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The UK10K project identifies rare
variants in health and disease
The UK10K Consortium*

The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights
from sequencing whole genomes (low read depth, 73) or exomes (high read depth, 803) of nearly 10,000 individuals
frompopulation-based and disease collections. In extensively phenotyped cohortswe characterize over 24million novel
sequencevariants, generate a highly accurate imputation reference panel and identify novel alleles associatedwith levels
of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from
single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare
and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize
lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level
genetic and phenotypic data and web-based tools to facilitate the exploration of association results.

Assessment of the contribution of rare genetic variation to many
human traits is still largely incomplete. In common and complex
diseases, a lack of empirical data has to date hampered the systematic
assessment of the contribution of rare and low-frequency genetic
variants (defined throughout this paper as minor allele frequency
(MAF),1% and 1–5%, respectively). Rare variants are incompletely
represented in genome-wide association (GWA) studies1 and custom
genotyping arrays2,3, and impute poorly with current reference panels.
Rare and low-frequency variants also tend to be population- or sam-
ple-specific, requiring direct ascertainment through resequencing4,5.
Recent exome-wide resequencing studies have begun to explore the
contribution of rare coding variants to complex traits6, but compara-
tively little is known of the non-coding part of the genomewheremost
complex trait-associated loci lie7. At the other end of the human
disease spectrum, the widespread application of exome-wide sequen-
cing is accelerating the rate at which genes and variants causal for rare
diseases are being identified. Despite this, many Mendelian diseases
still lack a genetic diagnosis and the penetrance of apparently disease-
causing loci remains inadequately assessed.
The UK10K project was designed to characterize rare and low-

frequency variation in the UK population, and study its contribution
to a broad spectrum of biomedically relevant quantitative traits and
diseases with different predicted genetic architectures. Here we
describe the data and initial findings generated by the different arms
of the UK10K project. In addition to this paper, UK10K companion
papers describe the utility of this resource for imputation8, association
discovery for bone mineral density9, thyroid function10 and circulat-
ing lipid levels11 and provide access to the study results through novel
web tools12.

Study designs in the UK10K project
The UK10K project includes two main project arms (Table 1). The
UK10K-cohorts arm aimed to assess the contribution of genome-
wide genetic variation to a range of quantitative traits in 3,781 healthy
individuals from two intensively studied British cohorts of European
ancestry, namely the Avon Longitudinal Study of Parents and
Children (ALSPAC)13 and TwinsUK14. A low read depth (average
73) whole-genome sequencing (WGS) strategy was employed in

order to maximize total variation detected for a given total sequence
quantity15 while allowing interrogation of noncoding variation.
Sixty-four different phenotypes were analysed, including traits of
primary clinical relevance in 11 major phenotypic groups (obesity,
diabetes, cardiovascular and blood biochemistry, blood pressure,
dynamic measurements of ageing, birth, heart, lung, liver and renal
function; Supplementary Table 1). Of these, 31 phenotypes were avail-
able in both studies (referred to as ‘core’ and reported in association
analyses), 18 were unique to TwinsUK and 15 were unique to
ALSPAC.
The UK10K-exomes arm aimed to identify causal mutations

through high read depth (mean ,803 across studies) whole-exome
sequencing of approximately 6,000 individuals from three different
collections: rare disease, severe obesity and neurodevelopmental dis-
orders. The disorders studied in the UK10K-exomes arm have been
shown to have a substantial genetic component at least partially dri-
ven by very rare, highly penetrant coding mutations. The rare disease
collection includes 125patients and familymembers in eachof eight rare
disease areas (Table 1).Disease typeswere selectedwith different degrees
of locus heterogeneity, prior evidence for monogenic causation and
likely modes of inheritance (for example, dominant or recessive). The
obesity collection comprises of samples with severe obesity phenotypes,
including approximately 1,000 subjects from the Severe Childhood
Onset Obesity Project (SCOOP)16, plus severely obese adults from sev-
eral population cohorts. The neurodevelopmental collection comprises
of ,3,000 individuals selected to study two related neuropsychiatric
disorders (autism spectrum disorder and schizophrenia).

Discovery of 24 million novel genetic variants
In total, 3,781 individuals were successfully whole-genome sequenced
in the UK10K-cohorts arm. After conservative quality control filter-
ing (Extended Data Figs 1 and 2 and Supplementary Table 2), the final
call set contained over 42M single nucleotide variants (SNVs, 34.2M
rare and 2.2M low-frequency),,3.5M insertion/deletion polymorph-
isms (INDELs; 2,291,553 rare and 415,735 low-frequency) and 18,739
large deletions (median size 3.7 kilobase). Each individual on average
contained 3,222,597 SNVs (5,073 private), 705,684 INDELs (295 pri-
vate) and 215 large deletions (less than 1 private). Of 18,903 analysed
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protein-coding genes, 576 genes contained at least one homozygous
or compound heterozygous variant predicted to result in the loss of
function of a protein (LoF, Supplementary Information, 14,516 var-
iants in total). As previously shown5,17, variants predicted to have the
greatest phenotypic impact (LoF and missense variants, and variants
mapping to conserved regions), were depleted at the common end of
the derived allele spectrum (Extended Data Fig. 3). There were 495
homozygous LoF variants, a subset of which associated with pheno-
typic outliers (Supplementary Table 3).
We assessed sequence data quality by comparison with an exome

