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A B S T R A C T

A definitive model for predicting absolute risk of coronary heart disease (CHD) in male and

female people with Type II diabetes is not yet available. This paper provides an equation for

estimating the risk of new CHD events in people with Type II diabetes, based on data from 4540

U.K. Prospective Diabetes Study male and female patients. Unlike previously published risk

equations, the model is diabetes-specific and incorporates glycaemia, systolic blood pressure and

lipid levels as risk factors, in addition to age, sex, ethnic group, smoking status and time since

diagnosis of diabetes. All variables included in the final model were statistically significant

(P! 0.001, except smoking for which P¯ 0.0013) in likelihood ratio testing. This model provides

the estimates of CHD risk required by current guidelines for the primary prevention of CHD in

Type II diabetes.

INTRODUCTION

People with Type II diabetes have a risk of coronary
heart disease (CHD) 2–4 times greater than the general
population [1–3]. There is strong evidence that inter-
ventions can be beneficial in general populations [4–7],
and increasingly in diabetic populations [8–10]. Patients
at highest absolute risk have the most to gain from
interventions, and it is desirable that all diabetic patients
have their absolute CHD risk evaluated in order that
optimal care can be determined. Treatment guidelines for
primary prevention of CHD in primary care use absolute
risk, alone or in conjunction with relative risk [11–14].
Obtaining estimates of absolute risk for developing CHD
has been difficult in the absence of diabetes-specific risk
equations. The model for CHD risk in Type II diabetes
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presented here has wide applicability and will be of
particular use to health care providers, insurers, planners,
industry and government, in addition to clinicians and
patients. Calculation of absolute risks also allows proba-
bilities calculated from different models to be compared
[15].

The U.K. Prospective Diabetes Study (UKPDS) is a
landmark randomized controlled trial which showed that
both intensive treatment of blood glucose and of blood
pressure in diabetes can lower the risk of diabetes-related
complications in individuals newly diagnosed with Type
II diabetes [16,17]. In addition to answering therapy-
related questions, the UKPDS cohort of 5102 patients,
followed for a median of 10.7 years, provides an excellent
opportunity to describe the natural history of treated
disease. Presented here is a parametric model of the risk
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for CHD in patients with Type II diabetes. It provides
formulae for incidence rates, estimates of probability for
CHD complications, and the relative risks associated
with potential risk factors. The model provides equations
for absolute risk, incorporating the effect of multiple risk
factors to give overall event rates, rather than relative
risk as reported previously [18,19].

Previous models for CHD, such as the Framingham
risk equations [20,21], have not been specifically designed
for people with Type II diabetes. Although the accuracy
of the Framingham equations for diabetic patients has
been debated [22], they have been shown to apply well to
U.K. populations [23], and many models for diabetic
complications have been published that use them for
cardiovascular risk [24–28]. Framingham and other
models for CHD risk in the general population [29,30]
use dichotomous variables for glycaemia, such as pres-
ence or absence of diabetes. In contrast, our diabetes-
specific approach is advantageous as we include HbA

"c
as

a continuous variable. We also replace age as a risk factor
by two diabetes-specific variables : age at diagnosis of
diabetes and time since diagnosis of diabetes, as previous
UKPDS analyses have shown the importance of this
distinction to diabetic complications [31]. There is also
some evidence that diabetic dyslipidaemia is qualitatively
different from dyslipidaemia in the general population
[32].

METHODS

Study subjects
The UKPDS has been described previously [33]. Briefly,
between 1977 and 1991, general practitioners in the
catchment areas of 23 participating UKPDS hospitals

Table 1 Characteristics of patients, as mean (S.D.) or percentage (number), at diagnosis of
diabetes (age, smoking status and bodymass index) or mean of values 1–2 years after entry to
study (HbA1c, systolic blood pressure and cholesterol measurements)

Variable
Values

Sex… Men (n¯ 2643) Women (n¯ 1897)

