was
investigated qualitatively. Small longitudinal forces primarily disturb the self
aligning torque, which in turn has a major influence on the friction estimate.
Camber and residual forces and torques mainly cause shifts of the curves in the
Gough-diagram that have to be accounted for.

The Delft Tyre Model that represents the actual tyre behaviour more closely,
essentially shows the same behaviour as the brush tyre model with respect to the
possibilities to estimate the side slip angle and the friction coefficient.

For these reasons, it is concluded that within the constraints imposed by the
physical nature of the tyre, the tyre can be used as a sensor to estimate side slip
and friction coefficient. However, the effectiveness of the estimator depends on the
driving conditions. Moreover, care has to be taken with respect to the sensitivities of
the estimates to measurement inaccuracies and disturbances.
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Identification Methods

4.1. Introduction

The previous chapter outlined a procedure to estimate side slip angle & and the
friction coefficient u from measured tyre forces and torques, based on steady-state
tyre behaviour. It was shown that the tyre dynamics are of little importance in this
research. Accordingly, this chapter focuses on methods to identify the steady-state
properties of the tyre behaviour. The identification of the transient tyre behaviour
has not been considered in this research, but has been subject of other research, e.g.
[28].

Using the available tyre models, e.g. the simple brush tyre model or the Delft Tyre
Model (DTM) used in Chapter 3, tyre forces and torques can be calculated as
functions of load, side slip, longitudinal slip, camber and friction coefficient.
However, the inverse functions cannot be derived analytically. Numerical methods
can fill this gap to some extent.

Two different approaches, a table look-up method and a neural network approach
will be discussed. Both methods use some form of knowledge of the tyre at hand. In
the case of table lookup it is laid down in the table entries, in the case of neural
networks it is represented by the neural network weights.

4.2. Table look-up method

For the table lookup method, the steady-state tyre behaviour is assumed to be
known and laid down in a table that needs to span the entire working range of the
tyre. Assuming we would like to find & and u from measured variables F,, F,, M,
and 9, a four-dimensional table filled with a huge amount of data would be needed.
This has to be considered unrealistic. Fortunately, the size of the table can be
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reduced by defining a set of nominal conditions for load and camber for which the
now two-dimensional table has to be created. These nominal conditions refer to a
moderate vertical load and zero camber angle. Actually, the table obtained contains
the information of one Gough-plot such as Figure 3.3.

The first step in the estimation procedure now consists of transformation of the
measured data to the nominal conditions for which the table is valid. This can be
done using the so-called similarity method [42]. This method is also partially
implemented in the DTM to facilitate simulation of different friction levels. It is
based on the assumptions that the maximum side force is proportional to the
product uF,, while the cornering stiffness at zero side slip angle depends only on F,
and not on y. The influence of camber (limited to small angles) is represented by
shifting the curves of F,and M, versus o horizontally. It has been shown in Chapter
3 that these shifts are the main effects of small camber angles. The formulae read:

F,= F,olop 4.1)
o
C
z = M, CMa(FZ) Foo Mz,O(aMe ) (4.2)
ﬂOFz,O CMao CFa(FZ) ?

. =.LLOFz,O CFa(Fz) a+CF7(F2)},]
“ UF, CFaO CFa (Fz)

= HoFp CFa(Fz)[a
“ UF, CFoco CMa(Fz

where the 0-subscript stands for the nominal condition, Cp(F,) and Cyp,(F,) are
the cornering and aligning torque stiffnesses depending on load respectively, and
CF,,(Fz) and CM),(FZ) are the cornering and aligning torque camber stiffnesses,
also depending on load, respectively. The similarity method holds true for the
simple brush tyre model, but is only approximately true for actual tyre behaviour.

(4.3)

_ CM}'(Fz) ,}/J
)

The second step consists of looking up the friction coefficient i and side slip angle o
for the transformed data.

An interesting issue is the creation of the table. For the set of nominal conditions, a
table of the nonlinear mapping is made:

(Fy M) =15, m, (1) (4.4)
where /g, (r, i) describes the mapping at nominal conditions of vertical load and

camber. This nonlinear mapping may be known for example in the form of the
DTM. The position in the table represents the output variables (F, and M,) of the

58



Chapter 4, Identification Methods

mapping while the entries of the table contain the input variables (o and u), which
means two values in each entry in this two-dimensional case. If the values of « and
 are taken from a regularly spaced grid, say in a linear range of -15 to 15 degrees
for ¢c and 0 to 1.2 for y, the output variables will not have values on all points of a
regularly spaced grid for the output variables, as shown in Fig. 4.1. (In this figure,
the grid points have deliberately been widely spaced to have distinct points in the
graphs.)
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Figure 4.1: Scatter plot of input values (left) and output values (right) using
regularly spaced input values

It is possible to use the sparsely filled table directly, and use some kind of
interpolation at the time of actual lookup if an undefined point in the table is to be
calculated. For example, the inverse of the Euclidean distance to the surrounding
points can be used as weights for an average.

Alternatively, we could try to fill the table completely [60]. Since the inverse
function fFTlM (er,11) is not known, it is not possible to simply calculate the
y Mz

necessary input values to obtain a regulary grid of output values. A first, simple
method to fill the empty positions in the table is by randomly generating input
values and calculate their corresponding output values. Thus, a considerable
number of gaps in the table will be filled, as shown in Figure 4.2. The remaining
gaps can be filled by interpolation or by iteratively determining the corresponding
input values. Some areas in the table will appear to be quite impossible to fill using
the available input domain. If the chosen input domain is representative for the
actual situation, it can be safely assumed that it is very unlikely that these output
values will ever be reached. They can either be disregarded or filled by interpolation
or extrapolation.
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Once the table has been created, the actual lookup in the table may be realised by
simply taking the nearest grid point to the desired output values and reading out
the corresponding input values, or by interpolating the grid to the desired output
values and correspondingly interpolate the table entries.
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Figure 4.2: Scatter plot of input values (left) and output values (right) using
regularly spaced input values (large dots) and random input values

(small dots)

The table lookup method has been used in actual friction identification experiments
[47], but it is rather cumbersome. Moreover, the assumptions made in using the
similarity method do not hold over the entire working range of tyres, as remarked
earlier.

4.3. Neural Networks

4.3.1. Introduction

Owing to their learning and non-linear input-output mapping capability, Artificial
Neural Networks (ANN’s or just NN’s) have become increasingly popular in
automotive research (see e.g. [39] on four-wheel steering, [46] on tyre modelling,
[45, 66] on prediction of road friction coefficient, [37] on active suspension or [68] for
a survey of neural network and fuzzy logic applications to vehicle systems). The
original motivation for the development of neural networks stems from studies of
the human nervous system. However, the development of artificial neural networks
has diverged in many directions since then. Neural networks nowadays form a field
of extensive investigations in which a vast variety of different kinds of neural
networks have been developed, resulting in numerous publications. Without trying
to cover this entire field of research in neural networks, we briefly discuss the
theory of the most popular type of neural networks, the feedforward networks, and
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then move on to the application of ANN’s in this research. The interested reader is
referred to [27], [51] and [56] for more elaborate discussions on neural networks

while [10] describes the MATLAB Neural Network Toolbox, which has been used
and adapted in this research extensively.

4.3.2. Neural Networks and Statistics Terminology

Part of the distrust of many engineers and scientists towards neural networks is
probably due to the confusing terminology. Stemming from a different origin,
researchers in neural networks have quite often reinvented concepts and created
new terminology for already existing concepts in statistics. A short list of some more
or less equivalent terms used in statistics and neural network applications is given
by Table 4.2 [39, 58, 59].

statistics neural networks

model network

estimation, model fitting, training, learning, adaptation

optimisation

regression supervised learning, mapping,
function approximation

interpolation generalisation

observations training set

parameters weights

overfit overtraining

independent variables, predictors, inputs

regressors, explanatory variables

dependent variables, predicted outputs, target variable

values, response

residuals errors

iteration epoch

ridge regression weight decay

Table 4.1:  Equivalent terms in statistics and neural networks

4.3.3. Feedforward Neural Networks for Function Approximation

Neural networks have been applied in various areas of research, such as nonlinear
on-line control, pattern recognition and research of the human brains. In this
research, they are used for function approximation, or in statisticians’ terminology,
nonlinear regression. That is, a function is learned from examples presented by a
teacher.
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For function approximation, the Multi-Layer Perceptrons (MLP’s) and Radial Basis
Function (RBF) networks are most commonly used. They both provide a mapping
from an input space to an output space, and they have been proven to be universal
approximators of continuous non-linear functions [27, 56]. This means they can
approximate such functions to arbitrary precision, provided the network has
sufficient free parameters.

Multi-Layer Perceptrons

Multi-layer feedforward networks (or Multi Layer Perceptrons, MLP’s for short)
consist of nodes grouped in layers, connected to each other in one direction. The
connections contain weight factors that form the free parameters of the network.
There is an input and an output layer and usually (but not necessarily) one or more
hidden layers (Fig. 4.3).

hidden hidden
layer 1 ]ayer n
B output

Figure 4.3: General structure of a Multi-Layer Perceptron

The input layer just passes the input signals through to the nodes of the next
layer(s). At each node of the network, except for nodes in the input layer, the signals
from the previous layer (possibly the input layer) are weighted with their respective
weights and summed. If needed, a bias is added to the summed signal. Then the
summed signals are fed through the so called activation function and passed to the
next layer, and finally to the output layer. This leads to the following general input-
output relation of an MLP with one hidden layer and with one type of activation
function for each layer, describing the output vector y as a function of the input

vector x:
y:fo(bo+Wo'fh(Wh'x+bh)) (4.5)

where f, and f, are the activation functions and &, and &, the bias vectors of the
output and the hidden layer respectively. W, is a matrix of weights connecting the
hidden layer to the output layer while W, is a matrix of weights connecting the
input layer to the hidden layer. Equation 4.5 can be easily extended for more hidden
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layers, as well as for ’skip-layer’ connections, e.g. from input layer directly to output
layer.

Activation functions
The activation functions may be linear or non-linear. As already remarked, the
nodes in the input layer just distribute the inputs to nodes in the subsequent layers.
If the network has to learn a non-linear input-output mapping, at least some of the
nodes in the subsequent layers need to contain non-linear activation functions. The
linear activation function simply reads

fx)=x (4.6)

while popular choices for non-linear activation functions are sigmoid functions such
as the logistic function
X
[ AR—— @7
1+e* 1+e™™

having an output range of [0,1], and the hyperbolic tangent function

e*-1 1-¢7*

X

h(x)= (4.8)

e*+1 1+e”

having an output range of [-1, 1]. The hyperbolic tangent function can be regarded
as a scaled version of the logistic function, since

h(x)=2l(x)-1 4.9
Figure 4.4 shows both sigmoid type activation functions.
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Figure 4.4: Sigmoid type activation functions

For continuous function approximations, linear activation functions are usually
used in the output layer. This enables the network to have outputs outside the
output range of the activation functions in the hidden layers. In principle, the choice

of activation function is free, but the activation functions shown seem to be suitable
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for most function approximation purposes. Conveniently for computations, but not
necessarily, the activation functions are usually chosen to be the same for all nodes

in a specific layer.

Network Design

The design of multi-layer feedforward networks involves a number of choices, such
as the number of hidden layers, the number of nodes per layer and the kind of
activation functions in the nodes. It has been mentioned earlier that it has been
proven that MLP’s with one hidden layer containing sigmoid type activation
functions are universal approximators, provided that encugh hidden nodes are
applied [27, 56]. However, it may be that in some cases far less nodes, and
consequently far less parameters, are needed if they are grouped in more than one
hidden layer.

This happens to be the case for the mapping of side force and self-aligning torque to
friction coefficient for the DTM tyre model. For positive values of o and u-values
ranging from 0 to 1.2, side force and aligning torque were calculated at a constant
load of 4000 N using the DTM. The inverse mapping from side force and aligning
torque to friction coefficient has to be learned by an MLP. The left graph of Figure
4.5 shows the true values. On this surface, 100 points were randomly chosen for
training set, while test set was chosen as a regular grid. The right graph shows the
result of the MLP with 5 nodes in the first and 2 nodes in the second hidden layer,
both layers containing sigmoid activation functions. The graph has been cut off at
the vertical axis at the level of y=1.5. This network with 30 free parameters results
in a standard deviation of the error on the training set of 0.0038 and on the test set
of 0.0138 (the meaning of training and test set will be explained later). This result
could not be achieved with a single hidden layer and the same number of free
parameters. The difficulty of this particular mapping is the very steep rise of p near
the origin.

Further complications arise if different activation functions are allowed within one
layer and if the connectivity between nodes is made variable, for example by
allowing direct connections between two non-consecutive layers. The number of
possible network architectures thus becomes immense. The best choice of network
design depends on the problem at hand. Unfortunately, there are no well-proven
rules on how to make these choices. The choices are usually made based on
experience and subjective rules of thumb and of course much trial and error is
involved. A number of methods have been developed to try to tackle the problem,
such as cutting links, removing hidden nodes and changing regularisation
parameters [56]. Another approach is to use a Genetic Algorithm to choose the
optimum network architecture by optimisation. This approach will be discussed in
Section 4.3.6.
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Figure 4.5: Two-hidden-layer neural network approximation of the DTM. True
values in the left graph, neural network approximation in the right
graph.

Network Training
Once the structure of a network has been chosen, the weights and biases of the
network have to be optimised such that the error between the network output and
the training data is minimised. Usually, the squared error summed over all training
samples and over all outputs is used as the criterion for minimisation.

We distinguish online, or sequential training and offline, or batch training. In on-
line training, the weights of the network are adjusted to each data sample, one at a
time. In batch processing, all training data are repeatedly available at the same
time. Apart from the cases where the training has to be online by the nature of the
problem in question, it is also suggested that online training converges faster in
cases where the training data consist of a large number of similar examples. In that
case, we may expect the weights to converge before the entire set is used for
training. However, we could achieve the same effect by taking a small sample of the
training data and use that for batch training.