sequencing data set (WES, ,503 coverage)18 and in 22 pairs of
monozygotic twins (Extended Data Fig. 1). The non-reference dis-
cordance (NRD, or the fraction of discordant genotypes for non-
reference homozygous or heterozygous alleles) was 0.6% for common
variants and 3.2% (range 0.1–3.3%; Extended Data Fig. 1) for low-
frequency and rare variants. False discovery rates (FDR) were com-
parable between newly discovered sites and sites previously reported
in the 1000 Genomes Project phase 1 (1000GP) data set5.
When compared to two large-scale European sequencing repos-

itories, 1000GP and the Genome of the Netherlands (GoNL, 123
read depth19), UK10K-cohorts discovered over 24M novel SNVs.
Overall, 96.5% of variants with MAF. 1% were shared, reflecting a
common reservoir within Europe (Fig. 1 and Extended Data Fig. 2).
Conversely, 94.7% of singleton (allele count (AC)5 1) and 55.0% of
rare (AC. 1 and MAF, 1%) SNVs were study-specific. In a similar
comparison, 64.4% (AC5 1) and 15.8% of variants (AC. 1 and
MAF, 1%) found in GoNL were found to be study-specific com-
pared to 1.2% of variants above 1% MAF.
This deeper characterization of European genetic and haplotype

diversitywill benefit future studies by creating a novel genotype imputa-
tion panel with substantially increased coverage and accuracy com-
pared to the 1000GP reference panel8 (see ref. 9 and the next section
for its application). It further informs a detailed empirical assessment of
the geographical structure of rare variation in theUKwherewe detected
geographical structure for very rare alleles (AC5 2–7) in Northern and
WesternUK regions, although this did not show evidence of substantial
correlation with variation in phenotype (Box 1).

Findings from single-marker association tests
A main aim of the UK10K-cohorts project was to assess associations of
low-frequency and rare variants under different analytical strategies
(Fig. 2). We used a unified analysis strategy for the parallel evaluation
of all quantitative traits (Supplementary Information, Supplementary
Table 4). Here we describe results for the 31 core traits shared in
ALSPAC and TwinsUK, with other results reported elsewhere12.

We first carried out single-marker association tests, as in standard
genome-wide association studies of common variants20. Assuming an
additive genetic model, we used standard approaches to model rela-
tionships between standardised traits, residualized for relevant cov-
ariates, and allele dosages of 13,074,236 SNVs, 1,122,542 biallelic
INDELs (MAF$ 0.1%) and 18,739 large deletions in whole-genome
sequenced samples (‘WGS sample’). We further assessed associations
in an independent study sample of genome-wide genotyped indivi-
duals (‘GWA’ sample) including up to 6,557 ALSPAC and 2,575
TwinsUK participants who were not part of UK10K (actual numbers
per trait are given in Supplementary Table 1). In the GWA sample,
genotypes were imputed from genome-wide single nucleotide poly-
morphism (SNP) data using the UK10K haplotype reference panel,
described in a companion manuscript8. The combined WGS1GWA
sample had 80% power to detect associations of SNVs of low-
frequency and rare down to,MAF 0.5%, for a per-alleles trait change
(the regression beta coefficient or Beta) of,1.2 standard deviations or
greater (Fig. 3). To combineWGS andGWAdatawe carried out a fixed
effect meta-analysis using the inverse variance method, which showed
no evidence of inflation of summary statistics at the traits investigated
(GC lambda< 1). We used a conservative stepwise procedure for
reporting loci from single-variant analysis (Supplementary Table 5),
and we discuss elsewhere replication and technical validation of asso-
ciations of rare variants not supported in the combined WGS1GWA
sample (Supplementary Information, Supplementary Table 6).
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Figure 1 | The UK10K-cohorts resource for variation discovery. Number of
SNVs identified in the UK10K-cohorts data set in all autosomal regions in
different allele frequency (AF) bins, and percentages that were shared with
samples of European ancestry from the 1000 Genomes Project (phase I, EUR
n5 379) and/or the Genomes of the Netherlands (GoNL, n5 499) study, or
unique to the UK10K-cohorts data set. AF bins were calculated using the
UK10K data set, for allele count (AC)5 1, AC5 2, and non-overlapping AF
bins for higher AC. All numerical values are in Extended Data Fig. 2.
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Table 1 | Summary of sample collections and sequencing metrics for the four main studies of the UK10K project

Study name and design n Sequencing strategy, mean

read depth and Ts/Tv ratio

SNVs/INDELs SNVs/INDELs by allele frequency

Cohorts. Unselected samples from two population-based
cohorts

3,781 WGS, 73
Ts/Tv52.15

42,001,210/3,490,825 ,1%: 34,247,969/2,296,962
1–5%: 2,298,220/412,168
.5%: 5,869,317/1,496,955

Rare. Eight rare diseases with expected different allelic
architectures (ciliopathy, coloboma, congenital heart disease,
familial hypercholesterolaemia, intellectual disability,
neuromuscular, severe insulin resistance and thyroid disease)

961 (397) WES, 773
Ts/Tv53.02

252,809/ 1,621 ,1%: 171,564/1,384
$1%: 81,245/237

Obesity. Severely obese children (BMI.3 s.d. from population
mean) and adults with extreme obesity

1,468 (1,359) WES, 823
Ts/Tv53.02

484,931/ 3,370 ,1%: 403,684/3,133
$1%: 81,247/237

Neurodevelopmental. Autism and schizophrenia (individual
probands, families with one affected and other healthy
individuals sampled, families with data from multiple affected
individuals and individuals with comorbid intellectual disability
and psychosis)

