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Abstract—The iris is regarded as one of the most useful traits for biometric

recognition and the dissemination of nationwide iris-based recognition systems is

imminent. However, currently deployed systems rely on heavy imaging constraints

to capture near infrared images with enough quality. Also, all of the publicly

available iris image databases contain data correspondent to such imaging

constraints and therefore are exclusively suitable to evaluate methods thought to

operate on these type of environments. The main purpose of this paper is to

announce the availability of the UBIRIS.v2 database, a multisession iris images

database which singularly contains data captured in the visible wavelength,

at-a-distance (between four and eight meters) and on on-the-move. This database

is freely available for researchers concerned about visible wavelength iris

recognition and will be useful in accessing the feasibility and specifying the

constraints of this type of biometric recognition.

Index Terms—Iris recognition, biometrics, noncooperative image acquisition,

visible-light iris images, covert recognition.

Ç

1 INTRODUCTION

THE idea of using the iris texture to discriminate between
individuals came from Bertillon and is over 100 years old. In
1987, Flom and Safir obtained the first patent for an automated iris
recognition process, and few years later, Daugman published a
method that is the basis of near all of the currently deployed
systems. Due to favorable comparisons with other biometric traits,
the popularity of the iris has grown considerably over recent years
and substantial attention has been paid by both commercial and
governmental organizations. Nationwide applications are starting
to be deployed (e.g., border control in the United Kingdom1 and
United Arab Emirates2). These large applications are regarded as a
grand challenge for the pattern recognition community. As an
illustration, over 50 percent of the publications cited in a recent iris
recognition survey [3] were published since 2005.

Currently, deployed systems rely on good quality images,
captured in a stop-and-stare interface, at close distances and using
near infrared (700-900 nm) wavelengths. As reported in a study
conducted by Aton Origin for the United Kingdom Passport Service
[1], these imaging constraints are a major obstacle for the
massification of iris-based biometric systems.Here, when compared
to other traits, the iris scored relatively low, due to the excessive time
and effort demanded of subjects in the data acquisition process.

Further advances in iris recognition technologies are needed to
meet the full range of operational requirements, which essentially

focus on the handling of nonideal biometric samples. In this

context, the National Institute of Standards and Technology has

recently promoted a challenge [23] that focused this problem and

gave access to a set of nonideal near infrared (NIR) images.

Simultaneously, several attempts to perform iris recognition in the

visible wavelength were made, although it is considered that the

resulting captured data impose limits to the recognition feasibility

(e.g., stronger lighting sources should be needed to appropriately

capture strong pigmented irises). However, the specification of

these limits remains to be done.
In 2004, we released the UBIRIS [25] database. Our purpose was

to simulate less constrained imaging processes and acquire visible
wavelength images with several types of data occluding the iris
rings (considered noise). A large number of experiments were
conducted on this database and reported in the literature, although
the realism of its noise factors received some criticisms. This was a
major motivation for the development of a new version of the
database (UBIRIS.v2) in which the images were actually captured in
nonconstrained conditions (at-a-distance, on-the-move, and on the
visible wavelength), with correspondingly more realistic noise
factors.

The major purpose of the UBIRIS.v2 database is to constitute a
new tool to evaluate the feasibility of visible wavelength iris
recognition under far from ideal imaging conditions. In this scope,
the various types of nonideal images, imaging distances, subject
perspectives, and lighting conditions existent on this database
could be of strong utility in the specification of the visible
wavelength iris recognition feasibility and constraints.

The remainder of this paper is organized as follows: Section 2
briefly overviews the iris recognition technology and discusses the
challenges that arise from less constrained environments. A
detailed description of the announced database is given in
Section 3. Section 4 reports our experiments and discusses the
results. Section 5 informs about the database availability, and
finally, Section 6 presents the conclusions.

2 IRIS RECOGNITION

With some minor exceptions, the large majority of the
published iris recognition methods follow the statistical pattern
recognition paradigm and can be divided into four separable
stages: segmentation, normalization, feature extraction, and
comparison (classification).