In neural network research, training is traditionally done by some variation on the
back-propagation algorithm. This method is suitable for both online training and
batch training, but it is notoriously slowly converging. For batch processing, often
the Levenberg Marquardt algorithm is much more efficient than the back-
propagation algorithm, and has been used in this research primarily. More details
on both training algorithms can be found in virtually all textbooks on neural
networks, for example in [8].
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Both algorithms use the gradients of the activation functions. It is therefore
desirable to have activation functions that are continuously differentiable.
Differentiation of the logistic function (Eq. 4.7) with respect to x yields

) e i (4.10)
— (1+e”)2 (x)(1 - U(x))

while differentiation of the hyperbolic tangent function (Eq. 4.8) yields
dh *
(x) 2% _ h(x)(1-h(x)) (4.11)
dx 2
(1 + ex)

which explains some part of the popularity of sigmoid-type activation functions. If
the activation functions are not continuously differentiable, the Nelder-Mead
algorithm may be useful.

Since the weights are determined iteratively, starting values for the weights are
needed. If sigmoid type activation functions are employed, these initial weights are
usually small, randomly chosen numbers. They need to be small to prevent the
optimisation from starting out in the saturation region of the activation functions.

The gradient based optimisation methods all find local optima. Although this is
usually not a severe problem, there is also considerable interest in finding the global
optimum. One method to try to accomplish this is by doing the optimisation several
times starting at different randomly chosen points. Alternatives are so-called global
optimisation methods, such as simulated annealing and genetic algorithms. These
methods are usually much more computationally demanding, but, since these
methods are not based on gradients, the activation functions do not need to be
continuously differentiable. Section 4.3.6 will discuss genetic algorithms in some
more detail.

Radial-Basis Function Networks

Radial-Basis Function (RBF) networks form a special class of feedforward neural
networks. As in the case of MLP’s, they can learn arbitrary mappings. The
architecture of RBF networks usually involves three different layers. The first layer
consists of source nodes, just like the MLP’s. The second layer is a hidden layer that
usually contains many nodes. It is possible, but uncommon, to use more than one
hidden layer. The output layer usually consists of linear nodes, although other
activation functions are possible.

The hidden units in a RBF network contain radial basis functions. Typically, their
output decreases (or increases) monotonically with the distance from their centre. A
popular RBF is the Gaussian function:
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r

2
glx) = exp[ ( _ZC) ] (4.12)

where c¢ is the centre and r is the radius. Gaussian-like functions are local in the
sense that they only give significant response in the neighbourhood of their centres.
In contrast, there are also multiquadric-type RBF’s (equation 4.13), that have global

responses.
2 .. 2
Nritx-o)” (4.13)
r

Figure 4.4 shows both types of RBF’s for the radii r=1, 0.5 and 2.0 at the centre
¢ =0. The multiquadric functions are only rarely used and will not be considered
here. So, we will assume to have Gaussian RBF’s only.

mix) =

Gaussian Multiquadric

r
1.5 -r
-t

Figure 4.6: Radial Basis Functions

The Gaussian RBF’s such as defined by Eq. 4.12 need specification of the centre ¢
and the radius r. Various methods of choosing the centre include centres for each
training example, which easily leads to overfitting, placing centres over a regular
grid, using clustering methods to choose representative centres for the training set,
and using the first principal components as the centres. The radii are usually
chosen such that the ’tails’ of the ’bumps’ of the RBF’s are slightly overlapping.

In [27], a comparison has been made between RBF networks and MLP’s. Firstly, it
is remarked that both RBF networks and MLP’s are nonlinear layered feedforward
networks. They are both also universal approximators. One could always build an
MLP that accurately mimics an RBF network’s behaviour, or vice versa. However,
they may not be equally efficient in terms of number of parameters and required
computational effort. There are some important differences that generally hold
(based on [27]):
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1. An RBF network usually has a single hidden layer, whereas an MLP may have
one or more hidden layers. (It should be noted, however, that theoretically, one
hidden layer in an MLP should be sufficient.)

2. The output layer of an RBF network is usually linear, whereas the output layer
of an MLP may or may not be linear.

3. The argument of the activation function of each hidden unit in an RBF network
computes the distance (Euclidean norm) between the input vector and the centre
of that unit. The activation function of each hidden unit in an MLP computes the
inner product of the input vector and the weight vector of that unit.

4. MLP’s construct global approximations to non-linear input-output mapping. This
implies that generalisation in regions of the input space where little data is
available (interpolation and extrapolation) is possible, although extrapolation
may have generate unpredictable results. On the other hand, RBF networks
construct local approximations to nonlinear input-output mappings.
Extrapolation will eventually result in the bias value of the output layer. This
results in fast learning networks, but in order to span a large input space,
usually a vast number of radial-basis functions (hidden units) are needed.

Of course, there are exceptions to the rules, they only have indicative meaning.

4.3.4. Modelling Transient Behaviour by Neural Networks

For the sake of completeness, a few words will be added on modelling dynamics by
neural networks, although this has not been applied to this research. From the
variety of networks that has been developed to model dynamics, two examples are
briefly discussed below.

Networks with lumped dynamics

A disadvantage of the ordinary feedforward networks is that they cannot use
information from previous time steps. A relatively simple solution to this drawback
for nonlinear prediction on a stationary time series (that is, its statistics do not
change in time) is to use so called tapped delay inputs. Instead of using the inputs
at sample time %, the inputs at the sample times k-1, £-2,...k-n are used to feed an
otherwise static neural network, where n, the so called prediction order, is the
number of delays used. The dynamics of the system to be modelled are 'lumped’ in
an external delay system. Because there is no feedback, it is still a feedforward
network that may be trained as an ordinary feedforward network.
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Figure 4.7: Feedforward Neural Network as a non-linear predictor of a time series
Networks with distributed dynamics

Recurrent networks have feedback loops over individual nodes, over layers or over
the entire network (Fig. 4.8). In this figure, a network with one hidden layer has
been drawn, while a few (but not all) of the possible feedback loops have been drawn
as well. This means that calculated outputs of a node, layer or network can also
become inputs to the node, layer or network respectively. Thus, temporal behaviour
can be modelled using such networks.

z:npu; > output
signats > input hidden > output > signals
layer > layer layer
S o/

Figure 4.8: Example of a Recurrent Neural Network

The introduction of feedback loops in the network implies that care has to be taken
to avoid stability problems that, given the nonlinearity of the system, may be hard
to predict. The interested reader is referred to [27] for further explanation.

4.3.5. How to treat data with neural networks

Function approximation, being a form of data analysis, requires certain measures
with respect to data handling to prevent the assessment of misleading results.

69



The Tyre As Sensor To Estimate Friction

Training, validation and test sets of data

A set of examples, consisting of paired values of inputs and outputs, forms the so-
called training set. After the function has been learned, or in other words, the
network weights have been optimised, the proper behaviour of the network is
verified using a second set of examples, the test sef. Using this test set, that has not
been used in training, the generalisation properties of the trained network can be
investigated and an unbiased estimate of the generalisation error can be made. If
the second set has been used in the training, for example for a stop criterion for the
optimisation of the network parameters or to choose the best network from a set of
networks, we cannot also use this set as a test set to estimate the generalisation
error since this would produce a flattering, biased result. Therefore, a third,
completely independent data set, now called test set, needs to be used for unbiased
estimation of the performance of the network in those cases that the second data
set, now called validation set, has already been used in training the network.
Clearly, all three data sets need to be representative for the problem at hand. Since
the concepts of training, validation and test sets are being wused rather
inconsistently in neural network literature, they are defined here as:

Training set: A set of examples used for learning, that is to set the weights of
the network

Validation set: A set of examples used to tune the parameters of the network, for
example to choose the number of hidden nodes

Test set: A set of examples used only to assess the performance of a fully
trained network.

It can be argued that using the method of holding out data for the actual training is
wasting information that could have been used for the optimisation network
weights. Indeed, this method assumes that plenty of data is available. If this is not
the case, some other methods such as cross-validation and bootstrapping may be
preferable. However, since the availability of data is not a problem in this research,
these methods are not discussed here and the interested reader is referred to [56]
for more details on these issues. It is noted that the issues of validation and testing
are not specific to neural networks but should be considered with any data analysis
method.

Standardisation of data

Although in theory scaling or standardisation is not necessary if linear output nodes
are used, it is good practice to scale the input and output signals such that they all
lie within a reasonable range around zero. This is merely to improve the numerical
conditions for the optimisation process. A commonly used method is to subtract the
mean and divide by the standard deviation of the data. Obviously, if bounded
activation functions such as the sigmoid function are used in the output nodes, the
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output signals need to be scaled such that they fit in the output range of the
activation functions of the output nodes. It is noted that standardising outputs
affects the objective function of the optimisation and will thus affect the training
result.

Nonlinear transformation of data

Nonlinear transformation of output data primarily affects the objective function in
the optimisation of the weights of the network. Since most optimisation methods are
based on minimising the absolute difference between target outputs and network
outputs, nonlinear transformation may emphasise certain regions of data, while
other regions become underexposed. For example, squaring the target values puts
more emphasis on large values than on small values.

Since at low friction utilisation the problem of estimating y becomes ill-posed, in the
sense that there is no unique output for u for various inputs of side force, aligning
torque and load, while at high friction utilisation the problem of estimating o
becomes ill-posed, problems in the neural network mapping may be expected. For
convergence of optimisation, it is desirable to put little emphasis on ill-conditioned
data, although it is desirable to have at least a rough estimate of & and u even if the
problem becomes ill-conditioned. This is a designer’s trade off. Sometimes it is also
useful to split the domain of the mapping into several sub-domains for which it is
easier to construct mapping networks.

4.3.6. Optimisation of Neural Networks by Genetic Algorithms

A Genetic Algorithm [9, 24] can be described as an optimisation program that starts
with a population of encoded members. It uses a selection process to select the
members with highest fitness for procreation using reproduction and recombination
to combine properties of the successful members and mutates them stochastically.

Genetic Algorithms (GA’s) have been applied to neural network problems

essentially in two ways:

1. Training of the network. Instead of using the conventional training algorithms,
that are usually based on some form of gradient descent, a GA may be used to
select the appropriate weights for a network of a given architecture.

2. Optimisation of the network architecture. The network architecture is selected
by a GA, which is then trained by conventional training algorithms, such as
backpropagation or Levenberg-Marquardt algorithms.

Obviously, combinations of these two options are also being employed.

Training of Neural Networks by Genetic Algorithms

Training of neural networks by GA’s can be useful in special cases, for example if
the activation functions are not differentiable, or if there is a need to find the global
optimum, rather than a local optimum that is typically found by gradient based
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optimisation methods. GA’s have been proven to be suitable for such tasks.
However, in most cases, including this research, the GA’s are far less efficient than
conventional algorithms to train neural networks. We will therefore disregard
training of neural networks by GA’s and assume that the training of the network is
performed by conventional training algorithms such as back-propagation or
Levenberg Marquardt optimisation.

Optimisation of the Architecture of Neural Networks by Genetic Algorithms

The problem of choosing the optimal network architecture for a specific problem has
not yet been solved, as remarked earlier. We may address it as an optimisation
problem involving discrete variables, rather than solve this problem by using
experience and rules of thumb. One excessively time consuming way to solve this
problem is by simply calculating all possibilities. This is only practicable for small
problems. For larger problems, one may try a random search, or more sophisticated
heuristic methods, such as Genetic Algorithms. The GA optimisation process is
visualised by a flow diagram in Figure 4.9. The optimisation scheme consists of two
nested optimisation loops: the inner loop to optimise (train) the network weights for
a given network architecture, and the outer loop to optimise the network
architecture.

Create initial population by
random generation of
parameters

¥

Train networks

y

Evaluate fitness function and
sort to highest fitness

fitness goal
reached?

Create new population by
selection, cross-over and
mutation

Figure 4.9: Flow diagram of GA optimisation

72



Chapter 4, Identification Methods

Encoding of Neural Networks for use with Genetic Algorithms

The GA approach requires that the architecture has to be coded in such a way, that
from one or more different networks new and hopefully better networks can be
derived. The encoding has to contain all possible network configurations within the
constraints imposed by the user, while excluding all non-valid configurations. Table
4.2 gives an example of a binary encoding of a network configuration by a bitstring
with a total length of 15 bits. This bitstring represents the architecture of a
feedforward neural network with a maximum of two hidden layers, while the nodes
in the layers contain a choice of one out of four activation functions per layer. In GA
terminology, the bitstring is called a chromosome, while the bits are called genes.
Since this optimisation problem involves discrete variables, binary encoding is
sufficient. However, if real-valued variables are to be optimised, binary encoding
typically involves a trade off between precision and complexity. In those cases, often
real value representation is preferred. That, however, is beyond the scope of this
section.

3 input signals available, 2 used 101
1st hidden layer (< 8 nodes), 6 nodes 110
2nd hidden layer (< 8 nodes), 4 nodes 100
4 activation function types per layer 111001
Total bitstring (15 bits) 101 110 100 111001

Table 4.2: Example of encoding of a neural network architecture for optimisation
by using Genetic Algorithms

Fitness Function

After the networks have been trained, the members of the population, in this case
representations of network architectures, have to be compared with respect to their
performance. This comparison requires a criterion, or so-called fitness function. The
fitness function is usually a compromise between several conflicting demands. In
this case the network mapping should be as accurate as possible, but on the other
hand a small, fast learning network is also desirable. In this research the fitness
function is (based on [7]) described by:

F:acc[1+INI(1—, n J+HN11[1—#_)+HNIZ(1—AJ] (4.14)

Mmax 11, max hnz,max

where F stands for fitness, acc for accuracy, INI for the Input Node Influence factor
and HNI,, for the Hidden Node Influence factors for the first and second hidden
layer respectively, in for the number of input nodes and An stands for the number of
hidden nodes. The subscript ‘max’ indicates the maximum allowed value of the
variable. Since the accuracy is usually the most important aspect, the node
influence factors are usually chosen to be small (<<1).
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Procreation by Genetic Algorithms

By employing the principle of survival of the fittest (Darwinism) only the best
members of a so-called population are kept and used for procreation. This selection
process may be based on a simple ranking of the members with respect to their
fitness, or on a biased roulette wheel mechanism, where the chance that a member
is selected is positively biased by the fitness of that member. Often, a few of the
fittest members of a population are reproduced to the next generation without
changes. The other members are used for mating.

