
1536-1268/02/$17.00 © 2002 IEEE PERVASIVEcomputing 81

The Ubiquitous
Provisioning of Internet
Services to Portable
Devices

T
he diffusion of wireless connections

in home and office computing envi-

ronments along with the proliferation

of portable devices present new sce-

narios for service provisioning.1 We

must not only extend access to traditional Internet

services to mobile users and devices but also develop

new classes of location-dependent services. In addi-

tion, such provisioning to portable devices must con-

sider the devices’ strict limitations on hardware and

software characteristics and their wide heterogene-

ity. Consider a tourist using a portable device to

learn about a nearby piece of art.

Already available Web services

can provide detailed multimedia

tourist information, which then

must be downscaled to fit the

device’s bandwidth and visual-

ization capabilities. In addition,

tourists will want automatic fil-

tering of Web information, depending on their posi-

tion and specific interests. 

These requirements demand novel support func-

tions capable of transparently and dynamically adapt-

ing services to client location, user preferences, and

device characteristics. Portable devices require mid-

dleware that exhibits nontraditional properties, such

as location awareness and context adaptation, and

that supports their accessibility to traditional and new

services. Moreover, portable devices should be able

to dynamically load  and discard the client-side mid-

dleware and service components only when needed.

Our middleware dynamically extends the Internet

infrastructure to accommodate portable devices.

The main idea is to dynamically deploy middleware

components that act over the fixed network on

behalf of users and devices. We have designed and

implemented components as mobile agents (MAs) to

achieve mobility, asynchronicity, and autonomy. 

Middleware guidelines for service
provisioning to portable devices

Service provisioning to portable devices raises sev-

eral technical challenges. 

On the one hand, we must address issues related

to portable device mobility. Recent research efforts

have produced network-layer solutions to provide

terminal connectivity in mobile scenarios.2 How-

ever, relevant mobile computing issues exist—such

as rapid service deployment, configuration, tailor-

ing, security, and interoperability—that call for mid-

dleware solutions at higher levels of abstraction,

including at the application level.3 In particular,

mobility-enabled naming solutions are crucial.

Portable devices usually move among localities in

an unpredictable way, without any static knowledge

about the locally available resources and services.

They should then be able to transparently connect

to previously unknown resources and services.

Mobile computing middleware should support the

dynamic discovery of resources and services by

imposing limited knowledge on the client side. It

Advances in mobile telecommunications and device miniaturization call for

providing both standard and novel location- and context-dependent

Internet services to mobile clients. Mobile agents are dynamic,

asynchronous, and autonomous, making the MA programming paradigm

suitable for developing novel middleware for mobility-enabled services.  

I N T E G R A T E D  E N V I R O N M E N T S

Paolo Bellavista and 

Antonio Corradi

Università di Bologna

Cesare Stefanelli

Università di Ferrara



should also support easy use of and access

to highly heterogeneous resources.

On the other hand, requirements stem-

ming from specific hardware and software

characteristics of portable devices exist—

characteristics such as strictly limited

resources and high heterogeneity. Portable

devices have limited processing power, mem-

ory, and file system capabilities, and they are

unsuitable for accessing traditional Internet

services designed for fixed networks. The

middleware should thus dynamically tailor

(usually by downscaling) services to the client

access device’s specific characteristics. In

addition, when portable devices need appli-

cation-specific clients, their memory limita-

tions require dynamically deploying client

components (which we can install on

portable devices) only when needed and then

automatically discarding them after service

provisioning. Moreover, current portable

devices exhibit a high heterogeneity of hard-

ware and software capabilities, operating

systems, and supported network technolo-

gies. This heterogeneity not only makes it

harder to provision different and statically

tailored services, it also significantly increases

configuration hassles for device users.

Middleware solutions should automate

device configuration management as much

as possible to free users from knowing and

interacting with the implementation details

specific to different devices. This scenario

calls for novel middleware solutions that,

unlike traditional middleware for Internet

services, are aware of both location and

context information and propagate this

visibility up to the application level.