At diagnosis of diabetes
Age (years) 51.5 (8.8) 52.7 (8.7)
White Caucasian (%) 81 (2151) 85 (1603)
Afro-Caribbean (%) 7.6 (201) 8.1 (153)
Asian-Indian (%) 11 (291) 7.4 (141)
Smoker (%) 34 (898) 25 (474)
Body-mass index 27.7 (4.6) 30.4 (6.3)

Mean of values one and two years after diagnosis of diabetes
HbA1c (%) 6.6 (1.4) 6.9 (1.5)
Systolic blood pressure (mmHg) 133 (18) 139 (21)
Total cholesterol (mmol/l) 5.2 (1.0) 5.7 (1.1)
HDL cholesterol (mmol/l) 1.06 (0.23) 1.18 (0.27)

were asked to refer all patients aged 25–65 years
presenting with newly diagnosed diabetes. Patients gen-
erally attended a UKPDS clinic within two weeks of
referral. Inclusion criteria included, in addition to newly
diagnosed diabetes, a fasting plasma glucose greater than
6 mmol}l (108 mg}dl) on two further occasions, and no
recent history of myocardial infarction (MI), angina or
heart failure. Exclusion criteria have been listed pre-
viously [33]. There were 5102 patients recruited to the
UKPDS from the 7616 patients referred.

For this analysis, data from 4540 patients of White,
Afro-Caribbean or Asian-Indian ethnic group were
included. This excluded 39 patients of other ethnic
groups, 248 patients with missing data for HbA

"c
, systolic

blood pressure or lipids, and 275 patients with follow-up
times too short for the model fitting process (see below).
The characteristics of these patients are shown in Table 1.

Patients in the UKPDS had biochemical measure-
ments, including HbA

"c
, blood pressures, and lipid and

lipoprotein fractions, recorded at entry to the study, at
randomization in the study after a three-month period of
dietary therapy, and each year subsequently [33]. The
systolic blood pressure recorded each year was the mean
of three measurements taken at the same visit. Lipid ratio
is defined here to be the ratio of total cholesterol to high-
density lipoprotein (HDL) cholesterol. Biochemistry
methodology has been reported previously [34]. HbA

"c

was measured by HPLC (Diamat Automated Glyco-
sylated Haemoglobin Analyser, Bio-Rad), non-diabetic
range 4.5–6.2% [34–35]. HbA

"c
measurements were

certified comparable with the Diabetes Control and
Complications Trial (DCCT) by the U. S. National
Glycohemoglobin Standardization Program, with

HbA
"c

(UKPDS) ¯ 1.04¬HbA
"c

(DCCT)®0.7336
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Table 2 Risk factors included in the CHD model
Abbreviations, definitions and values used in equations in the text.

Abbreviations Definitions/values

AGE Age in years at diagnosis of diabetes
SEX 1 for female ; 0 for male
AC 1 for Afro-Caribbean ; 0 for Caucasian or Asian-Indian
SMOK 1 for a current smoker, of tobacco in any form, at diagnosis of diabetes ; 0 otherwise
H HbA1c (%), mean of values for years 1 and 2
SBP Systolic blood pressure (mmHg), mean of values for years 1 and 2
LR Total cholesterol/HDL cholesterol ratio, mean of values for years 1 and 2

where (r ¯ 0.99, n ¯ 40). Cholesterol and HDL chol-
esterol measurements were within the limits for accuracy
of the lipid standardization program of the Centers for
Disease Control and Prevention (Atlanta, GA, U.S.A.)
[36], and were slightly lower than the Centers for Disease
Control and Prevention reference laboratory in the U.K.
[37] ; ®2.5% for total cholesterol and ®1.2% for HDL
cholesterol [38].