The most popular mechanism for mating is cross-over. This means that part of the
bitstring of a member is swapped with the corresponding part of the mating
partner. Figure 4.10 shows an example of cross-over of the last four bits at the tails
of the bitstrings of two members. The cross-over may take place at any point in the
string, and also at more than one point (multiple cross-over). Furthermore,
swapping of parts of the bitstring is possible between more than two members at a
time. Many variations of the cross-over operator have been proposed.

old generation

member A 10111010011 1001
member B 10010110001,0111
new generation »
member A* 10111010011:0111
member B* 10010110001 1001

Figure 4.10: Cross-over of two members of a population

The introduction of ’fresh blood’ may be obtained by adding new, randomly
generated members to a new generation, or by mutation of members. The latter
means that every bit of the bitstring has a small chance to be changed from 1 to 0 or
vice versa. The goal of these measures is to prevent that the optimisation algorithm
becomes trapped into some local optimum.

When the new population has been created, the new networks are trained and their
fitnesses are evaluated. This cycle continues until the fitness goal has been reached.

Some remarks on the use of Genetic Algorithms with Neural Networks

It should be considered that even this method is not a truly objective way to
determine the optimal network architecture; the solution is biased by the choice of
encoding and the criterion at which the optimisation is stopped. If the number of
generations is limited, as is usually the case, the start population and the rules for
procreation may also affect the result. It should also be considered that the
optimisation process is very computationally expensive. To evaluate the objective
function, each network in the population of each generation has to be trained, and
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preferably even more than once, to minimise the effects of random choices for the
initial values of the network weights in the training process. Especially for large
networks, this easily becomes a large computational burden.

4.4. Conclusions of this chapter

Two methods to find the required mapping from tyre forces and torques to side slip
angle and friction coefficient have been discussed in this chapter:

The use of a lookup table is very fast and straightforward. However, to have a
sufficiently small table, a transformation of data to a set of predefined conditions
needs to be performed by using the similarity method. The assumptions made in
this process mildly violate the actual tyre behaviour. Moreover, filling the table may
be quite a cumbersome task and this method is not very robust to disturbances.

The neural network approach may be regarded as a generalisation of the table
lookup method. It is far more flexible and besides more robust to disturbances than
the table lookup method. The use of neural networks involves two basic steps:

1. A choice of network architecture, involving choices such as the type of network,
the number of layers, the number of nodes per layer and the type of activation
functions. No well proven rules exist for the design of the neural network
architecture. Usually, the design is based on experience and rules of thumb. A
more objective design method is provided by applying Genetic Algorithms. By
using an evolutionary mechanism, the best network architecture evolves from a
number of generations of network architecture populations. However, the
application of GA’s for the optimisation of neural network architectures usually
involves an excessive amount of calculation time.

2. The optimisation of the network parameters. The training of the network is
performed on data available from models or measurements. This data set is
called the training set. For this training a number of standard algorithms are
available. The training of the network is easy, but time consuming. Once the
network has been trained, its proper behaviour needs to be verified using an
independent data set, the so-called test set. Both the training and the test set
need to be representative for the problem in question. Once the network has
been trained, the network calculations are fast and straightforward.

Because of their flexibility and robustness, the neural networks have been chosen as
the preferred method in this research.
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Experimental Applications

5.1. Introduction

The previous two chapters have provided the method and the tools to identify the
side slip angle and the tyre to road friction coefficient of a running vehicle. This
chapter describes the validation and application of the identification procedure, both
in simulation and on actual vehicles. First, the validity of the identification method
is verified using a tyre test trailer. Then, implementation in a standard passenger
car is discussed to verify the possibility of application in a standard vehicle.
Experiments with both vehicles have been conducted, both at simulation level and
outdoors. Finally, some disturbances are discussed that could not be tested by
experiments, but that may have to be accounted for in future applications.

5.2. Simulation models

In addition to the actual implementations in vehicles, simulation models have also
been used. Their virtues are that they are always available, that manoeuvres can be
simulated that are hard to realize in practice and on surfaces that are not actually
available, that an unlimited number of signals is available and that their results
can be used to compare with the results obtained with the actual vehicles and vice
versa.

In this research, two vehicle simulation models have been used. One is a relatively
simple nonlinear model built in Matlab/Simulink, the other one is built using a
multi-body simulation software package called BAMMS [63]. While the latter is
more accurate than the first, it is also much slower in computation. For many
purposes, the simpler model is sufficient. The parameters have been taken from the
manufacturer’s specifications, supplemented with parameters that have been
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obtained by mass and inertia measurements taken from the actual vehicle in the
laboratory.

5.2.1. The Matlab/Simulink simulation model

The Matlab/Simulink model is based on the well known two-track model of a
vehicle, depicted schematically by Figure 5.1. The vehicle model consists of the
sprung vehicle body mass m, and the lumped unsprung mass m, of the front and
rear axles. The total mass m is the sum the unsprung and sprung masses:

m=mg,+my (5-1)

The sprung mass has a rotational degree of freedom with respect to the unsprung
mass defined by the roll axis. For simplicity, the roll axis has been considered as
being fixed in location with respect to the unsprung mass, which is a good
approximation when the roll angle remains small. The origin of the system of axes
of the vehicle has been located at the roll axis, right beneath the centre of gravity of
the sprung mass and fixed to the unsprung mass. The orientation of the axis system
follows the SAE conventions, that is x points forward, y to the right and z points
down. Furthermore, the roll of the unsprung mass and the pitch of the vehicle body
have not been considered, since these are of less importance to this research. With
these limitations, we have three mechanical degrees of freedom (DOF) left:

1. the lateral velocity (V) of the vehicle at the origin of axes
2. the yaw rate (r) of the vehicle
3. the roll angle (¢) of the vehicle body about the roll axis

Figure 5.1 shows the vehicle model with a wheel base of length a+b, and for
simplicity centres of gravity of both unsprung and sprung masses at a distance a
from the front axle. The trackwidth equals d and at each wheel, the planar tyre
forces are indicated by X and Y in longitudinal and lateral direction respectively and
the self aligning torque by M,. In this general case, each wheel may have a different
steering angle 6.

The model describes the linearized vehicle behaviour in a steady state turn by the
following set of equations for the lateral, yaw and roll motion:

m(Vy +V,r)+mph, § = 3.Y;
i

Ii = a(Yy +Yy) — b(Y3 + Y4)+g(X1 +X3)—g—(X2 +X)+ Y M, (5.2)

i

I 9+ Ko+ (C - mbghc)(/) =mph, (Vy +V,r)

where V_ is the longitudinal velocity of the origin of vehicle axes, A, is the height of
the centre of gravity of the vehicle body above the roll axis, I,, is the moment of
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inertia of the vehicle body about the roll axis (in x-direction), C the roll stiffness and
K the roll damping coefficient. For simplicity, the dynamic effects of product of
inertia I, of the vehicle body and of a possibly inclined roll axis have been neglected
in this analysis. The roll stiffness and damping are a result of the front and rear
wheel suspensions.

<— b <—a»—>{

Figure 5.1: Three DOF two-track vehicle model in top view (left) and front view
(right)

Let us assume the steering angles, slip angles and yaw rate to be small and the
total vehicle speed V to be constant. Also, we assume that there are no braking or
driving forces:

F,, =0 (=14 (5.3)
with subscript i=1..4 referring to the left front, right front, left rear and right rear

wheel of the vehicle, respectively. These assumptions allow the following
linearizations and simplifications:

V, =V
X;=F, cosd;—F, sing;=F, -F,6;~0 (i=14) (5.4)
Y; = Fy, sind; + F) cosd; = F), (i=1.4)

For front wheel steering, as is the case with our test vehicle, 63 =064 =0 and
approximately 61 =89 =6. The tyre forces F,. and moments M, are calculated
using the nonlinear Delft Tyre Model (DTM) as 'a function of vertlcal load, side slip
angle and camber angle, as described in [44].

Fy, =Fy, (03,70, F,) (5.5)
My, =My, (3,70 Fz))

For the side slip angles o, we have
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V, +ar
o9 = yV -6
Vy—br (5.6)
0g4 = -0
47TV

The side slip angle is filtered by a first-order filter to simulate the transient tyre
behaviour due to the tyre relaxation length /,;:

lL;l—a;. +toz=a; (i=14) (5.7)

Equation 5.7 is the equivalent in the time domain of Eq. 3.80 in the frequency
domain. We calculate the camber angle 7, of the tyre with respect to the flat, level
road surface by

Yi=Vp T (5.8)

where 1, is the camber angle with respect to the vehicle body and ¢ is the roll angle
of the vehicle body. For the front wheels, the angle 7,; depends on the kinematics of
the suspension and is a function of ¢ and & . For the rear wheels, obviously the
steering angle & does not play a role.

Y, =, (9,6) (=12)
Yo, =V, (@) (=34

(5.9

Finally, the load is calculated by summing the static load and the load transfer from
inner to outer wheels in a turn. For the static load at the front and the rear wheels
we have

zsp = 7 M8
Foaxh (5.10)

:——mg
r a+b

Usually, the roll axis is slightly inclined such that 4, is smaller than A, ,. Also, we
use the different unsprung masses m,, and m,, at the front and rear axle
respectively rather than the lumped unsprung mass m, and we use the different roll
stiffnesses and damping coefficients at the front and rear axle, denoted with the
subscripts f and r respectively. The load transfers at the front wheels and rear
wheels are obtained by summing the moments about the roll axis. Figure 5.2 shows
the relevant forces and torques at the front axis, the rear axis is similar.
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Figure 5.2: Load transfer at the front axle

The load transfers at the front and rear axles are calculated by

AF, =2 {K i+ Cro +(Vy + Vr-tar)ma (b ~re )= Fyp s}
(5.11)
AF, , = %{K,(b +Crp +(Vy + Vr=brYmg by p = Te ) - Fy,,h,,,.}

where F,,and F,, are the summed tyre side forces at the front and rear axle
respectively.
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Figure 5.3: Matlab/Simulink Vehicle Model

The model has been built using Matlab/Simulink, which provides a modular way of
model building. Figure 5.3 shows the block diagram representation of the model.
The blocks have descriptive names indicating their functions. Most of the blocks,
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e.g. the block called 'Differential Equations’, are in turn built up from blocks, put
together in one block.

Since linearization has been used in the vehicle modelling, the model is only valid
for small deviations around a steady-state turn.

5.2.2. The BAMMS simulation model

Another model, which is not limited to small angles, has been built using a multi-
body software package called BAMMS, which stands for Bond graph based
Algorithm for Modelling Multi-body Systems [63]. The greater part of this model
had already been built by Venhovens [64] but it was modified and extended for this
research.

Multi-body software packages prove to be powerful tools in vehicle modelling. The
generation of complex non-linear models simply involves defining stiff bodies and
interconnecting them by springs and dampers (possibly with non-linear
characteristics) or by defining constraints between the bodies. Using BAMMS, a 17
DOF (6 for the vehicle body, 2 for the independent front axles, 2 for the rigid rear
axle, 3 for the power train and 4 for the wheel rotations) nonlinear model of the
vehicle, including nonlinear tyre behaviour with combined side and longitudinal slip
described by the DTM, nonlinear suspension characteristics and steer compliance
was built.

As will be shown later, the model behaviour shows good correspondence with the
actual vehicle behaviour. Furthermore, the model can be used to simulate
measurements with sensors positioned at the same locations as in the actual
vehicle. A disadvantage of the model however, is that it takes great computational
power to do simulations within reasonable time. For less critical tasks, the simple
Matlab/Simulink model is often sufficiently accurate and requires far less
simulation time, even though this model has not been optimised for speed and uses
a code interpreter, as opposed to the compiled BAMMS-model.

5.3. Experiments with the tyre test trailer

Experiments to verify the identification algorithm have been performed using the
tyre test trailer of the Vehicle Research Laboratory at the Delft University of
Technology. Figure 5.4 shows the trailer with the test wheel mounted on a
measuring hub, located between front and rear wheels. For this research the trailer
was only used in pure side slip experiments. A mechanical device in the trailer
varies the slip angle and the vertical load of the test wheel as a predetermined
function of time. Camber can be set to a fixed angle and water can be sprayed in
front of the tyre to wet the road surface. The measured signals F. 'y, My and F, are
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logged and fed to the identification algorithm. A small trailing wheel connected to a
potentiometer is used to measure the side slip angle for reference. No device to
measure the tyre to road friction coefficient directly is available. The reference value
for the friction coefficient is therefore determined by measuring the maximum tyre
forces and determining the friction coefficient by fitting these measurements using
the DTM. This implies that only an average value of the tyre to road friction
coefficient is known for a specific type of road surface in the conditions (e.g. dry or
wet, outside temperature) of the time of measurement, while the actual friction
coefficient may vary a little, due to spots of dirt or inhomogenities of the road
surface for example.

Figure 5.4: The Tyre Test Trailer of the Vehicle Research Laboratory of the Delft
University of Technology

Various experiments were conducted with the tyre test trailer. Firstly, quasi-static
side slip angle sweeps on different surfaces were conducted, to verify the
identification procedure. Secondly, manoeuvres were carried out that were
calculated by the Matlab/Simulink simulation model of a passenger car. These
manoeuvres were ‘played back’ on the tyre test trailer with a test tyre running on
the road. Finally, random manoeuvres were performed.