2,753 (1,707) WES, 773
Ts/Tv53.02

538,526/ 3,826 ,1%: 457,278/3,589
$1%: 81,248/237

For the cohorts arm,numbers are for the set of 3,781samplespassingquality control, while a subset of 3,621wasused for association testing. For the exomearm, numbers of sites arebased on the joint call set, and

are calculated for a subset of all individuals that represent the patient subset (in brackets). The total number of individuals sequenced in each study is also given (see Supplementary Methods). The transition to

transversion ratio (Ts/Tv) was calculated for the final set of SNVs excluding multiallelic sites. WGS, whole-genome sequencing; WES, whole-exome sequencing.
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Overall, across the 31 traits 27 independent loci reached our
experiment-wide significance threshold21 P value # 4.623 10210 in
the combined WGS1GWA sample (Fig. 3 and Supplementary
Table 5). Two associations have been newly discovered by this project,
and were conditionally independent of other variants previously
reported at the same loci. The first was a low-frequency
intronic variant in ADIPOQ associated with decreased adiponectin
levels (rs74577862-A, effect allele frequency (EAF)5 2.6%, P value5
3.043 10264). The second was a rare splice variant (rs138326449) in
APOC3 described in advance of this manuscript11,22,23. The remaining
25 loci reaching experiment-wide significance in the combined

WGS1GWA sample included common, low-frequency and rare var-
iants tagging known associations with adiponectin levels (CDH13 and
ADIPOQ), lipid traits (APOB, APOC3-APOA1, APOE, CETP, LIPC,
LPL, PCSK9, SORT1-PSRC1-CELSR2), C-reactive protein (LEPR),
haemoglobin levels (HFE) and fasting glycaemic traits (G6PC2-
ABCB11, Supplementary Table 5). In contrast to previous projec-
tions24, from this analysis of a wide range of biomedical traits there
was no evidence of low-frequency alleles with large effects upon traits
(Fig. 3)25, with classical lipid alleles identifying extremes of single-
variant genetic contributions for these traits. This suggests that few,
if any, low-frequency variants with stronger effects than those we see

BOX 1

Genetic structure of rare variation within the UK
Weused the ALSPAC cohort (from theBristol region) and a subset of TwinsUK individuals (UK-wide origin) to investigate the spatial structure of rare

genetic variants (Supplementary Table 16).We first sought to define the extent to which variants of differentMAFwere geographically structured.We

estimated theexcessofallele sharingbetweenpairsof individualsasa functionof theirphysicaldistance, ascompared toexpectationsunderaneutral

model (Supplementary Information)46. Rare genetic variants showed excess allele sharing at distances smaller than about 200 km, and reduced

sharing formore than about 300 km. There was a steeper geographical cline for doubletons (AC52), which decreased with increasing allele counts

(3 up to 7, equivalent to a MAF of,0.1–0.3%; a). No corresponding geographical structure was observed for phenotypic variation (b).

We next assessed the extent to which the non-random distribution of rare SNVs could be accounted for by regional differences at the level of 13

main regions within the UK47. Overall, patterns of allele sharing were indicative of a larger degree of genetic homogeneity in Southern and Eastern

England compared to individuals ofWelsh,Northern, Scottish orNorthern Irish origin. Doubletonswere themost structuredbothwithin andbetween

regions (Wilcoxon rank sum P value,0.05, Extended Data Fig. 8).

Finally, we used “chromosome painting”48 to gain insights into possible demographic events underlying the observed genetic structure. We first

estimated theaverage lengthofDNA tracts sharedbetween individuals, andused thenumberof such tracts to identify finepopulation structure inour

data set. The tract length distribution showed weak geographic structure reflecting the rare variant analysis. A fine structure analysis suggested that

the identified populations were not strongly geographically defined, indicative of a large degree of movement between regions compared to the

samples in the Peoples of theBritish Isles study45, which were chosen to have all four grandparents born in the same location (Extended Data Fig. 9).
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Box 1 | Population structure in UK10K-cohorts. All ALSPAC (from Bristol), and 1,139 TwinsUK (UK-wide) participants with a complete set of genotype,
phenotype and place of birth data.a, Excess of allele sharing as a function of geographical distance, expressed as the proportion of shared alleles between sample
pairs forAC from2 to 7 against their geographical distance.b, Phenotypic sharing, estimated for the 31 core phenotypes as the absolute difference between pairs of
individuals, averagedwithin distance bins, rescaled and plotted against their geographical distance. The four traits with themost extreme structure are highlighted.
HOMA-IR, homeostaticmodel assessment for insulin. c, Geographical decomposition of each population. Populations are shownproportional to size; historically
‘Celtic’ and ‘Briton’ regions are closer to the edges, whereas ‘Anglo-Saxon’ England is more homogeneous and at the centre (see ref. 45). Ridings refers to East and
West Ridings, Yorkshire. d, Average length of DNA tracts shared between individuals when clustered by sampling location. The ‘admixture’ index is given in
brackets, with one-third corresponding to regions containing completely unadmixed populations and infinity to completely admixed populations. See also
Extended Data Fig. 9.
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are likely to be detected in the general European population for the
wide range of traits that we considered.
Increasing sample size may identify additional moderate effect var-

iants, or variants with rarer frequency. We therefore sought to assess
the extent to which the more accurate imputation offered by the
UK10K reference panel, applied to larger study samples, could dis-
cover additional associations. A restricted maximum likelihood
(REML)26 analysis suggested that using the UK10K data could
increase the estimated variance explained, compared to the sparser
HapMap2, HapMap3 and 1000GP data sets (Extended Data Table 1).
We tested four lipid traits (high-density and low-density lipoprotein
cholesterol, total cholesterol and triglycerides) in up to 22,082
additional samples from 14 cohorts imputed to the combined
UK10K11000GP phase I panel (Supplementary Table 7).
This effort identified two novel associations with low-density lipo-

protein cholesterol (Fig. 3, Supplementary Table 8), which we further
replicated in an independent imputation data set of 15,586 samples
from 8 cohorts and through genotyping in 95,067 samples from the