Model design
CHD is defined as the occurrence of fatal or non-fatal MI
or sudden death, verified by two independent clinical
assessors as described previously [33]. In patients with
multiple CHD events, only the first event is considered
in this study. During the early years of the study, all-
cause mortality was not significantly different from that
in the general population, possibly a consequence of
exclusion criteria, such as previous vascular disease,
malignant hypertension, ketonuria greater than 3 mmol}
litre and severe retinopathy [39]. To a7void this possible
selection bias, data from years 0–4 were not used in
model fitting: that is, 275 patients with follow-up times
less than four years or with MI prior to 4 years were not
used in model fitting, and model fitting was carried out
on data from the remaining 4540 patients using proba-
bilities conditional on survival through the first 4
years. The baseline risk factors included in the model are
listed in Table 2. Triacylglycerols are not included in the
model as they were not significant (P " 0.5 when added
to the model above) ; excluded likewise were Asian-
Indian ethnicity (P " 0.5) and ex-smoking status
(P " 0.2).

To improve model stability, HbA
"c

, systolic blood
pressure, total cholesterol and HDL cholesterol were
taken to be the mean of values taken 1 year apart.
Likelihood ratio comparisons, in an exploratory data
analysis based on the Cox proportional hazards model,
found these mean values to give a better fit than single
values. Values at diagnosis have less predictive use, as
many patients had treatment changed, by randomization,
soon after diagnosis ; we therefore use the mean of
measurements taken at years 1 and 2 (Table 1).

Model fitting was carried out by maximum likelihood
estimation, for which we used the Newton–Raphson
method with numerical derivatives, as implemented by
the Numerical Algorithms Group C library [40].

Model equations
We give first the model equation for R(t), the probability
(risk) of a CHD event over t years, in a patient with
newly diagnosed diabetes, in the absence of death from
causes other than CHD:

R(t) ¯ 1®exp
1
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factors defined in Tables 2 and 3. Notice that 1®R(t) is
the survival probability for t years from diagnosis of
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Equivalently, let P(t) be the probability of CHD in the
year (t®1, t), in a patient who has survived t®1 years
without CHD. Then the same model gives

P(t) ¯ 1®exp(®qdt−").

The derivation of R(t) and of R
T
(t) from this formula for

P(t) is given in the Appendix.

Robustness of the model
Model assumptions were checked with a series of
diagnostic plots, comparing survival probabilities for the
study population calculated by the model with survival
probabilities for the study population calculated by non-
parametric methods. The non-parametric method used
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was the life-table method with one-year intervals, which
also provides 95% confidence intervals [41]. The mod-
elled survival probabilities were calculated as follows. Let
S
ij

denote the modelled survival probability at j years,
equal to 1®R( j), for patient i. For each year j ¯ 1, …, 20,
let S

j
be the average of S

ij
over all i ¯ 1, …, 4540. Then S

j

is the survival rate for the UKPDS population at j years
predicted by the model.

Proportional hazards assumptions have been verified
with log-cumulative hazard plots. Likelihood ratio tests
were made for interactions between HbA

"c
, systolic

blood pressure and lipid ratio, and for interactions
between each of these and age and sex.

RESULTS

Median follow-up time from study entry to death was
10.7 years, and 10.3 years to death or MI; there were
29878 person-years of follow-up available for model
fitting. The parameter estimates are shown in Table 3. All

Table 3 Parameter estimates by maximum likelihood

Parameter Interpretation Estimate 95% confidence interval

q0 Intercept 0.0112 0.0082–0.014
β1 Risk ratio for one year of age at diagnosis of diabetes 1.059 1.05–1.07
β2 Risk ratio for female sex 0.525 0.42–0.63
β3 Risk ratio for Afro-Caribbean ethnicity 0.390 0.19–0.59
β4 Risk ratio for smoking 1.350 1.11–1.59
β5 Risk ratio for 1% increase in HbA1c 1.183 1.11–1.25
β6 Risk ratio for 10 mmHg increase in systolic blood pressure 1.088 1.04–1.14
β7 Risk ratio for unit increase in logarithm of lipid ratio 3.845 2.59–5.10
d Risk ratio for each year increase in duration of diagnosed diabetes 1.078 1.05–1.11

Figure 1 Observed survival rates from year 4, with 95% confidence intervals and modelled survival rates from year 4, for
years 5–15
(+) Observed values, (- - - -) 95% confidence intervals, (——) modelled.

variables included in the model were significant at P !
0.001 in likelihood ratio tests, except for smoking (P ¯
0.0013). No interactions were found between variables,
with P " 0.25 in all cases tested.

