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Abstract

This paper introduces the Ubuntu Dia-

logue Corpus, a dataset containing almost

1 million multi-turn dialogues, with a to-

tal of over 7 million utterances and 100

million words. This provides a unique re-

source for research into building dialogue

managers based on neural language mod-

els that can make use of large amounts

of unlabeled data. The dataset has both

the multi-turn property of conversations

in the Dialog State Tracking Challenge

datasets, and the unstructured nature of in-

teractions from microblog services such

as Twitter. We also describe two neural

learning architectures suitable for analyz-

ing this dataset, and provide benchmark

performance on the task of selecting the

best next response.

1 Introduction

The ability for a computer to converse in a nat-

ural and coherent manner with a human has long

been held as one of the primary objectives of artifi-

cial intelligence (AI). In this paper we consider the

problem of building dialogue agents that have the

ability to interact in one-on-one multi-turn con-

versations on a diverse set of topics. We primar-

ily target unstructured dialogues, where there is

no a priori logical representation for the informa-

tion exchanged during the conversation. This is in

contrast to recent systems which focus on struc-

tured dialogue tasks, using a slot-filling represen-

tation [10, 27, 32].

We observe that in several subfields of AI—

computer vision, speech recognition, machine

translation—fundamental break-throughs were

achieved in recent years using machine learning

∗The first two authors contributed equally.

methods, more specifically with neural architec-

tures [1]; however, it is worth noting that many

of the most successful approaches, in particular

convolutional and recurrent neural networks, were

known for many years prior. It is therefore rea-

sonable to attribute this progress to three major

factors: 1) the public distribution of very large

rich datasets [5], 2) the availability of substantial

computing power, and 3) the development of new

training methods for neural architectures, in par-

ticular leveraging unlabeled data. Similar progress

has not yet been observed in the development of

dialogue systems. We hypothesize that this is due

to the lack of sufficiently large datasets, and aim

to overcome this barrier by providing a new large

corpus for research in multi-turn conversation.

The new Ubuntu Dialogue Corpus consists of

almost one million two-person conversations ex-

tracted from the Ubuntu chat logs1, used to receive

technical support for various Ubuntu-related prob-

lems. The conversations have an average of 8 turns

each, with a minimum of 3 turns. All conversa-

tions are carried out in text form (not audio). The

dataset is orders of magnitude larger than struc-

tured corpuses such as those of the Dialogue State

Tracking Challenge [32]. It is on the same scale as

recent datasets for solving problems such as ques-

tion answering and analysis of microblog services,

such as Twitter [22, 25, 28, 33], but each conversa-

tion in our dataset includes several more turns, as

well as longer utterances. Furthermore, because

it targets a specific domain, namely technical sup-

port, it can be used as a case study for the devel-

opment of AI agents in targeted applications, in

contrast to chatbox agents that often lack a well-

defined goal [26].

In addition to the corpus, we present learning

architectures suitable for analyzing this dataset,

ranging from the simple frequency-inverse docu-

1These logs are available from 2004 to 2015 at http:
//irclogs.ubuntu.com/

285



ment frequency (TF-IDF) approach, to more so-

phisticated neural models including a Recurrent

Neural Network (RNN) and a Long Short-Term

Memory (LSTM) architecture. We provide bench-

mark performance of these algorithms, trained

with our new corpus, on the task of selecting the

best next response, which can be achieved with-

out requiring any human labeling. The dataset is

ready for public release2. The code developed for

the empirical results is also available3.

2 Related Work

We briefly review existing dialogue datasets, and

some of the more recent learning architectures

used for both structured and unstructured dia-

logues. This is by no means an exhaustive list

(due to space constraints), but surveys resources

most related to our contribution. A list of datasets

discussed is provided in Table 1.