The process starts with the segmentation of the region
correspondent to the iris ring in the close-up eye image. Further,
to compensate for varying pupils’ sizes, imaging distances, and
distortions, the data are transformed into a double dimensionless
polar coordinate system, through a process known as the Daugman
Rubber Sheet. Regarding the feature extraction stage, existing
approaches can be roughly divided into one of three variants:
phase-based methods (e.g., [6]), zero-crossing methods (e.g., [2]),
and texture-analysis methods (e.g., [30]). Daugman [6] used
multiscale quadrature wavelets to extract texture phase information
and obtain an iris signature with 2,048 binary components. Boles
and Boashash [2] computed the zero-crossing representation of a 1D
wavelet at different resolutions of concentric circles. Wildes [30]
proposed the characterization of the iris texture through a Laplacian
pyramid with four different levels (scales). Finally, in the feature
comparison stage, a numeric dissimilarity value is produced which
determines the subjects’ identity. Here, it is usual to apply different
distance metrics (Hamming [6], euclidean [13] or weighted
euclidean [17]), or methods based on signal correlation [30].

The accuracy of the deployed iris recognition systems is

remarkable. In a study of 200,000,000,000 cross comparisons

conducted by Daugman [7], he reported false acceptance rates of

order 10�6 with false rejections of 1 percent. Other independent

evaluations ([15] and [18]) confirm this accuracy.
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2.1 Less Constrained Image Acquisition

The human iris is an internal organ, naturally protected, visible
from the exterior, and enables contactless data acquisition which,
together with the face, propitiates the potential advantage of being
covertly used. Assuming that covert iris-based recognition systems
will inevitably constitute a trade-off between data acquisition
constraints and recognition accuracy, the challenge is to maximally
increase flexibility in three axes: subjects’ position and movements,
imaging distances, and lighting conditions. This area has received
growing interest from the research community and constituted the
scope of several recent publications. Among others, the “Iris-on-
the-move” project [19] should be highlighted. The goal is to acquire
images while subjects walk at normal speed through an access
control point. Honeywell Technologies applied for a patent of a
similar system,3 able to perform at-a-distance iris recognition.
Previously, Fancourt et al. [10] showed that it is possible to acquire
images at-a-distance of up to 10 meters with sufficient quality to
support iris recognition, and Narayanswamy et al. [21] increased
the iris imaging depth-of-field through a simple framework
composed by a camera with fixed focus, without a zoom lens.
Park and Kim [24] proposed an approach to fast at-a-distance
acquisition of in-focus iris images, and He et al. [12] and Boyce et al.
[4] studied the acquisition of in-focus images and analyzed the role
of the different wavelengths in the recognition error rates.
Although concluding that illumination inside the 700-900 nm
optimally reveals the richness of the iris structure, they observed
that irises with moderate levels of pigmentation could be imaged in
the visible light with good quality.

Recently, the analysis of the quality of the data captured in less
constrained conditions became the focus of several research works.
Chen et al. [5] quantified the local data quality based on a set of
bidimensional wavelets. Kalka et al. measured several image
quality factors that were later fused according the Dempster-Shafer
theory. Schuckers et al. [28] proposed the use of projection
techniques to compensate for distorted and occluded iris images
resulting from off-angle image acquisition.

2.2 Iris Image Databases

There are currently seven free available iris image databases that
can be used for biometric purposes: Chinese Academy of Sciences
(CASIA [14], with three distinct versions), Multimedia University
(MMU [20], two versions), University of Bath (BATH [29]),
University of Olomuc (UPOL [9]), Iris Challenge Evaluation (ICE
versions of 2005 and 2006 [22]), West Virginia University (WVU
[27]), and University of Beira Interior (UBIRIS [25]), for which main
characteristics are given in Table 1. At first, it should be stressed
that, with the exceptions of the UPOL (imaged with an optometric
device) and UBIRIS databases, all of the databases contain NIR
images. Also, none of the data sets contain images acquired at
largely varying distances and all of them used a rigid image
acquisition protocol. Finally, excluding the UBIRIS database, the
remaining databases contain very moderate levels and types of
noisy data.

3 DESCRIPTION OF THE UBIRIS.v2 DATABASE

When planning the UBIRIS.v2 database, we had three basic
concerns: to acquire images, first, of moving subjects, second, at
varying imaging distances, and finally, to incorporate noise factors
that realistically result from nonconstrained and varying lighting
environments.