We define location as the property relat-

ing to the physical position of users,

devices, resources, and service compo-

nents. Location transparency can help cre-

ate the high-level design of a fixed net-

work’s traditional services. However, it

clashes with the development and deploy-

ment of services in mobile computing sce-

narios, where low-level components, such

as the naming system, should propagate

the location’s explicit visibility up to the

application level. In fact, mobile comput-

ing requires performing management oper-

ations on service provisioning, such as

rebinding to locally available resources.

These operations are typically at the appli-

82 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D  E N V I R O N M E N T S

R
esearchers in industry and academia have recently investi-

gated how mobile users and terminals should dynamically

retrieve and interact with the resources and service components

that are available in a network locality, without assuming a deep

knowledge at the client side. We usually identify these solutions as

discovery services. Different discovery suites are available, each

offering different technical approaches, features, and flavors. 

Among the commercial solutions, the Bluetooth Service Discov-

ery Protocol and the UPnP Simple Service Discovery Protocol repre-

sent simple, effective solutions at a low level of abstraction. The

IETF Service Location Protocol and the Salutation suite are ex-

amples of more complex and articulated architectures of middle-

ware components, with rich functions to query advertised services

by attributes. The Jini solution is particularly interesting because, by

assuming a language homogeneity, it lets us not only advertise and

discover service components but also distribute information about

how to access and use them (via interface proxy objects that dy-

namically migrate toward the clients).1 However, Jini requires that

discovery clients either run a Java Virtual Machine or associate with

fixed docking stations, statically predetermined and preinstalled on

the fixed network infrastructure, which runs a JVM on their behalf. 

The proliferation of discovery research activities confirms that cur-

rent commercial solutions do not sufficiently address all portable

devices’ needs. The DEAPspace system investigates completely

decentralized discovery solutions, specifically suited to wireless ad

hoc networks.2 The Dynamic Mobility Agent proposal organizes

network localities in a hierarchical way to achieve global scalability.2

The Jini Surrogate project fills the gap between Jini discovery and

roaming devices with no JVM. It specifies Jini-enabled surrogate

components acting as Jini docking stations, which even non-Java

portable devices can dynamically retrieve using low-level Bluetooth

discovery (see http://developer.jini.org).

Discovery solutions are a basic building block of a mobile com-

puting middleware, but they are not enough to provide location-

or context-dependent services for portable devices. We need novel

programming paradigms and technologies that can overcome the

limits of the traditional client-server model when applied to mobile

computing scenarios. In particular, several recent experiences sug-

gest mobile code technologies—in particular, mobile agents—in

the design and implementation of mobile computing middleware,

because most MA requirements coincide with mobility ones.3,4

REFERENCES

1. G.G. Richard III, “Service Advertisement and Discovery: Enabling
Universal Device Cooperation,” IEEE Internet Computing, vol.
4, no. 5, Sept./Oct. 2000, pp. 18–26.

2. S.K.S. Gupta et al., “An Overview of Pervasive Computing,”
IEEE Personal Comm., vol. 8, no. 4, Aug. 2001, pp. 16–59.

3. E. Kovacs, K. Rohrle, and M. Reich, “Integrating Mobile Agents
into the Mobile Middleware,” Mobile Agents Int’l Workshop
(MA 98), Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 1998, pp. 124–135.

4. S. Lipperts and A. Park, “An Agent-Based Middleware: A Solu-
tion for Terminal and User Mobility,” Computer Networks, vol.
31, no. 19, Aug. 1999, pp. 2053–2062.

Discovery Solutions



cation level and relative to the current client

location. Location visibility in a mobile

computing environment requires the sup-

port of enhanced naming solutions that can

effectively keep track of mobile entities. In

addition, naming systems should integrate

different support services with different

scopes and efficiency, such as directory and

discovery, to better suit the different require-

ments of applications that have local or

global visibility.3

Portable devices should also be able to

bind components to a set of resources and

services that represent the current context.