5.3.1. Quasi-static side slip angle sweeps

A data set was generated by quasi-static variation of the slip angle o at 2, 4, 6 kN
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vertical load on both high and low-friction tracks. The data set was split into a
training set with data at 2 and 6 kN vertical load and a test set at 4 kN vertical
load. A neural network was trained, that is the network parameters were optimized,
by presenting the measured signals ¥,, M, and F, as inputs and o and u as outputs
of the network. The results of the training are displayed in the left part of Figure
5.5. In this figure, the solid lines represent the actual values, while the dashed lines
represent the network outputs. The actual friction value yu was calculated from the
estimated u;; using Eq. 3.20. The proper behaviour of the network was then tested
by presenting the measured signals F,, M, and F, of the test set as inputs to the
trained network and comparing the outputs of the network to the measured signals
o and p of the test set. These results are displayed in the right part of Figure 5.5.
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Figure 5.5: Estimation results from quasi-static tyre test trailer data

First of all, these results show that neural networks are able to perform the
required mapping from measurements to slip angle and friction estimates.
Furthermore, the slip angle estimate appears to degrade at high slip angles and/or
low friction values (corresponding to total sliding), while the actual friction estimate
appears to degrade at small slip angles and/or high friction values (corresponding to
almost complete adhesion). These results comply with the brush tyre model theory
as explained in Chapter 3. Finally, the utilised friction u; is estimated more
accurately than the actual friction p. This can be understood from Eq. 3.20 and
recalling that the friction estimate is poor when l,uul is low. In that case, the side
force will also approach zero. Thus, even though the friction estimate is poor, the

estimate of gy, is not heavily disturbed.
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5.3.2. Play-back of simulation of a lane change manoeuvre

The next figure shows the results of single lane change manoeuvres on high and low
friction road surfaces using the same neural network parameters as in the
preceeding section. The testwheel of the tyre test trailer was steered and loaded
according to the results of simulations with the Matlab/Simulink vehicle model for
the right front wheel. The forward speed of the simulated vehicle and, accordingly,
also of the tyre test trailer was 10 m/s. The lateral deviation of the vehicle was
about 4 meters for both experiments. Obviously, the lane change on the higher
friction road surface can be conducted much quicker than at the lower friction road
surface. It was intended that in both cases the full friction potential should be used.
Qince at the time of the experiments the camber angle of the tyre test trailer could
not be changed dynamically, it was set to zero.

Lane change at low friction Lane change at high friction
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Figure 5.6: Estimation results from tyre test trailer on lane change manoeuvres at
high friction (left) and low friction ( right) road surfaces

These results show that the algorithm is capable of detecting the road friction
shortly after the start of the lane change manoeuvre. It may be surprising that the
friction estimate seems more smooth at the high friction track than on the low
friction track. The reason for this may be found in the lower signal levels of the
measurements at the low friction track, thus worsening the signal to noise ratio. If
the test wheel is running straight, the friction estimate becomes more or less
random while the side slip angle is estimated accurately, as we would expect. The
same holds true at the zero crossing of the side slip angle during the lane change.
Again, the utilised friction is estimated quite accurately.
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Even though these experiments involve a higher rate of change of side slip angle,
inducing some tyre transient behaviour, the neural network, trained on quasi-static
data, still performes adequately.

5.3.3. Random manoeuvres

Finally, random steering inputs were given to the Matlab/Simulink model and their
results were used to steer the test wheel of the tyre test trailer. Due to the dynamics
of the simulation model and, moreover, the limited bandwidth of the actuators of
the trailer, the resulting steering input (both slip angle and load) was a random
signal of low bandwidth. Nevertheless, it gives an indication of how the
identification algorithm behaves at random side slip angle variations around zero.
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Figure 5.7: Estimation results from tyre test trailer on random manoeuvres

The results displayed in this figure confirm the previous findings. Again the
identification of the friction coefficient is best at higher levels of friction utilization.
The transient behaviour becomes more apparent in these random manoeuvres and
disturbs the identification. However, using some adequate filtering one might still
distill the average friction coefficient.

5.4. Experiments with the passenger car

5.4.1. Set up of a measurement system in the car

So far we have assumed that the signals Fy Fy, F; and M, of the tyre are all
available. However, these signals cannot be measured directly in a standard vehicle
unless an expensive rotating wheel dynamometer is used. Since using such a wheel
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dynamometer would not give insight into the applicability of the identification
method in a standard vehicle, an alternative method has been employed using a set
of relatively inexpensive sensors in the front wheel suspension. At this point, only
the right front wheel suspension was instrumented. It would be advisable though, to
instrument both front wheels. The vehicle under consideration in this research is a
Volvo 460 (Fig. 5.8).

Figure 5.8: The test vehicle (before modifications were made)

It is a mid size front-wheel drive car with an independent McPherson type front
wheel suspension, depicted by Figure 5.9, and a light-weight five link rigid rear
axle.

Figure 5.9: Front wheel suspension
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In this research, we only need to study the front wheels suspension in more detail.
The identification procedure described in the previous chapters requires the
determination of the tyre forces F,, F, and F,, the self aligning torque M, and the
wheel camber angle y. Before deciding how these quantities will be measured, we
will study the geometry and static force analysis.

The wheel with the tyre is mounted on the wheel carrier, where it can rotate about
the spindle. The wheel carrier is rigidly attached to the spring-damper strut, which
is attached to the vehicle body by a rubber bushing. For this analysis, we regard
this bushing as a universal joint. The strut itself provides for a translational and a
revolute degree of freedom. Furthermore, the wheel carrier is attached to the lower
suspension arm (wishbone) by the lower ball joint (king-pin). The wishbone is
attached to the subframe again by rubber bushings, allowing a rotational degree of
freedom, such that the wishbone can sway up and down to allow vertical wheel
motion. The wheel assembly can rotate about a line through the upper strut mount
and the lower ball joint, the steering axis, indicated by a thick, dashed line in Fig.
5.9. Usually this line does not align with the strut. This rotational, steering degree
of freedom is constrained by the steering link, connected to the wheel carrier by
another ball joint at the steering knuckle. This link in turn is connected to the
steering wheel via the steering rack and pinion.
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—3% ¢ king pin

( ! l‘\ inclination

king pin<}>==0 steering link 0 }?king pin
h wishbone "y / |
I ! caster angle
I y
Ny J \%
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Figure 5.10: Suspension geometry

The steering axis is not vertical, but tilted in two directions, described by the king-
pin inclination in the y-z plane and the caster angle in the x-z plane (Fig. 5.10). The
steering axis intersects with the ground plane at a distance from the wheel center
called the mechanical trail in x-direction and the scrub radius in y-direction. The
orientation of the steering axis, and consequently the effective mechanical trail and
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scrub radius, changes with rotation of the wheel assembly about the steering axis
and with the sway angle of the wishbone. The same holds true for the camber angle
%, of the wheel with respect to the vehicle body.

The tyre forces in lateral direction are primarily counteracted by reaction forces in
the ball joint and in the upper strut mount (Fig. 5.11). From the balance of moments
it easily follows that the reaction forces in the ball joint are much larger than the
reaction forces in the upper strut mount. The forces in the steering link caused by
lateral forces are usually small, but owing to the pneumatic and mechanical trail
not negligable. The pneumatic trail and the tyre lateral force form the self aligning
torque.

Figure 5.11: Reaction forces due to lateral forces (left) and longitudinal forces
(right) [26]

In the longitudinal direction, the tyre forces cause a torque about the spindle, that
may be counteracted by a driving torque via the driving axle or by a braking torque
if the disc brake is activated. The latter case is more complicated due to the extra
connection between rotating wheel and wheel carrier through the brake clamp and
disc. This case will not be considered here. The longitudinal tyre forces are again
counteracted primarily by reaction forces in the lower ball joint and in the strut
mount, and also for a small part by forces in the steering link due to the scrub
radius.

By convention, the scrub radius is defined in the road plane. However, the effective
arm length needed to calculate the torque about the steering axis due to the
longitudinal force should be calculated in a plane perpendicular to the steering axis.
The same holds true for the mechanical trail.
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The vertical tyre force is compensated primarily by the forces in the strut, and since
the strut is not aligned vertically with respect to the wheel, for a small part by
forces in the wishbone. Furthermore, the vertical tyre force also generates a
relatively small torque about the steering axis, compensated by a force in the
steering link. Their relative contributions vary with both the steering angle and the
wishbone angle with respect to the vehicle body. Since the strut consists of a spring
and damper, in static cases the length of the spring indicates the magnitude of the
force reacted by the strut. A complication arises due to the anti-roll bar, which is
meant to decrease the amount of roll that the vehicle shows in a curve. It consists of
a torsion spring connected to the struts by small links. Thus, the anti-roll bar tries
to equalize the suspension travel at the left and right front wheels. Because of the
way the anti-roll bar is linked to the suspension strut, a torque in the anti-roll bar
also generates a torque about the steering axis.

Since the king-pin is located almost at the centre of the wheel in this particular
suspension design, the king-pin transmits the major part of the side force. It also
transmits a considerable part of the longitudinal force. It is therefore convenient to
measure the forces at the king-pin, by means of strain gauges. The strain gauges
were mounted in two pairs, at opposite sides of the king-pin, forming two half
Wheatstone bridges. Conveniently, the part of the joint with the strain gauges (the
ball and shaft) is fixed to the wheel carrier, thus having a fixed orientation with
respect to the wheel and the tyre. Figures 5.12 and 5.13 show the gauged king-pin
before and after mounting in the wheel suspension respectively. The first picture
also shows the mount with two bolt holes, through which the ball joint is bolted to
the wishbone. (Note that for the picture in Fig. 5.13 to be taken, the cover plate
protecting the brake disc was bent.) The rubber cover that normally seals the ball
joint was removed to accomodate the wires connecting the strain gauges with the
strain amplifier. Obviously, this rather fragile construction is only suitable for
experiments; one would have to look for a more solid construction for everyday use.
Alternatively, one could study other possibilities of measuring these forces, e.g.
using a redesigned wishbone with strain gauges, or using small radial load cells in
the joints connecting the wishbone to the subframe.
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Figure 5.12: Gauged lower ball joint before mounting

driving axle
wishbone

wheel carrier lower ball joint

Figure 5.13: Gauged lower ball joint mouted to wishbone and wheel carrier

Since the vertical tyre forces are mostly counteracted by strut forces, the suspension
travel is strongly correlated to the vertical tyre force. The suspension travel is
actually determined by sensing the sway angle of the wishbone using a magneto-
resistive potentiometer. To account for the effects of the anti-roll bar, the suspension
travel (and travel speed if the dynamics are considered) at both front wheels are
measured. The vertical tyre force may be determined in other ways too, e.g. by
using accelerometers attached to the sprung and unsprung masses.

The moment about the steering axis M, reacted by the force in the steering link, is
built up from contributions due to the tyre forces in three directions and the torque
in the roll bar as well as the self aligning torque that needs to be determined. Also,
all contributions to M, depend on the steering angle é and wishbone angle 8 of the
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suspension mechanism. To study the effects of these contributions, a simple
kinematic model of the front wheel suspension was built in Matlab. This model
assumes stiff links and joints, that all tyre force act at a point under the wheel
center in the middle of the tyre/road contact patch, and that there is no pneumatic
trail.

Let us assume that the static load of the tyre with the suspension in design position
is 3 kN. The wishbone is forced to sway up and down over -20/+10 degrees, thereby
relaxing and compressing the strut spring. We assume that the vertical tyre force
completely reacts to the changing strut force, so that the vertical tyre force
increases with positive wishbone angles. We also assume to have longitudinal and
lateral tyre forces, equal in magnitude and with a resultant equal in magnitude to
the vertical tyre force (u,=1). Similarly, we force the wheel to steer over -45/+45
degrees. The direction of the planar tyre forces rotates with the wheel. The anti-roll
bar is assumed to react as if the left suspension were locked, that is the left
suspension does not move with the right suspension. Figure 5.14 shows the
resulting torque about the steering axis due to the three tyre forces and the torque
in the anti-roll bar as functions of the steering angle § and the wishbone angle 6.
These contributions appear to be in the same order of magnitude as the self aligning
torque that we need to determine. It thus follows that the self aligning torque can
be determined by measuring the force in the steering link, but only if all other
contributions are accounted for. (Note that the maxima in Figure 5.14d are not
commonly encountered: they represent situations of counter steering).

Obviously, a suspension design with minimal scrub radius and mechanical trail
would be advantageous with respect to determination of the self aligning torque.
Also, a rear wheel drive vehicle would eliminate the problem of driving forces
affecting M. Finally, the contribution of the anti-roll bar to M, could be eliminated
by linking the anti-roll bar to the wishbone instead of to the strut.

The force in the steering link is measured by a standard load cell. One could attach
strain gauges to the link to measure axial force, but in order to have a reasonable
response, this would require necking down the link, which was considered unsafe.
On the other hand, using the load cell required that the steering link was cut
through. Alternatively, it might be possible to use the power steering pressure to
determine the force in the link, but care would have to be taken that the forces in
left and right steering links could be discriminated.
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(a) M, due to Fx (b) M, due to Fy

M, [Nm]

Figure 5.14: Contributions to torque around the steering axis

As previously explained it is necessary to determine the steering angle 4 and the
wishbone sway angle 6 and also, to determine the wheel camber with respect to the
vehicle body. The latter has already been done for the determination of the wheel
load, while the steering angle is measured at the steering wheel. At the time of
instrumentation, this seemed to be the most convenient solution. However, it has
the disadvantage that steering compliance is present between the sensor and the
actual wheel angle. Better solutions may be found by measuring the displacement of
the steering rack or by measuring the rotation at the lower ball joint.

Summarizing, the following sensors were installed:

e A load cell in the steering link

e A magneto-resistive potentiometer to measure the angle 6 of the wishbone
relative to the car body

¢ Two pairs of strain gauges on the lower ball joint, forming two half Wheatstone-
bridges.

o A potentiometer at the steering wheel

The measured signals are processed by a 486-PC on board the test vehicle.

For reference, a few other sensors were installed. These enabled us to compare the
actually driven manoeuvres with simulated manoceuvres and check the
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identification results. For these reasons, accelerometers for longitudinal and lateral
directions and a gyro for yaw velocity were installed at the center of gravity of the
vehicle. Also, a Leitz Corrovit optical instrument was installed close to the
instrumented right wheel. This instrument is capable of measuring the longitudinal
and lateral speeds with respect to the road surface. Thus, the side slip angle at the
location of the instrument can be calculated and, from the vehicle geometry, also the
side slip angle at the tyre. This signal can be compared with the estimated side slip
angle and with the simulation results.