Copenhagen General Population Study (CGPS27). The first was a
rare intronic variant in LDLR (rs72658867-A, c.21401 5G.A;
EAF5 0.01, combined sampleP value5 1.273 10246); per allele effect
Beta (s.e.m.)520.23mmol l21 (0.02), P value5 7.633 10230 (CGPS,
n5 95,079). The secondwas a common, X-linked variant nearRGAG1
(rs5985471-T, EAF5 0.403, P value5 1.533 10212); per allele effect
Beta (s.e.m.)520.02 mmol l21 (0.004), P value51.83 1025 (CGPS,
n5 93,639). The LDLR variant was previously classified to be of uncer-
tain impact in ClinVar, and reported to have no effect on plasma
cholesterol levels in a small sample of familial hypercholesterolaemia
patients28. TheLDLR-A allele is almost perfectly imputed in our sample
(info5 0.96), but absent in previous imputation panels29; the RGAG1-
T allele is common but was missed in previous studies, which focused
predominantly on autosomal variation29. Within CGPS, these var-
iants were weakly associated with ischaemic heart disease (odds ratio
(OR)5 0.77(0.66, 0.92), P5 0.003 for rs72658867; 0.96(0.94, 0.99),
P5 0.005 for rs5985471) and rs72658867 with myocardial infarction
(OR5 0.65(0.49, 0.87), P5 0.003; Supplementary Table 8). These
results demonstrate the value of our expanded haplotype reference
panel for discovery of trait associations driven by low-frequency and
rare variants, as also shown in refs 9, 10.

Findings from rare variant association tests
Single-marker association tests are typically underpowered for rare
variants30. Many questions remain regarding the optimal choice of
test, owing to the unknown allelic architecture of rare variant contri-
bution to traits, in particular outside protein-coding regions. We first
evaluated associations by considering genes (GENCODE v15) as
functional units of analysis using three separate variant selection
strategies. Naive tests considered all variants in exons, untranslated
regions (UTRs) and essential splice sites, weighted equally. Functional
tests considered missense and LoF variants, the latter defined as being
predicted to cause essential splice site changes, stop codon gains or
frameshifts. For each scenario we applied two separate statistical
models with different properties, sequence kernel association tests
(SKAT) and burden tests implemented in SKAT and SKAT-O31,32,
to rare variants (MAF, 1%).
Overall, there was an excess of test statistics with P values #1024

for functional and loss-of-function tests (Extended Data Figs 4 and 5),
with a total of 9, 70 and 196 genes associated with the 31 core traits
with the LoF, functional and naive tests, respectively (Supplementary
Table 9). A signal driven by loss-of-function variants in the APOB

gene (encoding apolipoprotein B) achieved our threshold for experi-
ment-wide significance (P value#1.973 1027), in a burden-type test
(min P value for TG5 7.023 1029). Overall, 3 singleton LoF variants
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Figure 2 | Study design for associations tested in the UK10K-cohorts study. Summary of phenotype–genotype association testing strategies employed in the
UK10K-cohorts study.
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Figure 3 | Summary of association results across the UK10K-cohorts study.
Allelic spectrum for single-marker association results for independent variants
identified in the single-variant analysis (Supplementary Table 5). A variant’s
effect (absolute value of Beta, expressed in standard deviation units) is
given as a function of minor allele frequency (MAF, x axis). Error bars are
proportional to the standard error of the beta, variants identifying known loci
are dark blue and variants identifying novel signals replicated in independent
studies are coloured in light blue. The red and orange lines indicate 80%
power at experiment-wide significance level (t-test; P value#4.623 10210) for
the maximum theoretical sample size for the WGS sample and WGS1GWA,
respectively.
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were responsible for this signal, of which two were not previously
reported (rs141422999 and Chr2:21260958). Examples of novel rare
variants in complex trait-associated loci (for example, G6PC2 assoc-
iated with fasting glucose) were also seen for genes reaching suggestive
levels of association (P value #1024). Lastly, we tested the value of a
genome-wide naive approach to explore associations outside protein-
coding genes by combining variants across,1.8 million genome-wide
tiledwindows of 3 kb in size (median 37 SNVs perwindow,MAF, 1%,
assigning an equal weight to all variants in the window). Overall asso-
ciation statistics appeared underpowered to detect true signals, apart
from an association signal for adiponectin driven by a known rare
intronic variant at the CDH13 locus (rs12051272, EAF5 0.09%, P
value5 6.523 10212; Supplementary Table 10)33,34. As previously
shown for single-variant tests, in this study adiponectin and lipid traits
yielded the greatest evidence for associations for region-based tests.