The notion of context involves logical

properties—such as personal preferences,

current session state, and history of past

interactions—and physical properties—

such as device profiles of characteristics

and possible colocation of resources and

access devices. A notable example is the set

of resources and services that a user can

access as requested by the preference pro-

file, independent of the current point of

attachment (such as the Virtual Home

Environment4). Portable devices usually

move among different network localities

during service provisioning. Consequently,

a mobile computing middleware should

facilitate the devices’ dynamic binding to

new contexts. Note that a context can also

dynamically change in response to modi-

fications in the distributed system, such as

when a service component fails or when a

new resource becomes available. 

Mobile agents for service
provisioning to portable devices

To effectively design and deploy mid-

dleware with location and context visibil-

ity, we must consider technologies suitable

for mobility. The “Discovery Solutions”

sidebar presents state-of-the art discovery

solutions for mobility-enabled naming.

Here, we show how MAs can support ser-

vices in mobile computing scenarios. 

MA technology can significantly help us

realize a distributed and decentralized

infrastructure of proxies that work on

behalf of the devices and that are hosted

by the fixed network. MA-based proxies

can follow a device’s movements during

service provisioning by maintaining the ses-

sion state. Proxies can also automatically

install their code in any newly visited net-

work locality (but only when needed). 

In addition, MA adoption achieves the 

crucial properties of dynamicity, asyn-

chronicity, autonomy, and location or con-

text awareness. The telecommunications

domain has also recognized MA’s applica-

bility in mobile computing. The Telecom-

munications Information Networking

Architecture consortium has promoted the

specification of novel middleware for per-

sonal mobility, integrating TINA access

sessions with MAs.5

Mobile computing middleware offers

dynamicity by letting new components and

protocols modify and extend the fixed net-

work infrastructure. This supports device

accessibility and helps adapt services to

evolving client requirements, even during

service provisioning. Dynamic code distri-

bution, typical of MAs, is crucial when

dealing with portable devices because of

their limited hardware and software char-

acteristics and their heterogeneity. In fact,

service providers cannot statically predict

the versions of services suitable for all the

access devices their customers use. Fur-

thermore, they must be able to install or

discard service components based on need.

MAs can effectively play the role of data

processors, migrating when necessary to

install service components and tailor ser-

vices by performing filtering and transcod-

ing operations.6

Mobile computing can also take

advantage of asynchronicity and auton-

omy between user requests (or device

operations) and their execution. For

instance, wireless connections impose

strict constraints on available bandwidth

and communication reliability and force

portable devices to minimize their con-

nection time. The MA paradigm does not

assume continuous network connectiv-

ity; rather, it expects connections to last

only for the time needed to inject agents

from mobile clients to the fixed network.

Agents are autonomous and can carry on

services even after the launching users or

devices disconnect. They can then return

service results when the user or device

reconnects.7,8

In addition, mobile computing middle-

ware should provide application developers

with location and context visibility so they

can design location- and context-aware ser-

vices. Location and context awareness are

typical of the MA programming paradigm,

where this visibility drives MA mobility

decisions and is propagated up to the appli-

cation level to enable design, deployment,

and management choices depending on

dynamic conditions. 

MA platforms have investigated and

proposed solutions to achieve other rele-

vant middleware properties, such as secu-

rity and interoperability. Even if not spe-

cific to the mobile computing domain, the

availability of these solutions is important

and can significantly leverage the diffusion

of MA-based middleware to support Inter-

net services.3

Due to the MA technology’s novelty,

few MA environments have been used to

implement mobile computing middleware.

The ACTS OnTheMove project7 has

adapted an existing MA system with a

Mobile Application Support Environment

to provide a gateway for mobility

between fixed and wireless networks.