5.4.2. Modelling of the suspension kinematics by a neural network

Even though we have a number of models available that describe the suspension
kinematics to various degrees of accuracy, for a number of reasons these models are
not suitable for online implementation in a vehicle. Firstly, a model that accurately
describes the suspension kinematics, including the flexibilities in the various joints
and members, becomes far too computationally demanding. Secondly, the various
parameters describing these flexibilities as well as the actual scrub radius are not
readily available and hard to obtain. The scrub radius may vary considerably,
especially with wide tires. Instead, we chose to describe the suspension kinematics
by a nonlinear function, for which a neural network was employed. (It is noted that
this is a rather subjective choice which does not rule out other possibilities.) In
contrast with a conventional suspension model, the neural network learns the
suspension kinematics from measured or simulated examples, without the need for
exact parameters and geometries of the various parts. Moreover, it only needs to
describe the suspension behaviour in the relevant working area, unlike a generally
applicable model. Therefore, the resulting model after training of the network can
be much simpler than the conventional model.

The BAMMS simulation model (see Section 5.2.2) is able to simulate both the sensor
signals (the steering wheel angle, the wishbone sway angle, the forces on the king-
pin in longitudinal and lateral directions, and the force in the steering link) and the
actual tyre forces and torques (Fy, Fy, F;, and M) for a given manoeuvre. A series
of slalom manoeuvres on two road surfaces with different friction coefficient was
conducted with the BAMMS model. These manoeuvres were also performed with
the test vehicle, as will be shown in the next section. The acquired simulation data
were used to train and test a 3-layer (one hidden layer) network that maps the
sensor signals to the actual tyre forces and torques (Figure 5.15).

measured
signals F.F,F, M,
—>» NN [—————

Figure 5.15: Neural network describing the suspension behaviour
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The training set and the test set were constructed by dividing the data set into two
parts. Figure 5.16 shows that identification by this network of Fy, Fy, F, and M,
from the simulated sensor signals of the test set was successful. The figure thus
shows that a neural network is indeed capable to describe the suspension
kinematics sufficiently accurate.
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Figure 5.16: Estimation of Fy, Fy, M and F, from simulated sensor outputs.

5.4.3. Estimation of side slip angle and tyre to road friction coefficient

The next step would have been to use the estimated tyre forces and self aligning
torque to estimate the side slip angle and the tyre to road friction coefficient.
However, that would have resulted in two neural networks in series (Fig. 5.17).
Obviously, one could merge these networks, as indiciated by the dashed block in
Fig. 5.17, and thus eliminate the intermediate step.
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Figure 5.17: Neural networks in series

The estimates of ¢, y;; and u from the signals directly are displayed in Figure 5.18
for the training set. The network contains one hidden layer with 30 hidden nodes.
This network architecture has been chosen to correspond with the network used
with the test vehicle, as discussed in the next section. The network is obviously
distinguishing the different friction levels, although the results are quite noisy. As
we would expect, poor estimates of friction occur primarily at small values of 1y,
and poor estimates of side slip angle a occur at total sliding. Since the magnitude of
Uy is, on average, much lower at high friction levels than at low friction levels in
this experiment, it is more difficult to correctly estimate the high friction level than
the low friction level.
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Figure 5.18: Estimation of o, u,, and p from training set (simulation results)

5.4.4. Enhancement of the estimates by filtering

The friction estimate can be enhanced by applying a weighted moving average filter,
built by keeping a number of previous p-estimates, weighted with their respective
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values of |1, in a buffer of fixed length. This buffer is only updated if |u,| exceeds
some threshold value, in this case chosen to be 0.3. The rationale for this is that it is
probably better to keep a reliable old estimate than replace it by an unreliable new
estimate. However, this implies that the phase lag of this filter is variable. Tuning
of this filter is a trade off between accuracy and phase lag. Figures 5.19 to 5.22 show
the results for the test set. This test set includes slalom and lane change
manoeuvres on high and low friction road surfaces. The filtered results are shown
by thick dashed lines.

If ],uul is smaller than the threshold value of 0.3, the tyre behaviour is
approximately linear (almost complete adhesion friction) and independent of u,
hence a reliable estimate of the actual friction cannot be made. This threshold value
is rather arbitrarily chosen, since there is a continuous transition from adhesion to
sliding with increasing |uu| Furthermore, such a threshold depends on the tyre
properties and on the experimental setup, as is also demonstrated by the
experiments with the tyre test trailer, and on the required accuracy and may
therefore vary with other experiments. It is also conceivable to use other types of
filters, but major improvements are not to be expected as they are limited by the
physical properties of the tyre. It is noted that other research [54], although based
on a different method, reports similar results regarding a minimum degree of
friction utilisation to enable friction estimation.

o [°]

—
1
o
=
=
— exact
. T . ; — — estimated
_ ir ' = = MA-filtered
| A A i \
L g - [ N—— P ST
;‘.0.57 \\~-Q\l—,‘ \\[\,\"‘\""‘ “_,_ V\T I\V’J’."\\'A‘\"" \‘:
] '
1 1 ] 1 L
0
0 2 4 6 8 10

time [s]

Figure 5.19: Estimation of o, [, and u from test set (simulation results): slalom on
high friction surface
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Figure 5.20: Estimation of o, yy, and i from test set (simulation results): slalom on
low friction surface
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Figure 5.21: Estimation of &, uy, and p from test set (simulation results): slalom
with increasing steering frequency on low friction surface
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Figure 5.22: Estimation of o, i, and 1t from test set (simulation results): lane
changes on low and high friction surfaces

5.4.5. Experiments with the test vehicle

The next step is to identify friction from measured signals using the actual test
vehicle. The measured data consist of a series of manoeuvres on two different road
surfaces with friction coefficients of approximately 0.4 and 0.8. Note that since the
actual friction coefficient is a function of many parameters that may change during
the experiment, only approximate values can be given. For these data, a neural
network was designed using the Genetic Algorithm approach discussed in Chapter
4. The data was split in three sets: two sets to determine the network structure and
to train and validate the network, and another, independent test set to determine
the overal performance of the final, trained network.

Neural network architecture optimization by Genetic Algorithms

The GA optimization of the network architecture was carried out in two steps. In
the first step, the inputs were selected from the 6 available inputs, the numbers of
hidden nodes in the one or possibly two hidden layers were chosen and the
activation functions in the hidden and output layers are chosen from three
alternatives: linear, logistic or hyperbolic tangent (see Section 4.4.3 on these
functions). Since such an optimization run is extremely time consuming, the
population was set to a modest 20 members, and the optimization ran for 20
generations. The number of hidden nodes in the first and second layers were
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constrained to a maximum of 16 and 8 respectively, for the same reason of
computational burden. The fitness is calculated as a function of the acquired
accuracy, while network complexity (i.e. more network parameters) is penalized
following Eq. 4.15, repeated here for convenience:

F = test_accuracy| 1 +INI(1— - m J+HN11 l—ﬂ—— +HNIs| 1 —ﬂ——
Mmax hnl,max hn2, max

(5.12)

where the node influence factors have chosen as:
INI =0; HNI; =0.05; HNI; =0.1
This choice is rather subjective, but aims to express a preference for low complexity,

single layer networks, while not excluding the possibility of a second hidden layer if
that is really beneficial.
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Figure 5.23: Parameter evolution of the first GA-run to optimize the neural network
architecture
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Figure 5.24: Maximum and average fitness of the successive populations of the first
GA-run to optimize the neural network architecture

This optimisation run resulted in the parameter evolution shown in Figure 5.23.
The maximum and average fitnesses of the successive generations are displayed in
Figure 5.24. From this optimization run it becomes clear that all inputs to the
network are relevant and have to be included for best performance. Furthermore, it
seems that the maximum number of hidden nodes chosen was too small for the first
hidden layer. A second hidden layer seems to be unnecessary. Either logistic or
hyperbolic tangent functions can be used as activation functions for the hidden
layer, but clearly linear activation functions have to be used for the output layer.

Since the hyperbolic tangent function can be seen as a scaled logistic function, it is
easily understood that no clear preference for one or the other function to serve as
activation function in the hidden layers shows up. The output function, however,
needs to be linear to cover the range of output values. Therefore, a second
optimization run was conducted, optimizing only the choice of input signals and the
numbers of nodes in the hidden layers. For the first hidden layer the maximum
number of nodes was set to 32, and for the second to 8. The activation functions
were set to hyperbolic tangent for the hidden layers, and linear for the output layer.
The fitness calculation remained the same. Figure 5.25 shows the parameter
evolution for this optimization run and Figure 5.26 shows the accompanying fitness
for the succesive generations. The population size was again set to 20 members and
the optimization ran for 20 generations. The parameter evolution converged to form
an optimal neural network architecture with a single hidden layer containing 30
nodes.
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Figure 5.25: Parameter evolution of the second GA-run to optimize the neural
network architecture
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Figure 5.26: Maximum and average fitnees of the successive populations of the
second GA-run to optimize the neural network architecture

Neural network results on training and validation sets

The single hidden layer neural network with 30 hidden nodes results in the
following training results. Figures 5.27 and 5.28 show the results of the neural
network on the training and validation set that were used to determine the
structure of the net using the GA and the weights in the network training.
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Figure 5.27: Results on training set
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Figure 5.28: Results on validation set
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Neural network results on the test set

Figures 5.29 to 5.32 show the results on the independent test set, which gives an
unbiased measure of the network performance. This test set contains four different
manoeuvres: slalom manoeuvres on high and low friction surfaces, a slalom with
increasing steering frequency (a sweep) on low friction surface, and finally a series
of lane change manoeuvres, changing from high to low friction lane and vice versa.
Like the simulation test results, the friction estimates were filtered using a

weighted moving average filter. These filtered results are indicated by the thick,
dashed lines.
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Figure 5.29: Estimation o, u, and pi from test data: slalom on high friction surface
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Figure 5.31: Estimation o, {1, and | from test data: slalom with increasing
frequency on low friction surface
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Figure 5.32: Estimation o, u, and [ from test data: lane change manoeuvres on
high and low friction surface

Error distribution as a function of utilised friction

As has been remarked before, the accuracy of the side slip and friction estimates is
strongly dependent on the degree of friction utilisation. The data samples of the test
set were sorted into 10 categories of absolute utilised friction, ranging from 0 to 1
with increments of 0.1. For these categories, the mean and the standard deviation of
the absolute error |¢;|, i=a,p,,u were calculated (before filtering with the moving
average filter). Figure 5.33 shows the mean error and the mean error plus the
standard deviation of the error on the friction estimate for the test data set. It needs
to be realised that the errors displayed in these graphs are partially due to the error
in the assumed actual tyre to road friction coefficient. The assumed actual friction
values of 0.4 and 0.8 for the low and high friction tracks are only accurate within
about 0.1.
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Figure 5.33: Error of friction coefficient and side slip angle estimates on test set

Nevertheless, these results show that reasonably accurate friction estimates can be
made at friction utilization levels higher than about 0.3, while the side slip angle
estimates are reasonably accurate up to a level of friction utilization of about 0.6.
These measures are of course rather subjective. It is also noted that the estimation
of utilised friction is very accurate. Therefore, it is possible to indicate the expected
accuracy of the estimates of the tyre to road friction coefficient and the side slip

angle.

5.5. External disturbances

The practical applicability of the proposed method to identify the tyre to road
friction coefficient and the side slip angle depends heavily on the robustness of the
method with respect to various common disturbances. It is beyond the scope of this
research to study their various effects on the identification results in detail.
However, a more general discussion already provides insight with respect to the
expected robustness of the method to various disturbances.

The disturbances are subdivided according to their sources. We distinguish tyre
related disturbances, vehicle (excluding the tyres) related disturbances, road
induced disturbances and disturbance due to side wind. These will be discussed in

the following sections.
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5.5.1. Tyre induced disturbances

Tyre inflation pressure

The tyre inflation pressure is usually variant in time, due to poor maintenance and
temperature effects. The tyre contact length and the tyre carcass stiffness are both
related to the inflation pressure. It is therefore important to either monitor the
inflation pressure and account for changes, or to control the tyre inflation pressure
in order to have proper behaviour of the side slip angle and friction coefficient
identification. The extreme case, a flat tyre, will make the identification procedure
invalid.

Tyre temperature

The tyre temperature changes due to weather conditions (outside temperature, heat
transfer to and from pavement or lubricant (rain)) and due to hysteresis and
frictional forces. Although it is generally understood that the tyre characteristics
are dependent on the tyre temperature, it is not clear yet how and to what extent
this will affect the friction identification method. If the effects are known and the
tyre temperature is available, it seems likely that the effects of a changing
temperature on the identification method could be accounted for.

Changing tyres

Tyres all have individual properties, even when taken from the same production
batch. Therefore, if the tyres are changed, the parameters of the identification
procedure have to be updated. Some of these parameters can be easily identified, for
example the residual forces and torques can be found by driving straight ahead
without external disturbances such as side wind or road banking, but if another
type of tyre is applied, a more advanced self-learning algorithm will be needed.

Tyre wear

Owing to tyre wear, the cornering and brake slip stiffnesses of a tyre usually
increase on dry roads, but on wet roads their drainage capacity may fall short,
resulting in early skidding. Furthermore, the tyre’s residual forces and torques tend
to become more prominent as the tyre wears. Thus, the tyre behaviour may become
quite different.

It would be useful to update the identification procedure for this effect also by a self-
learning algorithm. It may be feasible to assess the longitudinal slip stiffness of the
tyre using the ABS System. This slip stiffness will increase with progressive wear of
the tyre. By using this information as an indicator of tyre wear, the tyre parameters
of the friction identification method may be adjusted.
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5.5.2. Varying vehicle dynamic properties

The dynamic properties of a vehicle may vary considerably owing to, for example,
the number of passengers and load in the trunk. Apart from the fact that the
friction utilisation depends to some extent on the vehicle dynamic properties, the
friction identification is expected to be robust for these disturbances.

5.5.3. Road induced disturbances

Banking, crowning and truck ruts

A vehicle driving straight ahead on a banked road, will experience lateral forces on
the wheels due to the lateral component of the gravity forces. For the same reason,
the vehicle body will have a roll angle. The driver has to give a countersteering
input to the steering wheel to force the car to follow a straight course. Thus, we
have a situation similar to pure cornering on a level road. Therefore, the
identification of side slip angle and friction coefficient is not different from normal
cornering.