Although triacylglycerols were not significant when
added to the final model (P! 0.5), in a supplementary
analysis they were added to a model that was not adjusted
for lipid ratio, and found to be significant (P ¯ 0.0014;
approximate risk ratio 1.10 per mmol}l). However,
the P-value for the log-lipid ratio was stronger still
(P ! 10−"! ; parameter 3.845, as shown in Table 3).

Figure 1 shows that the survival rates predicted by the
model lie close to the rates observed in the UKPDS, and
well within the non-parametric confidence intervals.
Figure 2 shows the observed and modelled survival rates
separated by HbA

"c
, systolic blood pressure and lipid

ratio, confirming the ability of the model to adjust for
these risk factors.

To illustrate the use of the equation, consider a White
or Asian-Indian male non-smoker, with Type II diabetes
newly-diagnosed at age 45 years, with HbA

"c
¯ 7.5%,
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Figure 2 Modelled and observed survival rates from 4 years
after entry to the study
(a) HbA1c value. (+) Observed, HbA1c % 7.0% ; (- - - -) modelled, HbA1c %
7.0% ; (_) observed, HbA1c " 7.0% ; ([[[[[[), modelled, HbA1c " 7.0%.
(b) Systolic blood pressure. (+) Observed, SBP% 140 mmHg ; (- - - -) modelled,
SBP% 140 mmHg ; (_) observed, SBP " 140 mmHg ; ([[[[[[) modelled,
SBP " 140 mmHg. (c) Lipid ratio. (+) Observed, lipid ratio% 5.0 ; (- - - -)
modelled, lipid ratio% 5.0 ; (_) observed, lipid ratio " 5.0 ; ([[[[[[)
modelled, lipid ratio" 5. 0.

systolic blood pressure 160 mmHg, total cholesterol
4.9 mmol}l, HDL cholesterol 1.0 mmol}l, and no pre-
vious history of CHD. Firstly, lipid ratio ¯ 4.9}1.0 ¯
4. 9. Then, from the equations above:
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Then the risk of CHD within 20 years is :

R(20) ¯ 1®exp²®q[(1®d#!)}(1®d)]´

¯ 1®exp²®0.0883[(1®1.078#!)}

( 1®1.078)]´¯ 1®exp(®0.395) ¯ 0.33

so that there is a 33% chance of a CHD event within 20

years, assuming that death does not occur from non-
CHD causes during those 20 years.

DISCUSSION

Recent papers from the UKPDS group have demon-
strated the continuous nature of glycaemia and blood
pressure as risk factors for CHD [18,19]. New in this
paper is a measure of dyslipidaemia, the ratio of total
cholesterol to HDL cholesterol. The methodology of the
present paper also differs from the previous papers in
ways motivated by the accompanying ‘Risk Engine’
software project [42]. A fully parametric model combines
hazard ratios and absolute event rates in a single equation,
to allow estimation of event rates and survival proba-
bilities in a variety of applications, such as resource use
estimation for health planners, power calculations for
clinical trials, and the estimation of effectiveness and
cost-effectiveness in early stages of drug development
cycles. The model could also be used to project risk
profiles for a given patient, in the manner of the Sheffield
and New Zealand Tables [43,44].

The importance of HbA
"c

as a continuous risk factor
for CHD, in Type II diabetes, is underlined by the results
of Table 4. A causal relationship between glycaemia,
measured by HbA

"c
, and CHD has not been proved [16],

but a predictive relationship has been established [18,45].
These equations model differences in risk factors, but do
not include terms for any specific therapy. This is not
necessary because the effects of the therapies used in the
UKPDS were, for MI, found to be consistent with their
effects on risk factors [18,19]. It is possible that the
additional benefit with metformin observed for diabetes-
related deaths in overweight patients may also apply to
MI [9], but this affects only 308 of the 4541 patients in
this analysis. The widely-used Framingham models are
derived from a population with only 337 diabetic patients
[20], and the Prospective Cardiovascular Munster
(‘PROCAM’) model is derived only from the data from
the men in that particular study [46]. Both these models,
and the Lipid Research Clinics model [47], contain
no measure of glycaemia beyond the presence or absence
of diabetes itself, being designed for general rather
than diabetes-specific application.