Anticipating that the levels of iris pigmentation should play an
important role in the recognition feasibility, we classified the
captured images into three categories, according to this criterium:
“light,” “medium,” and “heavy” pigmented. As the average
luminance in the iris regions varies inversely with the levels of

iris pigmentation, this criterium was used to make the partition of
the complete set of images into each category. The “light” category
contains the blue and light green irises and the highest luminance
values (average �Y and standard deviation �Y values of, respec-
tively, 51.95 and 3.90), “medium” contains the light and medium
brown and the dark green irises (�Y ¼ 37:70; �Y ¼ 3:15), and
finally, “heavy” contains the dark brown and almost black irises
(�Y ¼ 29:46; �Y ¼ 2:25).

3.1 Imaging Framework and Setup

The setup of the imaging framework is given in Table 2. As
illustrated in Fig. 1, this framework was installed in a lounge under
both natural and artificial lighting sources.We placed several marks
on the floor (between 3 and 10 meters away from the acquisition
device) and asked for volunteers for the image acquisition
processes. Two distinct image acquisition sessions were performed,
one each during two weeks and separated by an interval of one
week. From the first to the second session, the location and
orientation of the acquisition device and artificial light sources
were changed in order to increase heterogeneity. Volunteers were,
in large majority, Latin Caucasian (around 90 percent) and also
black (8 percent) andAsian people (2 percent). Around 60 percent of
the volunteers performed both imaging sessions, while 40 percent
performed exclusively one, either during the first or second
acquisition period.

Subjects were required to walk at a slightly slower than normal
speed and to look at several lateral marks that obliged them to rotate
head and eyes, enabling the manual capturing of three images per
meter, between 8 and 4 meters, giving a total of 15 images per eye
and session for the large majority of the individuals. It should be
stressed that this requested cooperative behavior had the unique
purpose of normalizing the number of usable images per subject
and imaging session. A completely covert procedure could have
been used, with a necessarily lower number of usable images per
session. As illustrated in Fig. 2, the significantly higher range of
distances between the subjects and the imaging framework is one of
the major distinguishable points between the UBIRIS.v2 database
and the other databases.

3.2 Nonideal Images

The image acquisition process plays amajor role in the quality of the
captured data, which dictates the overall system’s accuracy. Also, it
is expectable that less intrusive image acquisition processes
decrease the quality of the captured data and increase its
heterogeneity. Through visual inspection, we detected 14 different
noise factors, classified into one of two major categories: local or
global, as they affect exclusively image regions or the complete
image. The local category is comprised of iris obstructions,
reflections, off-angle, and partial images, while the global comprises
poor focused, motion-blurred, rotated, improper lighting, and out-
of-iris images. Examples of the UBIRIS.v2 noise factors are given in
Fig. 3. It presents a close-up iris image with good quality (Fig. 3a)
and images that contain at least one of the aforementioned noise
factors (Figs. 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n, and 3o).

3.3 Statistical Significance of the UBIRIS.v2 Database

In this section, we address the problem of whether the experiments

performed on the UBIRIS.v2 database produce statistically

significant results.
Let � be the confidence interval. Let P be the error rate of a

classifier and P̂ be the estimated error rate over a finite number
of test patterns. At an �-confidence level, we want the true error
rate not to exceed the estimated error rate by an amount larger
than "ðN;�Þ. Guyon et al. [11] fixed "ðN;�Þ ¼ �P to be a given
fraction of P. Assuming that recognition errors are Bernoulli
trials, authors concluded that the number of required trials N to
achieve (1� �) confidence in the error rate estimate is
N ¼ �lnð�Þ=ð�2P Þ. A typical value for � is 0.05 and a typical
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value for � is 0.2. Based on these values, Guyon et al. [11]

recommended the simpler form N � 100
P .

We had a varying number of subjects that offered to be

volunteers for the first, second, and for both imaging sessions.