Figure 5.34: Road banking (left) and crowning (right)

Road crowning causes opposite camber angles at left and right wheels, while the
vehicle may still pursue a straight course. This camber angle is not related to
cornering of the vehicle, and is thus a disturbing input. As shown in Chapter 2, a
camber angle primarily causes a shift in the forces and torques, which affects the
identification of side slip angle and friction coefficient and may cause erroneous
results.

Truck ruts in the road (tram-lining) force the wheels of the vehicle to take a course
that the driver may not have intended to follow. The normal forces between the
deformed road and the tyre may have components in planar direction, and since
these forces are usually not uniformly distributed over the tyre contact length, they
may also cause a torque around the vertical axis of the tyre. Thus, the perception of
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side force and aligning torque may be severely disturbed by the ruts and so the
identification of side slip angle and friction coefficient may be erroneous.

Soft soil or snow

Driving over soft surfaces such as sand or snow may cause the wheels to form ruts
in the soil. In addition to the problems with ruts, as discussed previously, the
material in front of the tyre causes resistance forces in longitudinal direction on the
wheel (Fig. 5.35).

Figure 5.35: Normal forces applied to the tyre when driving in soft soil

This force is not a frictional force of the tyre. If no appropriate measures are taken,
this will affect the accuracy of the friction identification. Also, when driving in soft
soil with for example off-road vehicles, the pressure distribution over the contact
area and the shape of the contact area may be quite different from those
experienced when driving on firm road surfaces. This will affect the build up of side
force and aligning torque in the contact area. In addition, shear forces may be built
up in the soil that are imposed on the tyre.

Agquaplaning

If the tyre is unable to drain the water between tyre and road surface sufficiently, a
film of water will build up between the tyre and the road. At the leading edge of the
contact area, a wedge of water will be formed that the tyre tries to climb. Due to
these effects, the tyre contact area may be severely diminished and shifted towards
the trailing edge of the contact length. This behaviour can be learned by the neural
network used for identification, and thus the identification method can be made
robust with regard to aquaplaning.

110



Chapter 5, Experimental Applications

Road unevenness and roughness

Road unevenness results in a varying normal wheel load which leads to loss of
lateral tyre force, as shown by [61]. This probably has two main causes. Firstly,
since the cornering stiffness increases less than proportional to the normal tyre
load, the effective cornering stiffness is lower than would be obtained if the average
wheel load were applied statically. Secondly, there is transient behaviour related to
the tyre relaxation length. It has been found that this behaviour is due to the
increase of the relaxation length with the vertical tyre load. At small slip angles,
this results in a loss of cornering and braking forces, as well as a loss of aligning
torque. However, at large side slip angles (beyond the slip angle at maximum
aligning torque), the aligning torque actually increases due to the load oscillations.
The lateral force continues decreasing, even at these large slip angles.

With regard to the identification method, the first cause can be accounted for by
monitoring the amplitude of load oscillations. The situation is more complicated for
the second cause, since the slip angle is an unknown variable beforehand. For small
slip angles, the side force and aligning torque will decrease proportionally, such that
the identification method will find a smaller friction estimate. For larger slip angles,
this no longer holds. However, since the slip angle is not known a priori, this may
not be recognized.

The effects of road unevenness on the tyre behaviour are still subject of research in
the Vehicle Research Laboratory at the Delft University of Technology. The effect of
road unevenness on the friction identification method is not entirely predictable at
this point.

5.5.4. Side wind

The lateral components of the integrated side wind forces acting on the vehicle can
be thought of being concentrated in a force Fyind acting on the side wind pressure
point, somewhere on the vehicle body. This force naturally depends on variables
such as air speed, air density and area on which the wind force is acting. The force
Fy,ind may be replaced by a combination of a side force Fy,w, acting in the centre of
gravity of the vehicle, a (yaw) moment around the z-axis M ;, and a (roll) moment
about the x-axis My ;.

If we consider one wheel with suspension, friction estimation is not hindered by side
wind. The extra body side force will result in an increased tyre side force and self
aligning torque and thus create an extra side slip angle. The moments M} ;, and
M, , will affect the distribution of side forces over the wheels of the vehicle, but will
not disturb the identification at an individual wheel.
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5.6. Conclusions of this chapter

This chapter has built a bridge between theory and practice with regard to the
identification of the tyre to road friction and the side slip angle. First, mathematical
vehicle models were built in order to be able to simulate the friction estimation
method. A fairly simple and fast calculating, yet non-linear model with three
degrees of freedom was built using Matlab/Simulink, while a more elaborate model
with 17 degrees of freedom was built using multi-body software (BAMMS). The first
model was used to obtain insight in the vehicle behaviour and to make rough
estimates of the behaviour of the identification method. It was also used to generate
steering files for use with the tyre test trailer. The second model describes the
vehicle, and in particular the front wheel suspension, in greater detail, thus
providing accurate simulations of the actual vehicle and suspension behaviour.

The identification method was verified by experiments with the tyre test trailer
under various road conditions. The identification method proved to be valid, both in
steady state side slip angle sweeps and in simulated manoeuvres of an actual
vehicle. As expected on the basis of the theory explained in the preceeding chapters,
the friction estimate improved in accuracy with increasing friction utilization, while
the side slip angle estimate improved with decreasing friction utilization. Even
though the identification method assumes quasi-static tyre behaviour, it produced
reasonable results when transient tyre behaviour starts to play a role.

Implementation of the identification method in a standard vehicle required the
development of a measurement system to determine the tyre forces and self aligning
torque and the wheel orientation with respect to the vehicle body. This was
achieved by using fairly inexpensive sensors and with the aid of a feedforward
neural network to describe the strongly nonlinear suspension kinematics.

Experiments with the instrumented vehicle were conducted on two types of road
surfaces, which had low and high friction properties respectively. The experiments
conducted were also ’played back’ in the BAMMS simulation model. The simulation
results were very similar to the measured vehicle respones, thereby validating the
BAMMS model. Moreover, the identification results of both the simulated and the
measured data sets were similar and again showed both the validity of the
identification method and the limitations, imposed by the tyre behaviour. The error
in the friction estimate appears to be a function of the utilized friction, as we would
expect from the theory. If the friction utilization is below about 30% of the friction
potential, the friction estimates are unreliable. The friction estimate can be
improved by applying a weighted moving average filter, using the absolute utilized
friction as weighting factor. Tuning this filter depends on the required accuracy and
maximum allowable phase lag.
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Unfortunately, the friction estimator could not be tested at other road surfaces, such
as packed snow. Furthermore, because of limited resources only one front wheel
suspension of the test vehicle was instrumented. It would however be
recommendable to instrument the suspension at both front wheels.

Finally, some common disturbances that were not actually considered in this
research have been regarded qualitatively. Unfortunately, it is to be expected that
the friction and side slip angle identification method will prove to be quite sensitive
to tyre induced disturbances, such as loss of inflation pressure, tyre temperature
and wear and changing of tyres. It will therefore be necessary to monitor these
variables periodically. The identification method is expected to be robust with
regard to variations in vehicle mass and inertia properties as well as to side wind
disturbances. The same holds true for road banking and grading, but truck ruts and
soft soil may disturb the identification severely. The method could probably be made
robust to cope with aquaplaning, but the effects of road unevenness and roughness
are not yet well enough understood to predict the robustness of the identification
method with regard to these disturbances. It would be recommendable to do further
research to determine the actual sensitivity of the estimator to the various
disturbances.
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Integration of Friction Estimates
into Advanced Vehicle Control
Systems

6.1. Introduction

As already mentioned in the first chapter of this thesis, every application puts its
own demands on a friction and side slip angle estimator. Therefore, the aim of this
chapter is to illustrate the benefits integration of the proposed friction estimator
could contribute to a few popular vehicle control systems as well as its possible
limitations. More specifically, we will study four-wheel steering and active yaw
control, and automatic distance keeping. However, since these control systems are
not the main subject of this thesis, we will only study a rather basic approach to
control design.

6.2. Independent Four-Wheel Steering with Friction
Compensation

6.2.1. The obstacle avoidance problem

In this section we study the effects of friction changes and non-linear tyre behaviour
on obstacle avoidance manoeuvering with a four-wheel steering vehicle on a y-split
road first without and then with information on the actual friction coefficient and
friction utilisation.

Figure 6.1 sketches the obstacle avoidance problem. It is assumed that a trajectory
to be followed by the vehicle is defined by some external means. The forward speed
of the vehicle is assumed to stay at a constant value of 20 m/s throughout the
manoeuvre. In y-direction, the trajectory exhibits a smoothed step function that has
been generated using a logistic function (see Eq. 4.8). The step size is 4 meters,
which is about the width of a highway lane. The controller has to steer the wheels in
a way such that the desired trajectory is tracked. Thus, the controller replaces the
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human driver in the steering control loop. This has been chosen primarily to
simplify the analysis, but it is not inconceivable that such a system would actually
be incorporated in an automated highway system, as will be discussed later. In that
respect, it has been suggested that magnetic markers or road marking may be used
to define the desired trajectory, while also direct communication between the road
administrator and the vehicles (e.g. for obstacle avoidance manoeuvres) is not
unthinkable [30].

L

4[m]

I

Figure 6.1: The obstacle avoidance problem

In this case, for simplicity we study a fairly simple feedforward/feedback system
without preview. It is, however, well known that adding preview is beneficial for the
four-wheel steering control performance, see for example [34, 50]. The four-wheel
steering control problem has been extensively studied over the past decades. The
feedback control as described below is more or less a standard design, previously
described in for example [1].

6.2.2. Single track vehicie model

The feedback control design is based on the optimal control technique known as LQ
(Linear Quadratic) control. A single track vehicle model (bicycle model’) with two
degrees of freedom (lateral and yaw) described by

m(V, +Vr)=Fy, +Fy

6.1)
Ir = aFyf —ber
where the lateral tyre forces at the front and rear axles are lumped by
Fyf =Fy +Fy, 6.2)
Fy =Fy, +Fy,

has been used for the controller design. This single track model is a simplified
version of the model with three degrees of freedom discussed in Chapter 5: the roll
degree of freedom, the load transfer and all non-linearities are omitted. The lateral
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tyre characteristics are approximated by the (negative) cornering stiffnesses Cy and
C, and the sideforces at the axles are calculated by

F, =Crax
¥f f&rf 6.3)
F, =C.a,
The sideslip angles at the front and rear axles are given by
V, +ar
__JY
ar = vV _6f
6.4)
v, -br
o, = -0,
\%
Combining 6.1 through 6.4, we have:
. Ce+C Cr-bC C
v, =Ly, | Ly r-Ls,-Crs,
mV mV m m
C;-bC 20, +b2C,  aC ©5
- +
L e SR AR s ¥ PR S
1,v v 1, I,

6.2.3. Trajectory tracking

After [34], the desired trajectory is defined by the trajectory curvature p as a
function of distance s. The distance s is measured along the trajectory which may be
curved. Assuming a constant forward speed of the vehicle, we have

s@)=V,t=Vt (6.6)
The curvature is defined by the rate of change of the heading angle v, of the tangent
to the desired trajectory to s:

p(s) = T¥r 6.7
ds

The radius of the curvature is the reciprocal value of p. The difference between the
heading angle of the vehicle and the heading angle of the desired trajectory is the
heading error Ay, while Ay represents the lateral offset of the vehicle’s centre of
gravity to the desired trajectory. These definitions are illustrated by Figure 6.2.

Assuming that the vehicle side slip angle f=V, / V and the heading angle error Ay
are small, we have

Ay =V, +VAy
Ay =r-Vp(s)

(6.8

and assuming a constant curvature we have
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Ay =V, +VAy
v Ty VAV (6.9)
Ay =r
Tangent to
Reference direction desired trajectory
/KAW
Desired trajectory,

Figure 6.2: Trajectory tracking

6.2.4. Linear feedforward-feedback control

With 6.5, we can formulate the tracking problem as a regulator problem with a
state space description that is suitable for LQ control:

x=Ax+Bu+Fw (6.10)
with
. AT T
x=[dy & Ay AY] ;u=[5f 5r] sw=pT
0 1 0 0 0 0 0
o CrtCr Cr+C aCp-bC, ¢ G aCr-bC,
mV m mV m
A=lp 0 0 1 ;B=| o J'|F= 0
o 9Cr=8C, _aCy-bC, a’Cr+b%C, _aCr bC, a®cy +b%C,
LV I, LV I, I I,

The LQ method to determine the optimal feedback control law involves the
minimization of the cost function:

J= j: {xT(r)Qx(r) + uT(r)Ru(r)}dr (6.11)
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The weighting matrices Q and R can be used to trade off the deviations of the states
(in this case the heading angle and lateral errors and their time derivatives) from
zero and the control effort (in this case the front and rear steer angles). Both the
matrices Q and R must be symmetric and they have to be positive semi-definite and
positive definite respectively. By solving the associated Ricatti-equation, the linear,
time-invariant state-feedback matrix Kg, is obtained. The feedback law becomes

ug, = -Kpx (6.12)

which results in excellent tracking of the desired trajectory for this linear model
(Fig. 6.4).

However, since we have assumed that the trajectory is known, that is w is known,
we may also use a static feedforward controller to generate the steering inputs in
such a way that the trajectory is followed. If we define the matrices B, and F, by
selecting the second and fourth rows of B and F, respectively, we obtain the
feedforward matrix K by

Kg =-By 'Fy (6.13)

with
S G alr=bCr e
By = _argf b_g: iy = azgc +b%C,
, I I,

The feedforward law becomes

ug = Kgw (6.14)
and the total input

u=ug +ug (6.15)

Figure 6.3 shows a system diagram of this feedforward-feedback control structure.