Informing studies of low-frequency and rare variants
The UK10K-cohorts data allow an empirical evaluation of the relative
importance of increasing sample size, genotyping accuracy or variant
coverage for increasing power of genetic discoveries across the allele
frequency spectrum. In a companion paper8 we show that common
variants are exhaustively and accurately imputed using current haplo-
type reference panels, so increasing sample size is likely to be the single
most beneficial approach for discovering novel loci driven by common
variants. We further show that the UK10K haplotype reference panel,
with tenfold more European samples compared to 1000GP, yields
substantial improvements in imputation accuracy and coverage for
low-frequency and rare variants. To obtain realistic estimates of the
power benefit due to imputation with 1000GP1UK10K compared to
1000GPalone, we averaged the smallest value of Beta (themagnitude of
a per-allele effect measured in standard deviations) detectable at 80%
power, across variants imputable from both reference panels on chro-
mosome 20. Fig. 4a shows sizable reductions in the magnitude of the
effect sizes that can be identified at any sample size through use of the
UK10K reference panel, compared to the 1000GP panel alone. For
instance, for a variant of MAF5 0.3% we have equivalent power when
imputing fromUK10K11000GP into a 3,621 sample as we have when
using the 1000GP imputation panel alone with 10,000 samples.
Similar, although weaker, increases in power were seen for region-

based tests of rare variants. Using the WGS autosome data from
UK10K, we used simulation to introduce genotype errors into 220
randomly selected regions of 30 variants each. For each variant, errors
were simulated to match theMAF and the observed r2 values between
imputation and sequencing, and between whole-exome and whole-
genome sequencing (Supplementary Table 11). We modified the
SKAT power calculator35 to estimate power both for the true geno-
types in a region and the data containing error, and averaged results
across the 220 regions (see Supplementary Information). Although
absolute power in Fig. 4b is generally poor, we can also see dem-
onstrable power improvements when data are better imputed or are
directly sequenced (Fig. 4c).
Tests involving non-coding rare variants may further benefit from

aggregation strategies driven by biological annotation that takes into
consideration the context- and trait-specific impact of non-coding
variation36–38. Exploiting the denser sequence ascertainment of the
UK10K-cohorts, we developed a robust approach to quantify fold-
enrichment statistics for different categories of non-coding variants
compared to null sets matched for minor allele frequency, local link-
age disequilibrium and gene density (Supplementary Information).
We used this approach to assess the relative contribution of low-
frequency and common variants to associations with five exemplar
lipid measures (the study did not have sufficient signal for rarer var-
iants). We considered twelve different functional annotation domains,
five in or near protein-coding regions and seven main chromatin seg-
mentation states, defined using data from a cell line informative for
lipid traits (HepG2; Supplementary Table 12). Low-frequency variants

in exonic regions displayed the strongest degree of enrichment (25-fold,
compared to fivefold for common variants, Fig. 5), compatible with the
effect of purifying selection39. Importantly, however, we showed nearly
as strong levels of functional enrichment at both sets of variants for
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several non-coding domains (,10- to 20-fold for transcription start
sites, DNase I hotspots and 39UTRs of genes), confirming the import-
ant contribution of non-coding low-frequency alleles to phenotypic
trait variance.

Findings from the exome arm of UK10K
In the UK10K-exomes arm studies (see Supplementary Table 13),
5,182 individuals passed sequencing quality control with an average
read depth of 803 in the bait regions. We analysed variation discov-
ered in 3,463 disease-affected, unrelated, European-ancestry samples
(Supplementary Information). We discovered 842,646 SNVs (of
which 1.6% were multiallelic) and 6,067 INDELs. Both variant types
were dominated by very rare variants, with more than 60% observed
in only one individual. (Extended Data Fig. 6). When compared to
European-American samples from the NHLBI Exome Sequencing
Project (ESP)39, we found near-complete overlap at sites with
MAF$ 1%: 99% of SNVs that are well covered by both projects
and pass quality control are present in both data sets. By contrast,
72% of well-covered SNVs seen only once or twice in UK10K are
present in ESP. To inform the functional annotation of these variants,
we used the Illumina Body Map to determine if the frequency of LoF
and functional variants changed when transcripts are selected based
on their expression level (Extended Data Fig. 7). When only conse-
quences from highly expressed transcripts and especially those highly
expressed in all the Body Map tissues were considered, LoF and func-
tional changes declined. This demonstrates that the choice of tran-
script can affect the consequence and this should be taken into
account when annotating patient exomes.
The rare disease collection studied 1,000 exomes, or ,125 from

each of eight rare diseases. Thus far, 25 novel genetic causes have been
identified for five of the eight diseases: ciliopathies (n5 14), neuro-
muscular disorders (n5 7), eye malformations (n5 2), congenital
heart defects (n5 1) and intellectual disability (n5 1; Supplemen-
tary Table 14). Notably, there was marked variation in our ability to
identify causal variants based on familial recurrence risk, with the
primary factors appearing to be: (1) the proportion of patients with
a monogenic cause, (2) the strength of prior information about the
mode of inheritance (for example, dominant, recessive), and (3) the

extent of prior knowledge of the relevant functional pathways. In
contrast with our success identifying single-diagnostic variants in
these rare diseases, our analysis of three complex diseases (obesity,
autism spectrum disorder and schizophrenia) on their own did not
yield replicating disease-associated loci. This is perhaps unsurprising
given expected locus and allelic heterogeneity, and modest sample
size40. We therefore engaged in a collaborative meta-analysis as part
of the Autism Sequencing Consortium41 which identified 13 assoc-
iated genes (FDR, 0.01), many of which have been previously shown
to cause intellectual disability or developmental disorders. This sug-
gests that rare variation in single genes can have a large role causing a
subset of autism spectrum disorder, but these effects only become
apparent when large numbers of individuals are studied.
We also used the UK10K-exomes sequence data to explore the