However, assuming that each iris image can be used to generate a

biometric template, the remaining images from the same eye can

be used to analyze intraclass variability, and the remaining images

from different eyes can be used to analyze interclass variability, it

is possible to obtain a bound for the error that it is possible to test

with statistical significance.
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Comparison between the Iris Image Databases That Are Freely Available for Biometric Purposes



The 11,102 images of the UBIRIS.v2 database enable, respec-

tively, 127,746 and 61,482,804 intra and interclass comparisons.

This guarantees statistical significance in experiments with an

empirical error rate P̂ down to 1;623� 10�6 percent. However, we

stress that this is a lower bound value that would be increased if

we do not assume the independence between images and error

correlations are taken into account.

4 EXPERIMENTS

To enhance the singular characteristics of the UBIRIS.v2 database,

some experiments were carried out. This section describes how we

estimated the image quality and analyzes the separability between

intra and interclass comparisons, regarding the imaging distance

and the level of iris pigmentation.

4.1 Image Quality Assessment

In the scope of the NICE.I [26] contest, we manually discriminated

between the noise-free iris regions and the remaining data on a

training set delivered to participants. This was carried out on

1,000 randomly selected iris images. As illustrated in Fig. 4, for each

of these, we built the corresponding binary map that distinguishes
between the above referred two types of data. We considered that a
portion of the iris is “noisy” if it is occluded by any type of local
noise factor and the underlying appearance of the iris texture cannot
be evidently seen by human inspection. These maps were the basis
of our experiments and assure that failures in the eye detection, iris
segmentation, and noise discrimination stages do not occur.

4.1.1 Image Dimensions

The error rates of any iris-based biometric system will mainly
depend on the amount of information existent in the captured data
and on the proportion of noise that obstructs the underlying
texture and corrupts the discriminating information.

In order to establish a relationship between the image
acquisition distance and the maximum amount of iris data that it
is possible to capture with the used image acquisition framework
and setup, we measured the average iris diameter of frontal images
as the image acquisition distance varies. The obtained results are
given in Fig. 5a and indicate that the diameter of the captured
irises varies according to an inverse logarithmic function. Through
trial-and-error interpolation, we obtained the following coarse
approximation function dðxÞ : IRþ ! IRþ:

dðxÞ �
150

lnð x
1:85Þ

; ð1Þ

where x is the image acquisition distance (in meters) and dðxÞ is
the average diameter of the captured irises. This is confirmed in
Fig. 5b, which gives the image resolution in the iris regions, where
the shaded areas represent the 95 percent confidence intervals.
Results were obtained through the division of the number of pixels
that fall into the iris region by an iris area of 0:785 cm2, averaged
from human eye morphology studies that are publicly available.
These observations confirm that the aforementioned acquisition
framework and setup enable the capturing of sufficient data to
perform iris recognition, as nearly 50 percent of the database
images have iris diameters close to the lower bound (140 pixels)
recently proposed by Daugman [6].

Regarding the proportion of occluded data within the iris ring
(Fig. 4), we divided the number of noise-free iris pixels by the total
that ideally should fall within the iris ring, obtaining the values
shown in the histogram of Fig. 6a. The horizontal axis denotes the
proportion of noise-free pixels and the vertical axis the respective
probability of occurrence in the database. We observed that—on
average—25-30 percent of the pixels that fall within the iris ring
were corrupted by one of the local noise factors. Also, just about
3 percent of the images are completely noise-free, while around
0.9 percent contain full noisy data, correspondent to out-of-iris
images or imaged in extremely poor lighting conditions.

4.1.2 Image Information

To characterize image textures, we used the image entropy, a
statistical randomness measure widely used in the image proces-
sing domain. According to the conclusion reported by He et al.
[12], we considered the levels of iris pigmentation as a factor that
influences the amount of discriminating information captured for
biometric purposes.

Let I be a gray-scale image with g gray levels and pðkÞ be the
probability of occurrence of the gray level k in I. The image
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Fig. 1. Overview of the used image acquisition framework (A, B), light sources (C,
D), and subjects location (E).

Fig. 2. Examples of close-up iris images acquired at-a-distance, on-the-move

(between 8 and 4 meters), and under high dynamic lighting conditions.