Figure 6.3: System diagram of the feedforward-feedback system
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For the linear case, the feedforward steering provides perfect tracking on its own,
since the ’disturbance’ w is completely cancelled by the feedforward control.
Actually, the feedback is not used at all in this case.
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Figure 6.4: Performance of feedback and feedforward+feedback control on linear
model

The behaviour of the controller under more realisitic conditions is checked by using
the nonlinear Simulink model, developed in Chapter 5. This two-track model uses
nonlinear DTM-type tyre models for the calculation of the tyre forces, and also
features a roll degree of freedom and load transfer. Therefore, when using the
simple control laws as developed in this section, the left and right tyres on the front
or rear axles will generally have different degrees of friction utilisation. This
becomes even more apparent if the tyre to road friction coefficients of left and right
wheels are different. In this case, we assume tyre to road friction coefficients of 0.3
for the left wheels and 1.0 for the right wheels. The solid lines in Figure 6.5 show
the performance of the feedforward/feedback controller on the Simulink model on
the u-split road. Figure 6.6 shows the friction utilization of each wheel. Note that
since the controller has been designed for a single track model, the steering angles
of the left and right wheels are the same. Apparently, the degrees of friction
utilisation of the tyres are quite different.
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6.2.5. Feedforward with friction compensation

From the viewpoint of safety, it may be advisable to balance the friction utilisation
of left and right tyres per axle. We discuss this issue for the front axle, while the
rear axle is similar. This discussion should be regarded as an exploration of
possibilities, it does not aim to design the best performing and robust controller.

Equal friction utilization at the front axle is formulated by

Moy = Huy, (6.16a)

or equivalently,

F F
S} A (6.16b)

;ulFZl - /‘L2F22
For the sake of simplicity, we may assume for small slip angles:

By oaFy (6.17)
Fy2 (XzFZ2

Thus we conclude that the objective should be

a_h (6.18)
(257 Ha

Furthermore, we have (see Eq. 5.6)
oy =B -6 6.19)
o9 =P -0

so that we would like to obtain
Br-01 _m (6.20)
Br—-62 H2

where f7 is the deviation angle at the front axle. At the same time, we want to
maintain the same summed lateral forces per axle. Since we know both the actual
tyre to road friction coefficient and the friction utilisation, we can modify for
example the feedforward control law to try to fulfil these demands. A simple
modification is proposed, where the steering angle at each wheel is increased or
decreased, depending on the tyre to road friction at the wheels. The new
feedforward steering angles are defined by

Sp, = 5ﬁ'f + A8 g,

(6.21)
5#2 = 5fff +A6ﬁ2
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If the feedforward controller is effective, we may assume that the feedback control
action is relatively small, such that the feedforward steering angles are
approximately equal to the total steering angles:

8 ~8p, (i=1.4) (6.22)

The requirement that the total side force per axle remains the same results in

(Br =8 )Pz, +(Br =015, JFey = (Br ~ 011, F, +(B7 ~ 077, )F, (6.23)
With Eq. 6.21 we find
(857, + 4855, )Fo, + (85, + 4845, Py, =647, (F, +F, ) (6.24a)
and
A8 = A8 222 (6.24b)
h bip! F, :
From Eq. 6.20 to 6.22 we obtain
)
A5ﬁ'2 __[J—]_(Bf_(sfff —Aaﬁrl)-f-ﬁf—aﬁrf (6.25)
and combined with Eq. 6.24 we have
1Fy, uzj
AS —="1  (B.-§ [ et (6.26)
o™ ik, +usk, (Pr =31) #1
Similarly, for the rear axle we define
O, =04 +AS
ﬁ% ﬁr ff3 (627)
Sfr, =0, + A8,
and we derive
F,,
A5ﬁr3 = —A5ﬁ¢‘4 (6.28)
F,,
usF,, I )
Abg, =———T8 é 1-2= (6.29)
s H3Fy, + 1aFy, (8 - e )( K3

This results in less steering input to the wheels at low friction and vice versa.
Actually, the modification of the steering input is a little too strong, due to the
nonlinear tyre characteristics and the many simplifications that have been made in
the controller design proces.
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The modified feedforward steering inputs compared to the original feedforward
steering inputs are shown in Figure 6.7. The summed lateral forces per axle vary
somewhat due to this modification, but this is corrected by the feedback controller.
The overall result is that the differences of friction utilization of left and right
wheels are diminished, but do not completely vanish, as shown in Figure 6.6. The
friction utilisation at the low friction side has been reduced while the friction
utilization at the high friction side has been slightly increased. As shown by the
dashed lines in Figure 6.5, the tracking performance is still good. The lateral offset
has been increased by a few millimeters, while the yaw error and the yaw oscillation
have been slightly suppressed. The control action of the feedback controller is only
slightly changed by the modification of the feedforward controller, as shown by
Figure 6.8.
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Figure 6.5: Performance of feedforward+feedback control on nonlinear Simulink
model
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Figure 6.6: Friction utilization at each wheel with feedforward+feedback control of
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Figure 6.8: Feedback control output without and with modification of the
feedforward control for friction utilization
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6.2.6. Some remarks on the four-wheel steering control design

In this discussion many aspects that are relevant to four-wheel steering control
have not been taken into account, including the actuator dynamics. On the other
hand, fairly simple enhancements of the control algorithm such as adding preview
have not been considered either. Furthermore, in this controller design the friction
and side slip angle information has been used only in the feedforward law, while the
feedback law remained unchanged. Strictly speaking, if side slip information is fed
back into the feedforward controller, it is no longer a feedforward controller. An
integrated approach to the design of both feedforward and feedback laws using the
freition and side slip angle information would therefore be preferable. Finally, a
more thorough design should involve extensive tests of performance and robustness.
This controller design should not therefore be considered as a guideline for four-
wheel steering control design, but merely as an indication of potential possibilities.

Since knowledge of the tyre-to-road friction only becomes important at higher levels
friction utilisation, it is less important to have good friction estimates at low levels
of friction utilisation. However, the estimate should be fast and reliable at higher
friction utilisation levels. Since the suggested friction estimator meets these
demands, it could be used for this purpose.

6.3. Active Yaw Control

In addition to steering, each wheel may be braked individually to accomplish a
desired yaw rate, as has been shown in many publications (e.g. [69]). For this
system, the benefits of the integration of a friction estimator in the controller design
for active yaw control are essentially the same as for four-wheel steering control.

Active yaw control by applying brake torques to the various wheels is only intended
for near critical situations. Therefore, although it is not necessary to have a friction
estimate at low friction utilisation, the estimate should be fast and reliable at high
friction utilisation. The suggested friction estimator can meet these demands. It
should be noted, however, that since braking forces are applied, friction estimators
using the control cycle of the anti-lock system may also be used.

6.4. Automated Highway Systems

The congested highway systems in their countries have inspired governments of
various industrialised countries to subsidise research in the optimisation of the
utilisation of the highways. This research on so-called Automated Highway Systems
(AHS) covers various research areas, such as traffic management systems, traveller
information systems, advanced vehicle control systems and advanced public
transportation systems. A survey of the various research efforts throughout the
world has been made in [30].
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One of the key issues in this research is minimising the intervehicle spacing at high
speed in order to increase the highway capacity. However, high accident rates due
such a system would not be acceptable. Since with very short distances between
leading and following cars the human driver is not a reliable controller, fast and
reliable automated controllers have to be designed. Obviously, the available tyre to
road friction is a prominent factor in the determination of the minimum allowable
intervehicle spacing at a given speed. For this reason, a lot of attention is being paid
to friction estimators.

One of the requirements of such an estimator in this application is that it should
provide reliable information, even at very low levels of friction utilization. As shown
in this thesis, using the tyre force relationships as a basis for friction estimation
does not fulfil this requirement. Therefore, one will have to either resort to the
indirect methods (see Chapter 2) such as optical and acoustical methods, or have the
road administrator provide the friction information through communication with
the vehicles.

6.5. Conclusions of this chapter

This chapter illustrated the possible use of tyre to road friction and side slip angle
estimates in the design of vehicle control concepts. As a case study, the design of a
simple four-wheel steering controller, provided with friction and side slip angle
information, was carried out. Although this relatively simple control design could be
improved, it already shows that, for example, a goal such as equalising the friction
utilisation at left and right wheels can be accomplished using friction and side slip
information. Since these benefits show up primarily at higher friction utilization,
the friction estimator discussed in this thesis may well serve to provide this
information. The same holds true for active yaw control by applying braking torques
to individual wheels.

For automatic distance keeping in Automated Highway Systems however, the
desired intervehicle spacing has to be set before a substantial utilisation of the
friction potential has been reached. This minimum distance is based on the tyre to
road friction coefficient as well as a number of other factors. In that case, friction
estimators based on tyre or vehicle behaviour are not suitable for implementation,
since they will not provide reliable estimates at low friction utilisation.

These findings again show the need to determine the requirements for the friction
estimator prior to the design of such an estimator.
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Conclusions and

Recommendations

7.1. Introduction

This chapter provides the conclusions of this thesis and recommendations for
further research. The main conclusions will be stated first, followed by more in-
detailed conclusions regarding the different parts of the research. Finally some
recommendations will be formulated.

7.2. Main Conclusions

Recalling the main subject of the thesis, "investigation of the possibility to use the
tyre as a sensor for online identification of tyre to road friction characteristics’, we
may conclude:

1.

o

The tyre can be used as a sensor for online identification of the tyre-to-road
friction coefficient, as soon as the generation of tyre forces and torques becomes
dependent on the friction coefficient. The limit lies around 30% utilisation of the
available friction potential. The tyre forces and torques are generated almost
only by adhesion friction if the degree of friction utilisation is below this limit.
Above this limit, some sliding occurs in the contact patch and consequently the
friction coefficient can be estimated.

In addition to the friction coefficient, the side slip angle and the degree of friction
utilisation can be estimated. The estimate of the side slip angle becomes more
accurate at lower degrees of friction utilisation.

Neural Networks have proven to be flexible tools to build the friction estimator
The friction estimator under consideraton is primarily suitable for
implementation in vehicle control systems that become active when there are
intermediate to high degrees of friction utilisation.
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7.3. Conclusions with respect to the different parts of the
research

7.3.1. Conclusions with respect to the tyre theory

Using the simple brush tyre model, it was shown that the relationship between side

force and self aligning torque is dependent on both side slip angle and friction

coefficient. This dependency can be used to identify the slip angle and the friction

coefficient, provided that the tyre behaviour and the other relevant conditions

(vertical wheel load, longitudinal slip and wheel orientation) are known. The

possibility to identify slip angle and friction coefficient depends on the degree of slip

in the contact area between tyre and road. Three cases with increasing degree of

slip can be distinguished:

1. Complete adhesion - the side slip angle can be estimated, but the friction
coefficient cannot be estimated

2. Adhesion and sliding - both the friction coefficient and the side slip angle can be
estimated

3. Complete sliding - the friction coefficient can be estimated, but the side slip angle
cannot be estimated.

The sensitivity analysis of the friction and side slip angle estimate shows that for
the friction estimate it is most important to have accurate measurements of the self
aligning torque, while for the side slip angle estimate it is primarily the side force
that needs to be measured accurately.

Although the results of the simple brush tyre model only have a qualitative
meaning, they are supported by the results obtained by using the Delft Tyre Model.

The dynamic behaviour of the tyre has not been considered in this research. It is
expected that the transient behaviour of the tyre due to the relaxation length may
become important only during fast steering manoeuvres.

7.3.2. Conclusions with respect to the identification methods

The identification was focused on methods to describe the static nonlinear relation
between side force and self aligning torque in relation to the friction coefficient and
the side slip angle. Two methods have been discussed.

1. Identification using Lookup Tables - The infinite number of possible
combinations of conditions makes it necessary to transform the forces and torque
measurements to equivalent values for a predefined set of nominal conditions.
Then, a relatively small table can be used. Although filling the table can be
difficult, once the table has been made the table lookup method is very
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straightforward. A problem is its sensitivity to minor changes in operating
conditions.

2. Identification using Neural Networks - Feedforward Neural Networks offer a
very flexible solution to the mapping problem. This type of neural networks may
be regarded as a generalisation of lookup tables. Using neural networks involves
two steps: choosing the network architecture and optimising the network
parameters. The first step is usually made on the basis of experience and rules of
thumb, but choosing the network architecture may also be regarded as an
optimisation problem that can be solved by using Genetic Algorithms. However,
the latter option is extremely computationally expensive. For the second step,
the training of the network, many standard algorithms are available.
Feedforward neural networks are quite robust towards disturbances.

Because of their good results and flexibility, neural networks were selected for this
research.

7.3.3. Conclusions with respect to the application

Experiments with the tyre test trailer have shown the validity of the friction
estimation method. As we would expect, based on the knowledge of the tyre models,
the accuracy of the friction estimate increases with increasing friction utilisation,
while the accuracy of the side slip angle estimate increases with decreasing friction
utilisation.

Implementation of the estimation method into a standard vehicle required the
development of a measurement system to determine the required tyre forces and
self aligning moment, as well as the wheel orientation relative to the vehicle body
and the road surface. In addition to some standard equipment, the king pin was
gauged to serve as a force semsor. By using the measurements and a neural
network, it was possible to make an adequate description of the strongly nonlinear
behaviour of the vehicle suspension. Consequently, the friction coefficient and the
side slip angle could also be estimated using these measurements. This has been
shown both by computer simulations, using a 17 degrees of freedom nonlinear
multi-body full-vehicle model, and by using the instrumented vehicle.

The friction and side slip angle estimator are expected to be robust to changes in
vehicle properties such as mass and inertia, as well as to side wind disturbances
and road banking and grading. However, the estimator is expected to be sensitive to
varying tyre inflation pressure, tyre temperature and wear.
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7.3.4. Conclusions with respect to the integration of friction estimates into
advanced vehicle control systems

Advanced vehicle control systems can benefit from friction and side slip angle
information. A simple example using a four-wheel steering controller illustrated the
benefit that such systems may have of using the friction and side slip angle
information.

Since the friction estimator proposed in this research only generates reliable
estimates at medium and high levels of friction utilisation, the estimator is
especially suited for control systems that are activated in those situations. However,
the method is not suited for automatic distance keeping , since this control system
requires friction estimates also at low levels of friction utilisation.

7.4. Recommendations

A number of problems regarding the estimation of friction and side slip using the

proposed method require further attention:

1. Definition of demands on the friction and side slip estimator - At present, rather
rough friction estimates are being used in advanced vehicle control systems.
With the availability of more advanced friction and side slip estimators, it may
be worthwhile to investigate to what extent better friction and side slip angle
estimates can further improve the vehicle control behaviour, such that the
demands that have to be put on a friction estimator can be specified.