occurrence of incidental findings.We focused on disease-specific genes
identified in current guidelines for the analysis of exome/whole-gen-
ome data by the American College of Medical Genetics and Genomics
(ACMG)42, and used objective criteria described in the Supplemen-
tary Information.We identified a total of 29 distinct reportable variants
affecting a total of 2.3% of the UK10K cases considered in this analysis
(42 out of 1,805 individuals), a number similar to previous estimates
(2% estimate in adults of European ancestry43). The incidental findings
were predominantly associated with cardiovascular disorders (Supple-
mentary Table 15).
Two main challenges of reporting incidental findings from whole-

exome surveys emerge. The need for clinical expertise, the difficulty of
interpreting a fraction of variants, and the lack of completeness of the
ClinVar database44 all highlighted the need to further consolidate
knowledge from the community into freely accessible and more
exhaustive databases. Furthermore, for some disorders, the frequency
of carriers is likely to be too high compared to the disease frequency,
despite our strict assessment criteria. This suggests that reported esti-
mates of the penetrance of recognized variants for specific disorders
are too high. Given these challenges, we suggest that, in the absence of
additional evidence, scientific publications describing proposed pene-
trant associations for rare variants need to be complemented by accur-
ate estimates of population frequencies.

Conclusions
In summary we have generated a high-quality whole-genome
sequence data repository including 24 million novel variants from
nearly 4,000 European-ancestry individuals. We showed that the
UK10K haplotype reference panel greatly increases accuracy and cov-
erage of low-frequency and rare variants compared to existing panels
such as the 1000GP phase 1 panel.We carried out a large-scale empir-
ical exploration of association testing of common, low-frequency and
rare genetic variants with a large variety of biomedically important
quantitative traits. For each of the different association scenarios
tested, we report first examples of novel alleles associated with lipid
and adiponectin traits. This provides proof-of-principle evidence on
the value of the large-scale sequencing data for complex traits, while
also indicating that there are few low-frequency large effect ‘quick
wins’ thatmake substantial contributions to population trait variation
and that can be discovered from sequencing studies of few thousands
individuals. Our power calculations, informed by the sequence data,
provide realistic estimates of the benefit of sequencing versus imputa-
tion in future association studies. Finally, rare variation tests showed
limited evidence for confounding owing to population stratification at
the traits investigated, likely to be due to a weakening of historical
patterns of population structure in the current general UK popu-
lation45.
Overall, this effort has given us both new genomic tools12 and

insights into the role of low-frequency and rare variation on human
complex traits, and will inform strategies for future association studies.
Our exploration of non-coding variants supports the need for incorp-
orating functional genome information in association tests of rare
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variants outside protein-coding regions. Improved study power
through larger numbers, and a better understanding of the observed
heterogeneity in allelic architecture between different loci, are likely to
provide the best route forward to describe the contribution of rare
variants to phenotypic variance in health and disease, and for assessing
their utility in healthcare.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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ExtendedData Figure 1 | UK10K-cohorts, sequence and sample quality and
variationmetrics. a–e, Sample qualitymetrics for UK10K-cohorts (n5 3,781)
where n5 1–1,927 corresponds to ALSPAC and 1,928 to 3,781 to TwinsUK.
This sample includes all individuals passing sample quality control, including
related pairs and non-European individuals that were later removed from
association tests. A subset of 3,621 individuals was included in association
analyses. Samples sequenced at BGI are coloured in blue and samples
sequenced at Sanger are coloured in grey. a, Number of singletons (AC5 1) by
sample (3103). b, Number of INDELs by sample (3105). c, Read depth
(sequence coverage) by sample. d, Ratio of heterozygous and homozygous
non-reference (5homozygous alternative) SNV genotypes (mean for
females5 1.54, mean for males5 1.47). e, Transition to transversion ratio
(Ts/Tv) by sample. f–i, Sequence variationmetrics forUK10K-cohorts. f, Types
of substitution (3106). g, Number of SNVs (3106), INDELs (3105) and
large deletions (3103) by non-overlapping non-reference allele frequency (AF)
bins. h, Size distribution of INDELs. Negative INDEL lengths represent
deletions and positive INDEL lengths represent insertions. i, Large deletion size
distribution in unequal bin sizes where the smallest deletions were 200 bp to
1 kb long and the largest deletions 100 kb to 1 Mb. In total 18,739 deletions
were calledwithGenomeSTRiP14. The average deletion sizewas,13 kb and the

median size was,3.7 kb. j, Total number of SNVs and INDELs by AF bin
(based on 3,781 samples), multi-allelic variants are treated as separate variants.
k, Sequence quality and variation metrics for UK10K-cohorts. For 61
overlapping TwinsUK individuals we compared the variant sites and
genotypes of the low-coverage sequences with high-coverage exome data by
non-overlapping AF bins (WGS versus Exomes).We considered 74,621 shared
sites in non-overlapping AF bins. We calculated the fraction of concordant
over total sites, the number of non-reference genotypes and non-reference
genotype discordance (NRD, in %) betweenWGS and Exomes; false discovery
rate (FDR5 FP/(FP 1 TP); TP, true positive; FP, false positive), where we
consider the exomes as the truth set; number of false positives (FP) and FDR for
sites that are or not shared with the 1000 Genomes Project, phase I (1000GP);
false negative rate (FNR5FN/(FN1TP); FN, false negative; TP, true positive),
where AF bins were defined based on the 61 exomes. Furthermore, we
compared 22 monozygotic twin pairs at 880,280 bi-allelic SNV sites on
chromosome 20, reporting the percentage of concordant genotypes, non-
reference genotypes and NRD. AFs are from the set of 3,621 samples, which
contains at most one of the two monozygotic twins from each pair. We
note that discrepancies can be caused by errors in either twin, so the expected
NRD to the truth would be half the NRD value given.
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Extended Data Figure 2 | UK10K-cohorts, comparison with GoNL and
1000GP-EUR. Percentage of autosomal SNVs that are either shared between
UK10K (n5 3,781), GoNL (n5 499) and 1000GP-EUR (n5 379), or
unique to each set, for allele counts (AC)AC5 1,AC5 2, andnon-overlapping
allele frequency (AF) bins for higher AC. a, Shared and unique variants for
GoNL with AF based on GoNL, and b, for 1000GP-EUR. AF bins are not