2.1 Dialogue Datasets

The Switchboard dataset [8], and the Dialogue

State Tracking Challenge (DSTC) datasets [32]

have been used to train and validate dialogue man-

agement systems for interactive information re-

trieval. The problem is typically formalized as a

slot filling task, where agents attempt to predict

the goal of a user during the conversation. These

datasets have been significant resources for struc-

tured dialogues, and have allowed major progress

in this field, though they are quite small compared

to datasets currently used for training neural archi-

tectures.

Recently, a few datasets have been used con-

taining unstructured dialogues extracted from

Twitter4. Ritter et al. [21] collected 1.3 million

conversations; this was extended in [28] to take ad-

vantage of longer contexts by using A-B-A triples.

Shang et al. [25] used data from a similar Chinese

website called Weibo5. However to our knowl-

edge, these datasets have not been made public,

and furthermore, the post-reply format of such mi-

croblogging services is perhaps not as represen-

tative of natural dialogue between humans as the

continuous stream of messages in a chat room. In

fact, Ritter et al. estimate that only 37% of posts

on Twitter are ‘conversational in nature’, and 69%

2http://www.cs.mcgill.ca/~jpineau/

datasets/ubuntu-corpus-1.0
3http://github.com/npow/ubottu
4https://twitter.com/
5http://www.weibo.com/

of their collected data contained exchanges of only

length 2 [21]. We hypothesize that chat-room style

messaging is more closely correlated to human-to-

human dialogue than micro-blogging websites, or

forum-based sites such as Reddit.

Part of the Ubuntu chat logs have previously

been aggregated into a dataset, called the Ubuntu

Chat Corpus [30]. However that resource pre-

serves the multi-participant structure and thus is

less amenable to the investigation of more tradi-

tional two-party conversations.

Also weakly related to our contribution is the

problem of question-answer systems. Several

datasets of question-answer pairs are available [3],

however these interactions are much shorter than

what we seek to study.

2.2 Learning Architectures

Most dialogue research has historically focused

on structured slot-filling tasks [24]. Various ap-

proaches were proposed, yet few attempts lever-

age more recent developments in neural learning

architectures. A notable exception is the work of

Henderson et al. [11], which proposes an RNN

structure, initialized with a denoising autoencoder,

to tackle the DSTC 3 domain.

Work on unstructured dialogues, recently pi-

oneered by Ritter et al. [22], proposed a re-

sponse generation model for Twitter data based on

ideas from Statistical Machine Translation. This

is shown to give superior performance to previ-

ous information retrieval (e.g. nearest neighbour)

approaches [14]. This idea was further devel-

oped by Sordoni et al. [28] to exploit information

from a longer context, using a structure similar to

the Recurrent Neural Network Encoder-Decoder

model [4]. This achieves rather poor performance

on A-B-A Twitter triples when measured by the

BLEU score (a standard for machine translation),

yet performs comparatively better than the model

of Ritter et al. [22]. Their results are also verified

with a human-subject study. A similar encoder-

decoder framework is presented in [25]. This

model uses one RNN to transform the input to

some vector representation, and another RNN to

‘decode’ this representation to a response by gen-

erating one word at a time. This model is also eval-

uated in a human-subject study, although much

smaller in size than in [28]. Overall, these models

highlight the potential of neural learning architec-

tures for interactive systems, yet so far they have
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Dataset Type Task # Dialogues # Utterances # Words Description

Switchboard [8] Human-human Various 2,400 — 3,000,000 Telephone conversations

spoken on pre-specified topics

DSTC1 [32] Human-computer State 15,000 210,000 Bus ride information

spoken tracking system

DSTC2 [10] Human-computer State 3,000 24,000 — Restaurant booking

spoken tracking system

DSTC3 [9] Human-computer State 2,265 15,000 — Tourist information

spoken tracking system

DSTC4[13] Human-human State 35 — — 21 hours of tourist info

spoken tracking exchange over Skype

Twitter Human-human Next utterance 1,300,000 3,000,000 — Post/ replies extracted

Corpus [21] micro-blog generation from Twitter

Twitter Triple Human-human Next utterance 29,000,000 87,000,000 — A-B-A triples from