TABLE 2
Details of the UBIRIS.v2 Images of the Image Acquisition Framework

and Setup and of the Subjects That Offered Themselves
as Volunteers to the Imaging Sessions



entropy h is given by hðIÞ ¼ �
Pg�1

0 pðkÞlog2ðpðkÞÞ. Let B be the

binary noise map correspondent to I, as illustrated in Fig. 4. Thus,

Bðx; yÞ ¼ 0 or 255 whether the respective pixel ðx; yÞ, respectively,

belongs to the iris ring and is noise-free or not. The entropy of the iris

region ihð:Þ of I is obtained taking exclusively into account pixels

ðxi; yiÞ such that Bðxi; yiÞ ¼ 0, i.e., the noise-free iris data. Finally,

for normalization purposes, we divided the entropy value by the

area of the noise-free iris region:

ihðIÞ ¼
hðIðx; yÞjBðx; yÞ ¼ 0Þ

IIfBðx;yÞ¼0g
; ð2Þ

where IIf:g is the characteristic function.
The obtained values are given in Fig. 6b. The horizontal axis

corresponds to the imaging distance and the vertical axis to the

entropy value. Data points give the observation average values for

light (continuous series), medium (dotted series), and heavy

pigmented irises (dashed series), as a function of the imaging

distance. The shaded areas represent the 95 percent confidence

intervals. It can be confirmed that the average entropy of the iris

data decreases inversely with the imaging distance, and more

evidently, with the levels of iris pigmentation.

4.2 At-a-Distance and On-The-Move Recognition

The small probability of false matches in the comparison between
iris signatures has been widely reported, and this fact is regarded as
one of the major advantages of the iris when compared to other
biometric traits. However, a fundamental hypothesis for the
feasibility of at-a-distance and on-the-move iris recognition remains
to be verified: to assure that the comparison between templates
extracted from good quality data and samples extracted from
partial or noniris regions (due to hypothetic failures on the eye
detection and segmentation modules) will not frequently produce
false matches. To test this hypothesis, we used the recognition
method proposed by Daugman [6] and performed a comparison
between 1,000 templates extracted from good quality iris images
and 10,000 sample signatures, extracted from randomly cropped
noniris or partial iris regions. Additionally, we used a set of 10,000
natural and synthetic texture images, performing a total of
20,000,000 comparisons (1;000 templates� 20;000 samples). Fig. 7a
exemplifies some of the images from where we extracted the
biometric signature samples.

Fig. 7b gives the histogram of the obtained dissimilarity scores s

(vertical bars) and the approximated normal distribution (line plot
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Fig. 5. Maximum amount of information possible to acquire at-a-distance and on-
the-move through the image acquisition framework and setup used. (a) Average
diameters of the captured irises as a function of the image acquisition distance.
(b) Average image resolution at the iris regions as a function of the image
acquisition distance.

Fig. 4. Example of a manually built binary map that distinguishes between the
noise-free iris regions and all the remaining types of data. (a) Noisy iris image.
(b) Corresponding binary noise map.

Fig. 3. Comparison between a good quality image and several types of nonideal images of the UBIRIS.v2 database. These images are the result of less constrained
imaging conditions, either under varying lighting conditions, at-a-distance, and on-the-move. (a) Good quality iris image. (b) Off-angle iris image. (c) Poorly focused iris
image. (d) Rotated iris image. (e) Motion-blurred iris image. (f) Iris obstructions due to eyelids. (g) Iris obstructions due to eyelashes. (h) Iris obstructions due to glasses.
(i) Iris obstructions due to contact lenses. (j) Iris obstructions due to hair. (k) Iris imaging in poor lighting conditions. (l) Iris with specular reflections. (m) Iris with lighting
reflections. (n) Partially captured iris. (o) Out-of-iris image.



with � ¼ 0:49992 and � ¼ 0:02419). We confirmed that the iris
encoding and comparison strategies used produce a false match

almost with null probability (P ðs < 0:33Þ � 1:03� 10�12). Thus, it

can be assured with extremely high confidence that such
recognition systems will not produce false matches and that any

reported match is very likely genuine. Obviously, the existence of

false nonmatches will be unavoidable due to extreme lighting
variations, movements, and perspectives.