directly comparable owing to the different sample sizes in each call set. The
x-axis shows the number of variants in millions. The percentages next to
the bars represent the percentage of variants fromGoNL (a) and 1000GP-EUR
(b) that are shared with at least one of the other data sets. All numerical values
used in a can be found in d and for b in e. c, Numerical values for Fig. 1.

ARTICLE RESEARCH

G2015 Macmillan Publishers Limited. All rights reserved



Extended Data Figure 3 | UK10K-cohorts, derived allele frequency
spectrum by functional annotation. Derived allele frequency (DAF)
spectrum for UK10K-cohorts chromosome 20 variants divided by functional
class. a, Proportion of total variants (standardized across DAF bins) as a
function of DAF for different genic elements. b, Standardized proportion of all

variants by DAF bin, and divided into conserved (GERP. 2) versus neutral
(GERP# 2) sites. c, Ratio of conserved versus neutral variants by DAF bin,
and classified by chromatin segmentation domains defined by ENCODE as
detailed in the methods.
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Extended Data Figure 4 | UK10K-cohorts, false discovery rate (FDR).
a–g, FDR values for reporting associations at different P value cut-offs for all
analyses reported in this study and the 31 core traits for single-variant analysis
(a); naive exome-wide Meta SKAT (b); naive exome-wide Meta SKAT-O

(c); functional exome-wide Meta SKAT (LoF and missense) (d); functional
exome-wide Meta SKAT-O (LoF and missense) (e); functional exome-wide
Meta SKAT (LoF) (f); functional exome-wide Meta SKAT-O (LoF) (g).
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Extended Data Figure 5 | UK10K-cohorts, QQ plots. QQ plots for the
association tests of the 31 core traits in the WGS data set (n5 3,621
individuals). a, Single-variant analysis (,14 million variants with
MAF$ 0.1%); b, naive exome-wide Meta SKAT (1,783,548 variants with
MAF, 1% in 50,717 windows); c, functional exome-wide Meta SKAT

(LoF and missense; 256,733 variants with MAF, 1% in 14,909 windows);
d, loss-of-function functional exome-wide Meta SKAT (LoF; 9,113 variants
with MAF, 1% in 3,208 windows); e, genome-wide Meta SKAT (35,858,684
variants with MAF, 1% in 1,845,982 windows).
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Extended Data Figure 6 | UK10K-exomes, sequence variant statistics.
Number of variants (3103) that are found in one or more of the three UK10K-
exomes disease data sets, as a function of allele frequency (AF) of the non-
reference allele. Variants are split into allele counts (AC) AC5 1, AC5 2 and
non-overlapping AF bins for AC. 2. Allele frequency is the frequency of the
alternative allele. The distributions of SNVs and INDELs across frequencies
and disease collections are similar, except that there is a lower proportion of
INDELs with AF. 1% compared to SNVs. a, SNVs. Multiallelic sites are
included (1.6%), and non-reference alleles at the same site are treated as
separate variants. b, INDELs. Counts are given in c. c, Variants are classed by
whether they were found in more than one disease collection or unique to a

specific group. d, Comparison of UK10K patient set with European-Americans
individuals from the NHLBI Exome Sequencing project (EA ESP). The left
panel shows the variants identified in UK10K and the percentage shared with
EA ESP. Both the total number of variants and the number within the EA
ESP bait regions (intersection of bait sets) are given. The right panel shows the
variants identified in EA ESP and the percentage shared with UK10K. Both
the total number of variants, and the number within the UK10K baits after
removing any that failed UK10K quality control, are given. There is some
overlap in the ranges of AC and AF for EA ESP variants because different
numbers of individuals were included.
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Extended Data Figure 7 | UK10K-exomes, functional consequences.
a–d, Percentage of SNVs in each allele frequency bin that are loss of function
(a), functional (b), possibly functional (c) and other (d), when consequences
are restricted to given subsets of transcripts, and where the most severe
consequence in qualifying transcripts is used. Values are percentages of SNVs
that have transcripts of a given type. Protein-coding is transcripts with a biotype
of protein coding. High expression is transcripts with FPKM (fragments per
kilobase of transcript per million mapped reads) $1 in any tissue. Widely
expressed is transcripts with FPKM$ 1 in 16 tissues. Only low expression is
transcripts expressed at FPKM, 1 in all 16 tissues where there were no