Corpus [28] micro-blog generation Twitter replies

Sina Weibo [25] Human-human Next utterance 4,435,959 8,871,918 — Post/ reply pairs extracted

micro-blog generation from Weibo

Ubuntu Dialogue Human-human Next utterance 930,000 7,100,000 100,000,000 Extracted from Ubuntu

Corpus chat classification Chat Logs

Table 1: A selection of structured and unstructured large-scale datasets applicable to dialogue systems.

Faded datasets are not publicly available. The last entry is our contribution.

been limited to very short conversations.

3 The Ubuntu Dialogue Corpus

We seek a large dataset for research in dialogue

systems with the following properties:

• Two-way (or dyadic) conversation, as op-

posed to multi-participant chat, preferably

human-human.

• Large number of conversations; 105 − 106

is typical of datasets used for neural-network

learning in other areas of AI.

• Many conversations with several turns (more

than 3).

• Task-specific domain, as opposed to chatbot

systems.

All of these requirements are satisfied by the

Ubuntu Dialogue Corpus presented in this paper.

3.1 Ubuntu Chat Logs

The Ubuntu Chat Logs refer to a collection of logs

from Ubuntu-related chat rooms on the Freenode

Internet Relay Chat (IRC) network. This protocol

allows for real-time chat between a large number

of participants. Each chat room, or channel, has

a particular topic, and every channel participant

can see all the messages posted in a given chan-

nel. Many of these channels are used for obtaining

technical support with various Ubuntu issues.

As the contents of each channel are moderated,

most interactions follow a similar pattern. A new

user joins the channel, and asks a general ques-

tion about a problem they are having with Ubuntu.

Then, another more experienced user replies with

a potential solution, after first addressing the ’user-

name’ of the first user. This is called a name men-

tion [29], and is done to avoid confusion in the

channel — at any given time during the day, there

can be between 1 and 20 simultaneous conversa-

tions happening in some channels. In the most

popular channels, there is almost never a time

when only one conversation is occurring; this ren-

ders it particularly problematic to extract dyadic

dialogues. A conversation between a pair of users

generally stops when the problem has been solved,

though some users occasionally continue to dis-

cuss a topic not related to Ubuntu.

Despite the nature of the chat room being a con-

stant stream of messages from multiple users, it is

through the fairly rigid structure in the messages

that we can extract the dialogues between users.

Figure 4 shows an example chat room conversa-

tion from the #ubuntu channel as well as the ex-

tracted dialogues, which illustrates how users usu-

ally state the username of the intended message

recipient before writing their reply (we refer to all

replies and initial questions as ‘utterances’). For

example, it is clear that users ‘Taru’ and ‘kuja’

are engaged in a dialogue, as are users ‘Old’ and

‘bur[n]er’, while user ‘_pm’ is asking an initial

question, and ‘LiveCD’ is perhaps elaborating on

a previous comment.

3.2 Dataset Creation

In order to create the Ubuntu Dialogue Corpus,

first a method had to be devised to extract dyadic

dialogues from the chat room multi-party conver-

sations. The first step was to separate every mes-

sage into 4-tuples of (time, sender, recipient, utter-

ance). Given these 4-tuples, it is straightforward to

group all tuples where there is a matching sender

and recipient. Although it is easy to separate the

time and the sender from the rest, finding the in-
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tended recipient of the message is not always triv-

ial.

3.2.1 Recipient Identification

While in most cases the recipient is the first word

of the utterance, it is sometimes located at the end,

or not at all in the case of initial questions. Fur-

thermore, some users choose names correspond-

ing to common English words, such as ‘the’ or

‘stop’, which could lead to many false positives.