Dartmouth Agent TCL can implement

agents in different languages (TCL, Java,

and Scheme) and provide a docking sta-

tion in charge of forwarding agents and

messages to mobile devices.9 The Discov-

ery MA system implements an infra-

structure that notifies all interested

agents of distributed events, such as the

mobile device’s connection and discon-

nection to support terminal mobility.10

Other MA proposals concentrate on user

profiling and profile-based Virtual Home

Environments, by exploiting naming

solutions with global visibility such as

directory services.8 To our knowledge,

apart from our approach, Grasshopper is

the only MA platform addressing the issues

of enabling portable devices to access tai-

lored Internet services. Grasshopper pro-

vides a specific Micro Edition version for

portable devices with either Personal Java

or Java 2 Micro Edition as the core tech-

nology at the basis of the Enago platform

suite for mobile computing (see www.

ikv.de/e0100en_platform.php).

JULY–SEPTEMBER 2002 PERVASIVEcomputing 83



The agent middleware for
mobile devices 

We have designed and implemented a

middleware solution that enables service

provisioning to portable devices with lim-

ited hardware and software characteristics

and wired or wireless connectivity. We built

it on top of the secure and open mobile

agent (SOMA), a Java-based MA platform

with a rich set of facilities for communica-

tion, migration, naming, persistency, secu-

rity, and interoperability (http://lia.deis.

unibo.it/Research/SOMA).3,11 It dynami-

cally extends the fixed network infra-

structure to provide portable devices with

both traditional and new location-depen-

dent Web services. In addition, it exploits

SOMA-based support for user and termi-

nal mobility to accommodate portable

devices that cannot host a full Java Virtual

Machine. 

Our middleware also tailors service pro-

visioning to the characteristics of the access

devices, as specified in the corresponding

profiles, and performs service configura-

tion and management operations that sup-

port a wide variety of highly heterogeneous

client devices. In particular, it provides any

portable device with an MA-based com-

panion, called the shadow proxy, and with

application-specific MA-based processors,

called service adapters. 

The Jini discovery solution (see the

“Discovery Services” sidebar) also recog-

nizes the centrality of middleware proxy

migration toward clients to simplify and

enhance service access. However, unlike

Jini proxies, SOMA proxies and adapters

can move by carrying both their code and

their reached execution state. This lets the

SOMA middleware components maintain

and migrate session information when fol-

lowing portable device movements during

service provisioning. 

Architecture and implementation

insights

The definition of flexible network local-

ities is crucial for developing and deploy-

ing Internet services to portable devices.

SOMA offers locality abstractions to

describe any kind of interconnected sys-

tem, from simple Intranet LANs to the

Internet (see Figure 1). Any node hosts at

least one place for agent execution; domain

abstractions group several places and cor-

respond to either fixed or wireless network

localities. In each domain, a default place

is in charge of interdomain routing. SOMA

locality abstractions let us define loosely

coupled localities organized in a hierar-

chical way. We have provided each SOMA

domain with a local discovery service with

intradomain visibility scope to enhance the

SOMA naming scalability in large-scale

deployment scenarios.3

The SOMA-based middleware for

portable devices consists of the compo-

nents in Figure 2: shadow proxies, ser-

vice adapters, device-specific clients, the

Portable Device Lookup Service (PDLS),

and the Profile Manager Service (PMS). 

Shadow proxies. Shadow proxies are

application-independent middleware com-

ponents that represent portable devices on

the fixed network. They smooth problems

due to intermittent device connections and

resource limits and retrieve the profile of

their companion devices’ characteristics

and of their current users’ preferences. The

profile information drives the service dis-

covery at the PDLS. In addition, shadow

proxies follow their portable devices in

their movements among different SOMA

domains. They carry the reached service

state and make it possible to migrate ser-

vice sessions dynamically. The shadow

proxy’s migration is triggered by its com-

panion device’s reconnection to a new

SOMA domain. If the device does not

reconnect for an interval greater than a spe-

cific threshold, the middleware automati-

cally garbage-collects the associated proxy.

The same occurs if the proxy can’t reach

the new connection domains due to net-

work partitioning. 