transcripts with high expression in that variant. Expression was determined
from the Illumina Body Map data set. Variants mapping to protein-coding
transcripts,300-bp long or with missing or low quality expression data were
excluded. Frequency bins are singletons and non-overlapping allele frequency
ranges for allele counts above 1. Allele frequency is the frequency of the
alternative allele. Multi-allelic sites were included with alternative alleles at
the same site treated as separate variants. e, Counts of single nucleotide
polymorphisms in each consequence class by allele frequency and transcript
subset.
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Extended Data Figure 8 | UK10K-cohorts, genotype and phenotype
similarities within and between regions. a, b, Dot plots show the genetic
(a) and phenotypic distribution (b) of the relationships of 1,139 unrelated
TwinsUK individuals by their regional place of birth. To determine the genetic
relationships we used the mean number of shared alleles between two
individuals within and between regions for allele counts (AC) 2 to 7, where AC
is calculated from thewhole data set of 3,781 samples. To determine phenotypic
similarities we calculated the mean difference between the residualized

phenotypes. Genetically-related individuals are more closely related within a
region than between regions, while the phenotypic distancemeasure has similar
distributions within and between regions. The mean shared alleles increase
with increasing allele count, and simultaneously the within and between
distributions converge. c, The five lowest P values for AC 2 to 7 obtained from
Mantel tests to determine similarities between genotypes and phenotypes by
region. P values were not significant after correcting for multiple testing using
the FDR method49. Full trait names are given in Supplementary Table 1.
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Extended Data Figure 9 | UK10K-cohorts, population fine structure in the
TwinsUK sample. a, Chunk length matrix for all UK10K defined geographic
regions, calculated as described in the methods. The bottom 5 regions are
merged in Box 1 Figure.b, Coancestrymatrix for all UK10Kdefined geographic
regions, calculated as described in the methods. c, Chunk length matrix for
all UK10K FineSTRUCTURE inferred populations, calculated as described in
the methods. d, Coancestry matrix for all UK10K FineSTRUCTURE inferred
populations. Details on calculation of these parameters are described in
Methods. e, Pairwise coincidence matrix for the UK10K FineSTRUCTURE
MCMC run, showing the fraction of the 1,000 retained iterations from the
posterior in which each pair of individuals is in the same population, averaged
for each pair of populations. The full posterior is extremely complex, which is
indicative of a continuous admixture cline rather than discrete populations.

f, Sources distribution for the FineSTRUCTURE inferred populations with the
full set of inferred populations and geographic labels. Geographic labels of
London, Southeast, North Midland, Southern and Eastern are merged into
South and East for Box 1 Figure. FSPop labels are given to populations inferred
by FineSTRUCTURE, which are merged into the Pop labels as shown in the
main Box 1 Figure. g, The f2 haplotype age analysis estimates the time to the
most recent common ancestor (tMRCA) between the two haplotypes
underlying a given observed variant of allele count 2 in all of the TwinsUK
samples. The observed IBDsegment length around each f2 variant estimates the
tMRCA, using an explicit model parameterized by the recombination and
the mutation rates. Shown is the map of the UK with all regions used in this
analysis depicted by their location, and lines colour-coding the observed
median tMRCA of f2 haplotypes.

ARTICLE RESEARCH

G2015 Macmillan Publishers Limited. All rights reserved



Extended Data Table 1 | UK10K-cohorts, estimated variance explained by SNVs across the 31 UK10K traits shared by both cohorts

Weused the restrictedmaximum likelihood (REML)method implemented inGCTA to estimatephenotypic variance explainedbySNVsets (MAF#1%) inour discovery sequencedata (n53,621 individuals). SNVs

were selected from theWGSdata to correspond to the content of four different referencepanels:HapMap2 (n52,331,713SNVs),Hapmap3 (n51,168,695), 1000Genomes (n57,475,230) and theentireUK10K

reference panel (n58,317,582). Each GRMwas individually tested against the 31 traits with phenotypic values present in both cohort studies, producing a beta, s.e. andP value for total trait variance explained by

the given SNV set. Full trait names are given in Supplementary Table 1.

RESEARCH ARTICLE

G2015 Macmillan Publishers Limited. All rights reserved


	Title
	Authors
	Abstract
	Study designs in the UK10K project
	Discovery of 24 million novel genetic variants
	Findings from single-marker association tests
	Figure 1 The UK10K-cohorts resource for variation discovery.
	Table 1 Summary of sample collections and sequencing metrics for the four main studies of the UK10K project
	Box 1 Genetic structure of rare variation within the UK
	Findings from rare variant association tests
	Figure 2 Study design for associations tested in the UK10K-cohorts study.
	Figure 3 Summary of association results across the UK10K-cohorts study.
	Informing studies of low-frequency and rare variants
	Figure 4 Power for single-variant and region-based tests.
	Findings from the exome arm of UK10K
	Conclusions
	Figure 5 Enrichment of single-marker associations by functional annotation in the UK10K-cohorts study.
	References
	Extended Data Figure 1 UK10K-cohorts, sequence and sample quality and variation metrics.
	Extended Data Figure 2 UK10K-cohorts, comparison with GoNL and 1000GP-EUR.
	Extended Data Figure 3 UK10K-cohorts, derived allele frequency spectrum by functional annotation.
	Extended Data Figure 4 UK10K-cohorts, false discovery rate (FDR).
	Extended Data Figure 5 UK10K-cohorts, QQ plots.
	Extended Data Figure 6 UK10K-exomes, sequence variant statistics.
	Extended Data Figure 7 UK10K-exomes, functional consequences.
	Extended Data Figure 8 UK10K-cohorts, genotype and phenotype similarities within and between regions.
	Extended Data Figure 9 UK10K-cohorts, population fine structure in the TwinsUK sample.
	Extended Data Table 1 UK10K-cohorts, estimated variance explained by SNVs across the 31 UK10K traits shared by both cohorts