In order to solve this issue, we create a dictionary

of usernames from the current and previous days,

and compare the first word of each utterance to its

entries. If a match is found, and the word does

not correspond to a very common English word6,

it is assumed that this user was the intended recip-

ient of the message. If no matches are found, it is

assumed that the message was an initial question,

and the recipient value is left empty.

3.2.2 Utterance Creation

The dialogue extraction algorithm works back-

wards from the first response to find the initial

question that was replied to, within a time frame

of 3 minutes. A first response is identified by the

presence of a recipient name (someone from the

recent conversation history). The initial question

is identified to be the most recent utterance by the

recipient identified in the first response.

All utterances that do not qualify as a first re-

sponse or an initial question are discarded; initial

questions that do not generate any response are

also discarded. We additionally discard conversa-

tions longer than five utterances where one user

says more than 80% of the utterances, as these are

typically not representative of real chat dialogues.

Finally, we consider only extracted dialogues that

consist of 3 turns or more to encourage the model-

ing of longer-term dependencies.

To alleviate the problem of ‘holes’ in the dia-

logue, where one user does not address the other

explicitly, as in Figure 5, we check whether each

user talks to someone else for the duration of their

conversation. If not, all non-addressed utterances

are added to the dialogue. An example conversa-

tion along with the extracted dialogues is shown

in Figure 5. Note that we also concatenate all con-

secutive utterances from a given user.

We do not apply any further pre-processing (e.g.

tokenization, stemming) to the data as released in

the Ubuntu Dialogue Corpus. However the use of

6We use the GNU Aspell spell checking dictionary.

Figure 1: Plot of number of conversations with a

given number of turns. Both axes use a log scale.

# dialogues (human-human) 930,000

# utterances (in total) 7,100,000

# words (in total) 100,000,000

Min. # turns per dialogue 3

Avg. # turns per dialogue 7.71

Avg. # words per utterance 10.34

Median conversation length (min) 6

Table 2: Properties of Ubuntu Dialogue Corpus.

pre-processing is standard for most NLP systems,

and was also used in our analysis (see Section 4.)

3.2.3 Special Cases and Limitations

It is often the case that a user will post an ini-

tial question, and multiple people will respond to

it with different answers. In this instance, each

conversation between the first user and the user

who replied is treated as a separate dialogue. This

has the unfortunate side-effect of having the ini-

tial question appear multiple times in several dia-

logues. However the number of such cases is suf-

ficiently small compared to the size of the dataset.

Another issue to note is that the utterance post-

ing time is not considered for segmenting conver-

sations between two users. Even if two users have

a conversation that spans multiple hours, or even

days, this is treated as a single dialogue. However,

such dialogues are rare. We include the posting

time in the corpus so that other researchers may

filter as desired.

3.3 Dataset Statistics

Table 2 summarizes properties of the Ubuntu Dia-

logue Corpus. One of the most important features

of the Ubuntu chat logs is its size. This is cru-

cial for research into building dialogue managers

based on neural architectures. Another important
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characteristic is the number of turns in these dia-

logues. The distribution of the number of turns is

shown in Figure 1. It can be seen that the num-

ber of dialogues and turns per dialogue follow an

approximate power law relationship.

3.4 Test Set Generation

We set aside 2% of the Ubuntu Dialogue Corpus

conversations (randomly selected) to form a test

set that can be used for evaluation of response se-

lection algorithms. Compared to the rest of the

corpus, this test set has been further processed to

extract a pair of (context, response, flag) triples

from each dialogue. The flag is a Boolean vari-

able indicating whether or not the response was the

actual next utterance after the given context. The

response is a target (output) utterance which we

aim to correctly identify. The context consists of

the sequence of utterances appearing in dialogue

prior to the response. We create a pair of triples,

where one triple contains the correct response (i.e.

the actual next utterance in the dialogue), and the

other triple contains a false response, sampled ran-

domly from elsewhere within the test set. The flag

is set to 1 in the first case and to 0 in the second

case. An example pair is shown in Table 3. To

make the task harder, we can move from pairs of

responses (one correct, one incorrect) to a larger

set of wrong responses (all with flag=0). In our

experiments below, we consider both the case of 1

wrong response and 10 wrong responses.