We currently associate one shadow proxy

with each portable device, with a 1-to-1

mapping. It is also possible to implement

group shadow proxies in charge of manag-

ing a set of portable devices with synchro-

nization constraints on mobility and service

provisioning. Our middleware implements

the shadow proxy as a mobile agent run-

ning on a place in the SOMA domain where

the device is currently located. Several

shadow proxies for different devices can

execute concurrently on the same node

without interference because the SOMA

platform provides isolated execution envi-

ronments with separate security domains

for the different agents. 

84 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D  E N V I R O N M E N T S

Default
place

Default
place

Default
place

Domain B

Domain C

Place 1

Place 1

Place 1

Place 2

Place 2

Place 3

Place 3

Place 3

Place 2

Domain A

Figure 1. Mobile devices moving among

secure and open mobile agent (SOMA)

network localities.



Service adapters. Service adapters are appli-

cation-specific middleware components in

charge of performing data transformations,

depending on user or device profiles. Sev-

eral different adapters can concurrently

operate for one single shadow proxy to

carry on parallel service requests from the

same portable device. Our middleware

implements service adapters as SOMA

agents that follow their shadow proxy’s

movements. The default choice is to auto-

matically migrate all adapters jointly with

the proxy for which they work. We can also

specify different mobility policies for the

adapters in response to the associated

proxy’s migration, such as “immediately ter-

minate the adapter” (the proxy then rebinds

to new adapters in the new destination) or

“maintain adapter persistence in the local-

ity until the service session ends” (this saves

processed service results on local persistent

storage). In the latter case, for example, an

adapter could filter location-dependent

information that the proxy is interested in by

asynchronously collecting the information

and could deliver it back when the device

reconnects in that locality.

We have implemented two different

families of adapters: filters and transcoders.

Filters can recognize and discard parts of

service results whenever the client device

cannot support their visualization (see the

case study in the following section).

Transcoders can operate even complex

transformations on service results, such as

HTML-to-WML conversion and multi-

media format transcoding.6

Device-specific clients. Device-specific

clients are the only middleware compo-

nents that run in portable devices. These

clients announce when the device enters or

exits a network locality, ask shadow prox-

ies for services, and receive the adapted ser-

vice results. We have implemented three

different types of lightweight device-spe-

cific clients. We based the first client on the

J2ME/CLDC/MIDP suite for Palm devices

with either USB or modem connectivity.

The second one runs on top of the Java2

Standard Edition over Compaq personal

digital assistants with Wireless LAN sup-

port. The third exploits the wireless Blue-

tooth discovery and is written in C within

the Ericsson Bluetooth Application and

Training programming environment. 

Portable Device Lookup Service. PDLS

and PMS are per-domain infrastructure

components. PDLS is responsible for sens-

ing when a portable device enters its

SOMA domain and managing tailored

lookup requests. Triggered by device

arrival, PDLS asks the SOMA mobility-

enabled naming whether the shadow

proxy for that device is already running

somewhere in the global system. SOMA

naming locates mobile agents and devices

based on care-of mechanisms. Any trace-

able mobile agent has its care-of (agent

home) at the place of its instantiation. Sim-

ilarly, any portable device has its care-of

(device home) at the default place of its first

profile registration domain; the device home

keeps the information about the associated

shadow proxy’s agent home, if available.

SOMA transparently updates the agents’

homes at their migration and the devices’

homes at their connection. Mobile agents

and devices have GUIDs (globally unique

identities) independent of their current posi-

tion: GUIDs consist of the identifier of the

corresponding home associated with a num-

ber unique in the home locality. For

instance, a portable device has a GUID of

the form (DomainID, progNumber), where

DomainID is its device home’s address.

(Other details about the SOMA mobility-

enabled naming appear elsewhere.3)

After interrogating the SOMA naming,

if there is an already active shadow proxy,

PDLS triggers the proxy migration to its

network locality. Otherwise, PDLS instan-

tiates a new local shadow proxy for the

device. When shadow proxies ask for ser-

vices, PDLS does not provide a reference

to the service to carry out the request (the

usual lookup service behavior); rather, it

provides a reference to an adapter that acts

as the intermediate between the shadow

proxy and the actual service component.