In order to perceive the separability between intra and

interclass comparisons and infer the potential sensitivity that such
recognition systems could achieve, we divided the 1,000 iris

images previously used to extract the templates into three subsets:

light, medium, and dark irises. All of these images are frontal and
practically noise-free, acquired under good lighting conditions.

The signatures extracted from these images were then compared

with 1,000 sample signatures extracted from images with corre-
sponding iris pigmentation levels. Results are given in Fig. 8,

where the horizontal axis represents the dissimilarity values and

the vertical the respective probability. The light and dark bar series
give, respectively, the intra and interclass comparisons. The

separability between intra and interclass comparisons is evident,

which constitutes a good indicator toward the feasibility of the
type of biometric recognition discussed in this paper. However, we

confirmed the relevant role played by the levels of iris pigmenta-

tion with the values obtained for a Fisher-ratio test � [8]

� ¼
�E � �I
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

�

�2E þ �2I
�

q ; ð3Þ

where �I ; �E and �I ; �E are, respectively, the means and standard

deviations of the inter and intraclass comparisons.
Finally, we obtained a bound for the maximal sensitivity that

the discussed recognition process could achieve with full specifi-

city. This value was estimated through the proportion of intraclass

comparisons below the minimal interclass dissimilarity value,

having obtained, respectively, 0.911, 0.773, and 0.586 values for the

light, medium, and dark irises. Although these values are far from

those obtained in the constrained NIR mode, the key point is that

the described image acquisition process could be performed

covertly. Thus, any reported match should be considered positive

since it came from a situation where no human effort was required.

5 DATABASE AVAILABILITY

The value given to the UBIRIS.v2 database should have direct

correspondence with the number of persons that use it in their

experiments. Thus, we decided to make UBIRIS.v2 public and

freely available through the UBIRIS databases Web site (http://

iris.di.ubi.pt). On 1 June 2009, the complete database will be freely

available for academic and research purposes at the above referred

Web site. Moreover, the binary maps that distinguish between the

noise-free iris regions and all the remaining data of 1,000 randomly

selected images will also be available for download.

6 CONCLUSIONS

In this paper, we announced the availability of the UBIRIS.v2 iris

image database and described the used imaging framework and

acquisition protocol. We highlighted the most discriminating

points between this database and others with similar purposes,

specifically the fact that it contains images captured on the visible

wavelength at-a-distance and on-the-move. Also, we gave results

about the amount of information that it is possible to capture

through the used acquisition setup, reported measures of separ-

ability between the resultant iris signatures, and confirmed the

major impact that the levels of iris pigmentation have in the

recognition feasibility. We think that the UBIRIS.v2 database is a
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Fig. 6. (a) Proportion (½0; 1�) of noise that occludes the iris texture and (b) average
entropy of the noise-free iris regions as a function of the levels of iris pigmentation.
Light, medium, and heavy pigmented irises are represented by the continuous,
dotted, and dashed lines.

Fig. 7. Histogram of the dissimilarity scores between iris templates acquired from
relatively good quality data and partial or noniris data. (a) Simulation of failures in
the eye detection and iris segmentation stages. (b) Dissimilarities between
signatures extracted from iris and noniris or partial iris images.

Fig. 8. Separability between intra and interclass comparisons regarding the levels of iris pigmentation. (a) “Light” pigmented Iiris, �I ¼ 0:290, �I ¼ 0:076, �E ¼ 0:492,
�E ¼ 0:039, � ¼ 2:350. (b) “Medium” Pigmented Iris, �I ¼ 0:327, �I ¼ 0:081, �E ¼ 0:501, �E ¼ 0:041, � ¼ 1:994. (c) “Heavy” Pigmented Iris, �I ¼ 0:360, �I ¼ 0:0968,
�E ¼ 0:499, �E ¼ 0:0417, � ¼ 1:317



valuable tool for the specification of the limits for the visible

wavelength and nonconstrained iris recognition, namely, the

required lighting conditions, imaging distance, subject movements,

and perspectives. Finally, we concluded that the discussed type of

recognition is also conditioned by the development of alternate iris

segmentation and noise detection strategies, able to deal with a

higher range of data heterogeneity.
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