Context Response Flag

well, can I move the drives? I guess I could just 1

__EOS__ ah not like that get an enclosure and

copy via USB

well, can I move the drives? you can use "ps ax" 0

__EOS__ ah not like that and "kill (PID #)"

Table 3: Test set example with (context, reply,

flag) format. The ’__EOS__’ tag is used to denote

the end of an utterance within the context.

Since we want to learn to predict all parts of a

conversation, as opposed to only the closing state-

ment, we consider various portions of context for

the conversations in the test set. The context size is

determined stochastically using a simple formula:

c = min(t − 1, n − 1),

where n =
10C

η
+ 2, η ∼ Unif(C/2, 10C)

Here, C denotes the maximum desired context

size, which we set to C = 20. The last term is

the desired minimum context size, which we set

to be 2. Parameter t is the actual length of that

dialogue (thus the constraint that c ≤ t − 1), and

n is a random number corresponding to the ran-

domly sampled context length, that is selected to

be inversely proportional to C.

In practice, this leads to short test dialogues

having short contexts, while longer dialogues are

often broken into short or medium-length seg-

ments, with the occasional long context of 10 or

more turns.

3.5 Evaluation Metric

We consider the task of best response selection.

This can be achieved by processing the data as de-

scribed in Section 3.4, without requiring any hu-

man labels. This classification task is an adapta-

tion of the recall and precision metrics previously

applied to dialogue datasets [24].

A family of metrics often used in language tasks

is Recall@k (denoted R@1 R@2, R@5 below).

Here the agent is asked to select the k most likely

responses, and it is correct if the true response is

among these k candidates. Only the R@1 metric

is relevant in the case of binary classification (as

in the Table 3 example).

Although a language model that performs well

on response classification is not a gauge of good

performance on next utterance generation, we hy-

pothesize that improvements on a model with re-

gards to the classification task will eventually lead

to improvements for the generation task. See Sec-

tion 6 for further discussion of this point.

4 Learning Architectures for

Unstructured Dialogues

To provide further evidence of the value of

our dataset for research into neural architectures

for dialogue managers, we provide performance

benchmarks for two neural learning algorithms, as

well as one naive baseline. The approaches con-

sidered are: TF-IDF, Recurrent Neural networks

(RNN), and Long Short-Term Memory (LSTM).

Prior to applying each method, we perform stan-

dard pre-processing of the data using the NLTK7

library and Twitter tokenizer8 to parse each utter-

ance. We use generic tags for various word cat-

egories, such as names, locations, organizations,

URLs, and system paths.

7www.nltk.org/
8http://www.ark.cs.cmu.edu/TweetNLP/
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To train the RNN and LSTM architectures, we

process the full training Ubuntu Dialogue Corpus

into the same format as the test set described in

Section 3.4, extracting (context, response, flag)

triples from dialogues. For the training set, we

do not sample the context length, but instead con-

sider each utterance (starting at the 3rd one) as a

potential response, with the previous utterances as

its context. So a dialogue of length 10 yields 8

training examples. Since these are overlapping,

they are clearly not independent, but we consider

this a minor issue given the size of the dataset (we

further alleviate the issue by shuffling the training

examples). Negative responses are selected at ran-

dom from the rest of the training data.

4.1 TF-IDF

Term frequency-inverse document frequency is a

statistic that intends to capture how important a

given word is to some document, which in our case

is the context [20]. It is a technique often used in

document classification and information retrieval.