PDLS is built on top of the Jini Reggie ref-

erence implementation of the lookup

server and significantly extends its func-

tions to suit the specific needs of service

binding to portable devices. In particular,

it additionally considers the user and

device profiles that the shadow proxy pro-

vides, identifies the needed service adapter,

JULY–SEPTEMBER 2002 PERVASIVEcomputing 85

Domain A

PMS

PDLS

Shadow
proxy 1

Place 3

Place 1

MA-based middleware component

Fixed middleware component

Service component

Middleware coordination

Service flows

PMS Profile Manager
Service

PDLS Portable Device
Lookup Service

Place 2

Device
client

Adapter
1

Adapter
2

Service 1

Service 2

Default
place

Figure 2. Portable device integration in

the SOMA-based mobile computing 

middleware. 



binds it to the requested service compo-

nent, and finally triggers the adapter

migration to the requesting shadow

proxy’s location. If no adapters are com-

patible with the specified profiles—for

instance, if the service request results in a

multimedia flow while only text is sup-

ported on the requesting device—PDLS

sends a service unavailability message to

the device client. We specify service com-

ponents and adapters according to the

XML-based Web Services Description

Language.12

Profile Manager Service. PMS maintains

profiles of supported devices and regis-

tered users. It implements a partitioned

and partially replicated directory service

specialized for profiles. It keeps local

partial copies of profile information and

coordinates with PMSs in other SOMA

domains to provide shadow proxies with

the visibility of any profile registered in

the system. It also expresses user and

device profiles according to the XML-

based Composite Capability/Preference

Profiles that the World Wide Web Con-

sortium promotes. This permits a con-

cise profile specification by identifying

only the differences from standard

default properties and by merging pro-

file fragments that are dynamically

retrieved even from different Web sites—

for example, from profile repositories of

device vendors.

The “What’s On In Town?” service

To describe how the middleware compo-

nents interwork to support portable devices,

we present a simple location- and context-

dependent service called “What’s On In

Town?” The WOIT service provides tai-

lored and personalized information about

movies showing at cinemas in the current

locality of the portable access device. 

Any SOMA domain models a different

area and maintains information about the

local movie theatres. When a portable

device enters a domain, SOMA either

instantiates its shadow proxy or moves it

to the place where the device is currently

attached. In the case of new instantiation,

the middleware transparently downloads

the proxy code from the repository at the

local default place and activates it; the

proxy authenticates the user connected at

the device, recognizes the type of portable

device, and asks PMS for user and device

profiles. In the case of proxy migration, the

middleware moves both the code and state

of the proxy from the previous point of

attachment. Note that proxies do not need

to transfer their code at any migration

because SOMA places can cache incoming

Java classes and trigger code migration

only when the code is not available in the

locality. Then, when the device requests the

WOIT service, the proxy interrogates

PDLS by providing the retrieved user and

device profile information. PDLS answers

by triggering the migration of a suitable

WOIT service adapter to the proxy; simi-

lar to the proxy code, the WOIT adapter

code also migrates if a cached copy of it is

not already present. 

We have implemented three simple

WOIT service adapters, which perform fil-

tering and ordering operations for the three

different categories of supported portable

devices:

• The adapter for the J2SE-based client

simply receives the information from the

server and passes it as it is to the proxy. 

• The adapter for the J2ME-based client

can recognize streaming flows, such as

audio or video trailers, and discard them

from service results. 

• The adapter for the Bluetooth-enabled

device client discards not only streams

but also any fixed image to return only

ASCII information to the proxy. 

Any service adapter, independent of its fil-

tering functions, orders the movie list

according to profiled user preferences (such

as thriller, drama, or comedy). Therefore,

in the WOIT prototype, the device profile

helps the proxy select the most suitable

adapter, while the user profile affects the

ordering criteria of service results. 