2. Filtering of the friction estimate - By using more advanced filtering techniques it
may be feasible to extract a smoother friction estimate from the available
measured signals and neural networks than currently has been achieved.

3. Self adapting estimator - It would be advantageous to develop a self adapting
algorithm for the estimator that relatively slowly adapts to varying working
conditions, such as tyre wear and varying tyre inflation pressure and changing of
tyres. Neural networks may be suitable to develop such an algorithm.

4. More robust and cheaper instrumentation - Although the location of the king pin
is very convenient to measure the tyre generated forces, the gauged king pin
proved to be quite fragile. With further integration of the sensors in the wheel
suspension, bearing in mind that forces and torques need to be measured while
designing the wheel suspension, it may become feasible to develop more robust
sensors. The load cell in the steering link and the steering wheel sensor used in
this research may be replaced by information from the power steering system.

5. More variation in operating conditions - Owing to the limited availability of
suitable test tracks to test the estimator with the test car, the estimator was
only tested on two different road surfaces, namely a low friction ABS test track
and a high friction concrete road track. The dimensions of the test track also
dictated the achievable vehicle speed. It is to be expected that the vehicle speed
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will be an important factor that can be easily accounted for, while the vehicle
speed is easily measurable. Moreover, tests on other surfaces such as packed
snow would contribute to the overall estimation properties. Furthermore, it is
recommended that tests to determine the sensitivity of the estimator to
variations in tyre inflation pressure, temperature and wear should be carried
out.

6. Research on tyre behaviour related to variations in temperature - The tyre
temperature depends on a number of factors, for example the ambient
temperature, the rolling resistance of the tyre, the heat transfer to the road
surface or a lubricant (e.g. a wet road) and the surrounding air, and the amount
of heat produced by the frictional forces in the contact area. The temperature
certainly affects the tyre behaviour, however it is not yet clear to what degree.
So far, it has been difficult to measure the tyre temperature in a standard
vehicle. However, with the availability of cheaper infrared sensors, the tyre
temperature may prove to be a viable parameter for the tyre to road friction
estimation.
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The Tyre As Sensor To Estimate Friction
Wim R. Pasterkamp

The demand for enhancement of the safety and the performance of automobiles has
led to the implementation of modern vehicle control systems, such as anti-lock
brake systems (ABS), active yaw control systems (AYC) and vehicle dynamics
control systems (VDC), into the vehicle. These control systems can only perform to
their full potential if they have access to accurate information about the behaviour
of the vehicle. In this respect, the tyre-to-road friction is one of the key parameters
that need to be determined. This thesis, therefore, focuses on investigation of the
possibility to use the tyre as a sensor for online identification of tyre-to-road friction
characteristics. In particular, the lateral behaviour of the tyre has been
investigated.

A tyre, rolling over the road surface while subjected to a side slip angle and a
vertical load, generates a side force and a self aligning torque around its vertical
axis if there is friction between the tyre and the road surface. The ratio between the
actually generated friction force and the maximum friction force that can be
achieved under the given conditions of vertical load and friction coefficient defines
the level of friction utilisation.

The tyre behaviour is studied using a simple, steady state brush type tyre model.
Assuming a constant vertical load, this results in the following findings for pure
side slip. With increasing levels of friction utilisation, the planar tyre forces are
transmitted by adhesion friction only, adhesion and sliding friction or sliding
friction only. As long as the forces between the tyre and the road are transmitted by
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adhesion friction only, the side force and the self aligning torque are linearly
dependent on the side slip angle and independent of the friction coefficient between
the tyre and the road. As soon as some sliding occurs in addition to the adhesion in
the contact patch between the tyre and the road, the side force and the side slip
angle become nonlinearly dependent on both the side slip angle and the friction
coefficient. If there is complete sliding of the tyre over the road surface, the side
force is dependent on the friction coefficient only, while the self aligning torque
becomes zero.

By applying the relations between side slip angle and friction coefficient on the one
hand and side force and aligning torque on the other hand conversely, it is possible
to determine the friction coefficient from the combination of side force and self
aligning torque if there is some sliding or complete sliding in the contact area. In
addition, it is possible to determine the side slip angle if there is complete or partial
adhesion friction between the tyre and the road. This provides a method to estimate
the friction coefficient and the side slip angle.

A sensitivity analysis shows that the friction estimate is primarily sensitive to
inaccuracies in the determination of the self aligning torque, especially at low levels
of friction utilisation. The side slip angle estimate is primarily sensitive to
inaccuracies in the determination of the side force, in particular at high levels of
friction utilisation. A qualitative analysis shows that the estimates are also
sensitive to other common disturbances, such as combined slip, camber and residual
forces. However, if these disturbances can be determined, they can be accounted for
in the estimation method. The transient behaviour of the tyre may become
important during fast steering manoeuvres on undulating road surfaces.

The Delft Tyre Model, which describes the actual tyre behaviour more accurately,
shows the same qualitative behaviour with respect to the estimation of the side slip
angle and the friction coefficient as the brush type tyre model.

Experiments with the tyre test trailer have shown the validity of the friction
estimation method. As expected, based on the knowledge of the tyre models, the
accuracy of the friction estimate increases with increasing friction utilisation, while
the side slip angle estimate increases with decreasing friction utilisation.

For the actual estimation of the friction coefficient and the side slip angle, neural
networks have been employed. Feedforward neural networks provide the necessary
nonlinear mapping between measured forces and torques on the one hand, and side
slip angle and friction coefficient on the other hand. These findings have been
confirmed by simulations and by experiments with the tyre test trailer. While the
optimisation of the neural network parameters can be achieved by standard
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algorithms such as backpropagation and Levenberg-Marquardt, the choice of the
network architecture requires expertise and trial and error. Alternatively, genetic
algorithms can be employed to optimise the network architecture, but this approach
usually involves extensive computations.

Implementation of the estimation method into a standard vehicle required the
development of a measurement system to determine the required tyre forces and
self aligning moment, as well as the wheel orientation relative to the vehicle body
and the road surface. In addition to some standard equipment, the king pin (lower
ball joint) was gauged to serve as a force sensor. A neural network has been trained
to describe the strongly nonlinear behaviour of the suspension and to perform the
actual estimation of the friction coefficient and the side slip angle from the sensory
signals. Experiments with both a simulation model and with the actual vehicle were
conducted on various test tracks to demonstrate the desired behaviour of the
estimator.

Finally, some examples are presented to illustrate the possible integration of
friction and side slip angle estimation into vehicle control systems. A small case
study on four wheel steering has been conducted. Because of the nature of the
proposed friction estimator, it is primarily suitable for systems that benefit from the
friction and side slip angle information at medium to high levels of friction
utilisation. This holds true for systems such as four wheel steering and active yaw
control, but not, for example, for automatic distance keeping, where the friction
estimate has to be made before a substantial friction demand has been made. It is
therefore important to determine the demands prior to the design of such an
estimator.
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The Tyre As Sensor To Estimate Friction

(De band als sensor om wrijving te schatten)
Wim R. Pasterkamp

De vraag naar verbetering van de veiligheid en de prestaties van de automobiel
heeft geleid tot implementatie van moderne voertuigregelsystemen in de auto, zoals
ABS, AYC en VDC. Alleen wanneer deze regelsystemen kunnen beschikken over
nauwkeurige informatie omtrent het voertuiggedrag kunnen ze optimaal presteren.
In dit verband is de wrijving tussen band en wegdek een van de belangrijkste
parameters die bepaald moeten worden. Daarom behandelt dit proefschrift de
mogelijkheid om de band als sensor te gebruiken om de wrijving tussen band en
wegdek te kunnen bepalen. Met name het laterale bandgedrag krijgt hierbij de
aandacht.

Een band die rolt over het wegdek onder een sliphoek en een vertikale belasting
genereert een dwarskracht en een terugstelmoment indien er sprake is van wrijving
tussen de band en het wegdek. Het bandgedrag is bestudeerd aan de hand van een
eenvoudig, quasi-statisch borstelmodel. Bij een gegeven constante vertikale
belasting kan het volgende omtrent het bandgedrag bij pure dwarsslip
waargenomen worden:

Bij toenemende mate van wrijvingsbenutting, dat wil zeggen het deel van de
potentieel beschikbare wrijvingskracht dat daadwerkelijk aangesproken wordt,
worden de wrijvingskrachten tussen de band en het wegdek in het contactviak
allereerst overgedragen door adhesiewrijving, dan door een combinatie van adhesie
en glijden en tenslotte alleen door glijden. Zolang de krachten tussen band en
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wegdek alleen door adhesie overgedragen worden, zijn de gegenereerde
dwarskrachten en terugstelmomenten lineair afhankelijk van de sliphoek. Zodra de
grenzen aan de adhesiekrachten bereikt zijn en er sprake is van enige mate van
glijden in het contactvlak worden de dwarskracht en het terugstelmoment worden
op niet-lineaire wijze afhankelijk van zowel de sliphoek als de wrijvingscoéfficiént.
Bij volledig glijden van de band over het wegdek wordt de dwarskracht
onafhankelijk van de sliphoek en alleen afhankelijk van de wrijvingscoéfficiént,
terwijl het terugstelmoment tot nul reduceert.

Door de relaties tussen sliphoek en wrijvingscoéfficiént enerzijds en dwarskracht en
terugstelmoment anderzijds in omgekeerde zin te benutten, kan de
wrijvingscoéfficiént bepaald worden uit de combinatie van dwarskracht en
terugstelmoment bij gedeeltelijk of volledig glijden van de band over het wegdek, en
kan de sliphoek bepaald worden uit de combinatie van dwarskracht en
terugstelmoment bij gedeeltelijke of volledige adhesie tussen band en wegdek in het
contactoppervlak. Op deze grond kan een wrijvingsschatter en een sliphoekschatter
gecreéerd worden.

Een gevoeligheidsanalyse voor het borstelmodel bij pure dwarsslip toont aan dat de
wrijvingsschatting vooral gevoelig is voor meetonnauwkeurigheden en andere
verstoringen bij lage niveaus van  wrijvingsbenutting. Met name
onnauwkeurigheden in de bepaling van het terugstelmoment veroorzaken dan grote
afwijkingen in de wrijvingsschatting. De sliphoekschatting daarentegen is vooral
gevoelig voor onnauwkeurigheden in de dwarskracht, bij hoge niveaus van
wrijvingsbenutting. Kwalitatief is ook aangetoond dat andere veel voorkomende
verstoringen zoals het optreden van gecombineerde slip, camber en residuele
krachten de schattingen kunnen verstoren. Voor deze verstoringen kan echter
gecompenseerd worden indien ze bepaald kunnen  worden. Het
overgangsverschijnsel dat optreedt bij banden als gevolg van de relaxatielengte kan
van belang zijn bij snelle stuurmanoceuvres en bij het rijden over oneffen
wegdekken.

Het ’Delft Tyre Model, dat het bandgedrag preciezer beschrijft dan het
borstelmodel, vertoont in kwalitatieve zin hetzelfde gedrag als het borstelmodel.

Door middel van experimenten met de bandenmeetwagen is de geldigheid van de
wrijvings- en sliphoekschattingsmethode aangetoond. Zoals verwacht op grond van
de bandmodellen neemt de nauwkeurigheid van de wrijvingsschatting toe met
toenemende mate van wrijvingsbenutting, terwijl de nauwkeurigheid van de
sliphoekschatting toeneemt met afnemende wrijvingsbenutting.
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Voor de daadwerkelijke schatting van de wrijvingscoéfficiént en de sliphoek is
gebruik gemaakt van neurale netwerken. De zogenaamde feedforward’ neurale
netwerken kunnen het niet lineaire verband tussen de gemeten krachten en koppels
enerzijds en de sliphoek en de wrijvingscoéfficiént beschrijven. Deze bevindingen
zijn bevestigd door middel van simulaties en door middel van experimenten met de
bandenmeetwagen. Het optimaliseren van de netwerkparameters geschiedt met
behulp van standaardalgoritmen zoals de zogenaamde ’backpropagation’ en
"Levenberg-Marquardt’ algoritmen. De keuze van de netwerkstructuur is echter
veelal een zaak van expertise en experimenteren. Er kan ook gebruik gemaakt
worden van genetische algoritmen om de optimale netwerkstructuur te bepalen,
maar dit gaat in het algemeen gepaard met zeer uitvoerige berekeningen.

Voor de implementatie in een standaard automobiel was de ontwikkeling van een
meetsysteem dat in staat is de vereiste bandkrachten en -momenten en de
wielstand ten opzichte van het voertuig te bepalen, noodzakelijk. Behalve enige
standaardopnemers zijn ook rekstrookjes geplakt op de fuseekogel zodat deze dienst
kan doen als krachtsensor. Er zijn neurale netwerken ontworpen en
geoptimaliseerd om het gedrag van de ophanging te beschrijven en om de
daadwerkelijke wrijvings- en sliphoekschatting uit te voeren aan de hand van de
gemeten signalen. Er zijn experimenten uitgevoerd, zowel met een simulatiemodel
als met het testvoertuig, om het goed functioneren van de schatter bevestigd te zien.

Tenslotte zijn bij wijze van illustratie van de mogelijke integratie van wrijvings- en
sliphoekschatters in voertuigregelsystemen enige voorbeelden gegeven van
dergelijke systemen. Een kleine studie naar de integratie van deze schatters in een
regelsysteem voor vierwielsturing is uitgevoerd. Door de aard van de voorgestelde
wrijvingsschatter is deze met name geschikt voor systemen die de schattingen
kunnen benutten bij hogere niveaus van wrijvingsbenutting. Hieronder vallen
systemen zoals vierwielsturing en actieve giermomentregelingen, maar niet
bijvoorbeeld systemen om automatisch afstand te bewaren tot de voorganger, omdat
deze laatsten al een schatting van de wrijvingsconditie nodig hebben voordat
substantieel gebruik gemaakt is van het beschikbare wrijvingspotentieel. Het is dan
ook belangrijk vooraf te bepalen welke eisen aan een wrijvingsschatter gesteld
moeten worden alvorens over te gaan tot het werkelijke ontwerp van zo'n schatter.
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