The ‘term-frequency’ term is simply a count of the

number of times a word appears in a given context,

while the ‘inverse document frequency’ term puts

a penalty on how often the word appears elsewhere

in the corpus. The final score is calculated as the

product of these two terms, and has the form:

tfidf(w, d,D) = f(w, d)×log
N

|{d ∈ D : w ∈ d}|
,

where f(w, d) indicates the number of times word

w appeared in context d, N is the total number

of dialogues, and the denominator represents the

number of dialogues in which the word w appears.

For classification, the TF-IDF vectors are first

calculated for the context and each of the candi-

date responses. Given a set of candidate response

vectors, the one with the highest cosine similarity

to the context vector is selected as the output. For

Recall@k, the top k responses are returned.

4.2 RNN

Recurrent neural networks are a variant of neural

networks that allows for time-delayed directed cy-

cles between units [17]. This leads to the forma-

tion of an internal state of the network, ht, which

allows it to model time-dependent data. The in-

ternal state is updated at each time step as some

function of the observed variables xt, and the hid-

den state at the previous time step ht−1. Wx and

Figure 2: Diagram of our model. The RNNs have

tied weights. c, r are the last hidden states from

the RNNs. ci, ri are word vectors for the context

and response, i < t. We consider contexts up to a

maximum of t = 160.

Wh are matrices associated with the input and hid-

den state.

ht = f(Whht−1 + Wxxt).

A diagram of an RNN can be seen in Figure 2.

RNNs have been the primary building block of

many current neural language models [22, 28],

which use RNNs for an encoder and decoder. The

first RNN is used to encode the given context,

and the second RNN generates a response by us-

ing beam-search, where its initial hidden state is

biased using the final hidden state from the first

RNN. In our work, we are concerned with classi-

fication of responses, instead of generation. We

build upon the approach in [2], which has also

been recently applied to the problem of question

answering [33].

We utilize a siamese network consisting of two

RNNs with tied weights to produce the embed-

dings for the context and response. Given some

input context and response, we compute their em-

beddings — c, r ∈ R
d, respectively — by feeding

the word embeddings one at a time into its respec-

tive RNN. Word embeddings are initialized using

the pre-trained vectors (Common Crawl, 840B to-

kens from [19]), and fine-tuned during training.

The hidden state of the RNN is updated at each

step, and the final hidden state represents a sum-

mary of the input utterance. Using the final hid-

den states from both RNNs, we then calculate the

probability that this is a valid pair:

p(flag = 1|c, r) = σ(cT Mr + b),

where the bias b and the matrix M ∈ R
d×d are
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learned model parameters. This can be thought

of as a generative approach; given some input re-

sponse, we generate a context with the product

c′ = Mr, and measure the similarity to the actual

context using the dot product. This is converted

to a probability with the sigmoid function. The

model is trained by minimizing the cross entropy

of all labeled (context, response) pairs [33]:

L = − log
∏

n

p(flag
n
|cn, rn) +

λ

2
||θ||F2

where ||θ||F
2

is the Frobenius norm of θ = {M, b}.

In our experiments, we use λ = 0 for computa-

tional simplicity.

For training, we used a 1:1 ratio between true re-

sponses (flag = 1), and negative responses (flag=0)

drawn randomly from elsewhere in the training

set. The RNN architecture is set to 1 hidden layer

with 50 neurons. The Wh matrix is initialized us-

ing orthogonal weights [23], while Wx is initial-

ized using a uniform distribution with values be-

tween -0.01 and 0.01. We use Adam as our opti-

mizer [15], with gradients clipped to 10. We found

that weight initialization as well as the choice of

optimizer were critical for training the RNNs.

4.3 LSTM

In addition to the RNN model, we consider the

same architecture but changed the hidden units

to long-short term memory (LSTM) units [12].

LSTMs were introduced in order to model longer-

term dependencies. This is accomplished using a

series of gates that determine whether a new in-

put should be remembered, forgotten (and the old

value retained), or used as output. The error sig-

nal can now be fed back indefinitely into the gates

of the LSTM unit. This helps overcome the van-

ishing and exploding gradient problems in stan-

dard RNNs, where the error gradients would oth-

erwise decrease or increase at an exponential rate.