SOMA-based middleware lets portable

devices access an Internet service without

modifying its design and implementation.

With WOIT, the service component is a

standard HTTP server that maintains tex-

tual information about the movies currently

showing in the area and has fixed images

of their posters and their multimedia trail-

ers. In WOIT, we express Web pages in

XML according to the standard Dublin

Core Metadata specifications. 

In addition, you do not need to keep the

portable device connected to the network

infrastructure while its shadow proxy

obtains the suitable adapter and, from it,

the tailored service results. In fact, the proxy

immediately forwards the results to the

device if connected; otherwise, it caches

results locally while waiting for the device

to reconnect, either in the same domain or

outside that domain. In the latter case, the

proxy migrates to the new domain of

attachment and asks whether the device

client is still interested in receiving results

about the previous area or if it prefers to

relaunch the service for the new locality. 

R
ecent research on middleware

solutions for mobile computing

confirms the suitability of mobile

code programming paradigms.

Among them, MAs facilitate the design and

implementation of extensible middleware,

where behavior and session state can dynam-

ically move where and when needed to fol-

low user and device mobility. 

86 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D  E N V I R O N M E N T S

SOMA-based middleware lets portable devices

access an Internet service without modifying its

design and implementation. 



Even if researchers start to recognize

that MA technology is suitable for sup-

porting user and terminal mobility, not

many MA systems have been exploited in

the implementation of mobile computing

middleware. In particular, our solution

with mobile middleware components

hosted in the fixed network originally

shows the MA-based approach’s applica-

bility to dealing with client devices with

strict limitations on hardware and soft-

ware characteristics. In fact, as far as we

know, our middleware is the first MA-

based solution that lets you integrate

portable devices with no JVM. This aspect

is crucial because, on the one hand, most

current portable devices do not host any

version of the JVM. On the other hand,

even when devices support limited JVM

versions—such as the J2ME’s Sun K vir-

tual machine—it is usually impossible to

run MAs directly on them because of the

severe rigidity of their class loading func-

tions. For instance, J2ME does not instan-

tiate programmer-defined class loaders, as

Java-based MA platforms commonly do. 

For the sake of simplicity, we only pre-

sented the WOIT example to show the

SOMA-based middleware components at

work. However, we are extensively using

our middleware to develop more complex

services in several application domains,

including museum visitor assistance and

video-on-demand distribution. The Virtual

Museum Assistant retrieves information

about the artwork exposed in a currently

visited museum room and adapts its pre-

sentation depending on the current con-

text, such as device characteristics, visitor

expertise level, and preference profile. The

ubiQoS prototype6 provides video-on-

demand services with differentiated levels

of quality by tailoring, at service negotia-

tion, the offered quality depending on

access device capabilities. At provision

time, it adapts the offered quality to mod-

ifications in the availability of involved dis-

tributed resources. 

ACKNOWLEDGMENTS

The Italian Ministero dell’Istruzione, dell’Università e

della Ricerca, supported this work in the framework

of the Project Musique: Infrastructure for QoS in

Web Multimedia Services with Heterogeneous

Access.

REFERENCES

1. G. G. Richard III, “Service Advertisement
and Discovery: Enabling Universal Device
Cooperation,” IEEE Internet Computing,
vol. 4, no. 5, Sep./Oct. 2000, pp. 18–26.

2. C. Perkins, “Autoconfiguration Plug & Play
Internet,” IEEE Internet Computing, vol.
3, no. 4, July/Aug. 1999, pp. 42–44.

3. P. Bellavista, A. Corradi, and C. Stefanelli,
“Mobile Agent Middleware for Mobile
Computing,” Computer, vol. 34, no. 3,
Mar. 2001, pp. 73–81.

4. L. Bos and S. Leroy, “Toward an All-IP-
Based UMTS System Architecture,” IEEE
Network, vol. 15, no. 1, Jan./Feb. 2001, pp.
36–45. 