In training, we used 1 hidden layer with 200 neu-

rons. The hyper-parameter configuration (includ-

ing number of neurons) was optimized indepen-

dently for RNNs and LSTMs using a validation

set extracted from the training data.

5 Empirical Results

The results for the TF-IDF, RNN, and LSTM mod-

els are shown in Table 4. The models were eval-

uated using both 1 (1 in 2) and 9 (1 in 10) false

examples. Of course, the Recall@2 and Recall@5

are not relevant in the binary classification case.

Method TF-IDF RNN LSTM

1 in 2 R@1 65.9% 76.8% 87.8%

1 in 10 R@1 41.0% 40.3% 60.4%

1 in 10 R@2 54.5% 54.7% 74.5%

1 in 10 R@5 70.8% 81.9% 92.6%

Table 4: Results for the three algorithms using var-

ious recall measures for binary (1 in 2) and 1 in 10

(1 in 10) next utterance classification %.

We observe that the LSTM outperforms both

the RNN and TF-IDF on all evaluation metrics.

It is interesting to note that TF-IDF actually out-

performs the RNN on the Recall@1 case for the

1 in 10 classification. This is most likely due to

the limited ability of the RNN to take into account

long contexts, which can be overcome by using the

LSTM. An example output of the LSTM where the

response is correctly classified is shown in Table 5.

We also show, in Figure 3, the increase in per-

formance of the LSTM as the amount of data used

for training increases. This confirms the impor-

tance of having a large training set.

Context

""any apache hax around ? i just deleted all of
__path__ - which package provides it ?",
"reconfiguring apache do n’t solve it ?"

Ranked Responses Flag

1. "does n’t seem to, no" 1

2. "you can log in but not transfer files ?" 0

Table 5: Example showing the ranked responses

from the LSTM. Each utterance is shown after pre-

processing steps.

6 Discussion

This paper presents the Ubuntu Dialogue Corpus,

a large dataset for research in unstructured multi-

turn dialogue systems. We describe the construc-

tion of the dataset and its properties. The availabil-

ity of a dataset of this size opens up several inter-

esting possibilities for research into dialogue sys-

tems based on rich neural-network architectures.

We present preliminary results demonstrating use

of this dataset to train an RNN and an LSTM for

the task of selecting the next best response in a

conversation; we obtain significantly better results

with the LSTM architecture. There are several in-

teresting directions for future work.
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Figure 3: The LSTM (with 200 hidden units),

showing Recall@1 for the 1 in 10 classification,

with increasing dataset sizes.

6.1 Conversation Disentanglement

Our approach to conversation disentanglement

consists of a small set of rules. More sophisticated

techniques have been proposed, such as training a

maximum-entropy classifier to cluster utterances

into separate dialogues [6]. However, since we

are not trying to replicate the exact conversation

between two users, but only to retrieve plausible

natural dialogues, the heuristic method presented

in this paper may be sufficient. This seems sup-

ported through qualitative examination of the data,

but could be the subject of more formal evaluation.

6.2 Altering Test Set Difficulty

One of the interesting properties of the response

selection task is the ability to alter the task dif-

ficulty in a controlled manner. We demonstrated

this by moving from 1 to 9 false responses, and

by varying the Recall@k parameter. In the future,

instead of choosing false responses randomly, we

will consider selecting false responses that are

similar to the actual response (e.g. as measured by

cosine similarity). A dialogue model that performs

well on this more difficult task should also manage

to capture a more fine-grained semantic meaning

of sentences, as compared to a model that naively

picks replies with the most words in common with

the context such as TF-IDF.

6.3 State Tracking and Utterance Generation

The work described here focuses on the task of re-

sponse selection. This can be seen as an interme-

diate step between slot filling and utterance gener-

ation. In slot filling, the set of candidate outputs

(states) is identified a priori through knowledge

engineering, and is typically smaller than the set

of responses considered in our work. When the

set of candidate responses is close to the size of

the dataset (e.g. all utterances ever recorded), then

we are quite close to the response generation case.

There are several reasons not to proceed directly

to response generation. First, it is likely that cur-

rent algorithms are not yet able to generate good

results for this task, and it is preferable to tackle

metrics for which we can make progress. Second,

we do not yet have a suitable metric for evaluat-

ing performance in the response generation case.

One option is to use the BLEU [18] or METEOR

[16] scores from machine translation. However,

using BLEU to evaluate dialogue systems has been

shown to give extremely low scores [28], due to

the large space of potential sensible responses [7].

Further, since the BLEU score is calculated us-

ing N-grams [18], it would provide a very low

score for reasonable responses that do not have

any words in common with the ground-truth next

utterance.

Alternatively, one could measure the difference

between the generated utterance and the actual

sentence by comparing their representations in

some embedding (or semantic) space. However,

different models inevitably use different embed-

dings, necessitating a standardized embedding for

evaluation purposes. Such a standardized embed-

dings has yet to be created.

Another possibility is to use human subjects to

score automatically generated responses, but time

and expense make this a highly impractical option.

In summary, while it is possible that current lan-

guage models have outgrown the use of slot fill-

ing as a metric, we are currently unable to mea-

sure their ability in next utterance generation in

a standardized, meaningful and inexpensive way.

This motivates our choice of response selection as

a useful metric for the time being.
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Appendix A: Dialogue excerpts

Time User Utterance

03:44 Old I dont run graphical ubuntu,

I run ubuntu server.

03:45 kuja Taru: Haha sucker.

03:45 Taru Kuja: ?

03:45 bur[n]er Old: you can use "ps ax"

and "kill (PID#)"

03:45 kuja Taru: Anyways, you made

the changes right?

03:45 Taru Kuja: Yes.

03:45 LiveCD or killall speedlink

03:45 kuja Taru: Then from the terminal

type: sudo apt-get update

03:46 _pm if i install the beta version,

how can i update it when

the final version comes out?

03:46 Taru Kuja: I did.

Sender Recipient Utterance

Old I dont run graphical ubuntu,

I run ubuntu server.

bur[n]er Old you can use "ps ax" and

"kill (PID#)"

kuja Taru Haha sucker.

Taru Kuja ?

kuja Taru Anyways, you made the

changes right?

Taru Kuja Yes.

kuja Taru Then from the terminal type:

sudo apt-get update

Taru Kuja I did.

Figure 4: Example chat room conversation from

the #ubuntu channel of the Ubuntu Chat Logs

(top), with the disentangled conversations for the

Ubuntu Dialogue Corpus (bottom).

Time User Utterance

[12:21] dell well, can I move the drives?

[12:21] cucho dell: ah not like that

[12:21] RC dell: you can’t move the drives

[12:21] RC dell: definitely not

[12:21] dell ok

[12:21] dell lol

[12:21] RC this is the problem with RAID:)

[12:21] dell RC haha yeah

[12:22] dell cucho, I guess I could

just get an enclosure

and copy via USB...

[12:22] cucho dell: i would advise you to get

the disk

Sender Recipient Utterance

dell well, can I move the drives?

cucho dell ah not like that

dell cucho I guess I could just get an

enclosure and copy via USB

cucho dell i would advise you to get the

disk

dell well, can I move the drives?

RC dell you can’t move the drives.

definitely not. this is

the problem with RAID :)

dell RC haha yeah

Figure 5: Example of before (top box) and after

(bottom box) the algorithm adds and concatenates

utterances in dialogue extraction. Since RC only

addresses dell, all of his utterances are added,

however this is not done for dell as he addresses

both RC and cucho.
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