5. H. Jormakka et al., “Agent-based TINA
Access Session Supporting Retailer Selec-
tion in Personal Mobility Context,” Proc.
Int’l Telecommunications Information Net-
working Architecture Conf. (TINA 99),
IEEE Press, Piscataway, N.J., 1999, pp.
68–76.

6. F. Baschieri, P. Bellavista, and A. Corradi,
“Mobile Agents for QoS Tailoring, Control
and Adaptation over the Internet: The
UbiQoS Video on Demand Service,” Proc.
2nd IEEE Int’l Symp. Applications and the
Internet (SAINT 02), IEEE CS Press, Los
Alamitos, Calif., 2002, pp. 109–118.

7. E. Kovacs, K. Rohrle, and M. Reich, “Inte-
grating Mobile Agents into the Mobile Mid-
dleware,” Mobile Agents Int’l Workshop
(MA 98), Lecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin, 1998, pp.
124–135.

8. S. Lipperts and A. Park, “An Agent-Based
Middleware: A Solution for Terminal and
User Mobility,” Computer Networks, vol.
31, no. 19, Aug. 1999, pp. 2053–2062.

9. D. Kotz et al., “Agent TCL: Targeting the
Needs of Mobile Computers,” IEEE Inter-
net Computing, vol. 1, no. 4, July/Aug.
1997, pp. 58–67.

10. S. Lazar, I. Weerakoon, and D. Sidhu, “A
Scalable Location Tracking and Message
Delivery Scheme for Mobile Agents,” IEEE
Int’l Workshop Enabling Technologies:
Infrastructure for Collaborative Enterprises
(WETICE 98) IEEE CS Press, Los Alami-
tos, Calif., 1998, pp. 243–248. 

11. P. Bellavista, A. Corradi, and C. Stefanelli,
“Protection and Interoperability for Mobile

Agents: A Secure and Open Programming
Environment,” IEICE Trans. Comm., vol.
E83-B, no. 5, May 2000, pp. 961–972. 

12. F. Curbera et al., “Unraveling the Web Ser-
vices: An Introduction to SOAP, WSDL,
and UDDI,” IEEE Internet Computing,
vol. 6, no. 2, Mar./Apr. 2002, pp. 86–93.

For more information on this or any other com-

puting topic, please visit our Digital Library at

http://computer.org/publications/dlib.

JULY–SEPTEMBER 2002 PERVASIVEcomputing 87

the AUTHORS

Paolo Bellavista is a research

associate of computer engi-

neering at the University of

Bologna. His research inter-

ests include mobile agents,

mobile computing, network

and systems management,

location- and context-aware

services, and adaptive multimedia systems. He

received a PhD in computer science engineering

from the University of Bologna. He is member of

the IEEE, ACM, and Italian Association for Com-

puting. Contact him at the Dipartimento di Elet-

tronica, Informatica e Sistemistica, Università di

Bologna, Viale Risorgimento, 2-40136 Bologna,

Italy; pbellavista@deis.unibo.it.

Antonio Corradi is a full

professor of computer engi-

neering at the University of

Bologna. His research inter-

ests include distributed sys-

tems, object and agent sys-

tems, network management,

and distributed and parallel

architectures. He received an MS in electrical

engineering from Cornell University. He is a

member of the IEEE, ACM, and Italian Associa-

tion for Computing. Contact him at the Diparti-

mento di Elettronica, Informatica e Sistemistica,

Università di Bologna, Viale Risorgimento, 2-

40136 Bologna, Italy; acorradi@deis.unibo.it.

Cesare Stefanelli is an asso-

ciate professor of computer

engineering at the University

of Ferrara. His research inter-

ests include distributed and

mobile computing, mobile

code, network and systems

management, and network

security. He received a PhD in computer science

from the University of Bologna. He is a member

of the IEEE and Italian Association for Comput-

ing. Contact him at the Dipartimento di Ingeg-

neria, Università di Ferrara, Via Saragat, 1-44100

Ferrara, Italy; cstefanelli@ing.unife.it.