Previous silent MI is not considered as a risk factor as
electrocardiography is not routinely performed on diabetic
patients in clinical practice. Neither does our definition
of CHD include silent MI, since silent MI was not an end
point of the UKPDS. Some authors have suggested that
the increased prevalence of silent MI in diabetes is in
proportion to the increase in CHD [48], though evidence
from the Framingham study suggests that this may vary
with sex [49].

The example given in the Results section can be
compared to risk estimates, for equivalent data, made by
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Table 4 Ten-year risk of CHD in patients with newly diagnosed diabetes, by the UKPDS Risk Engine, and by the Framingham
risk profile as implemented by the Joint British Societies Cardiac Risk Assessor Computer Program [28]
Values underlined indicate a risk greater than 30%.

Variables Risk by UKPDS Risk Engine (%) Risk by Framingham (%)

Present age (years) Sex Smoking Systolic BP (mmHg) Lipid ratio HbA1c (%)… 6 8 10 All values

55 Female No 140 4.0 5.7 7.9 10.9 12.6
55 Female No 140 8.0 13.9 18.9 25.4 25.6
55 Female No 160 4.0 6.7 9.3 12.7 15.3
55 Female No 160 8.0 16.2 21.9 29.3 29.4
55 Female Yes 140 4.0 7.6 10.5 14.4 19.2
55 Female Yes 140 8.0 18.2 24.6 32.6 34.5
55 Female Yes 160 4.0 8.9 12.3 16.8 22.6
55 Female Yes 160 8.0 21.2 28.4 37.3 38.6
55 Male No 140 4.0 10.6 14.5 19.7 13.4
55 Male No 140 8.0 24.8 32.9 42.7 26.7
55 Male No 160 4.0 12.4 16.9 22.9 16.2
55 Male No 160 8.0 28.6 37.6 48.3 30.6
55 Male Yes 140 4.0 14.0 19.1 25.6 20.2
55 Male Yes 140 8.0 31.9 41.6 52.9 35.7
55 Male Yes 160 4.0 16.4 22.1 29.5 23.7
55 Male Yes 160 8.0 36.5 47.1 59.0 39.9

the Institute for Medical Informatics and Biostatistics
(IMIB) diabetes model and the Global Diabetes Model
(GDM) [15]. First, the estimate from our model (33%)
must be adjusted for the competing risk of death from
non-CHD causes. Using a previously published simple
life-expectancy model, this reduces the 20-year risk of
CHD from 33% to 29% [50]. The IMIB model, derived
from the Framingham equations, estimated a 23% chance
for MI for equivalent data ; since the IMIB endpoint does
not include sudden cardiac death, this is similar to our
29% estimate. The GDM, derived from the Framingham
equations and a Kaiser–Permanente data set, estimated a
probability of only 10%. Explanations for the discrep-
ancy between IMIB and the GDM results include a low
rate of MI in the Kaiser–Permanente cohort, and differing
assumptions about risk for CHD following another
vascular event [15]. This marked difference, between two
applications of the same (Framingham) model, illustrates
the difficulties that can arise in the application, as well as
in the development, of risk models.

Since HbA
"c

, blood pressure and lipid measurements
are all subject to within-person variation, users of the
model should consider the effect of regression dilution
on estimates [51]. Where possible, we recommend using
measurements of similar variability to our own (the mean
of two measurements taken at different times) so that no
correction for regression dilution is necessary. In the
Appendix, we supply information on the adjustments to
be made to the parameters when this is not possible.

The data from which our model derives is restricted to
those patients recruited by the UKPDS for randomi-

zation in a clinical trial. Consequences include the
restriction of the data to those aged 65 or under at
diagnosis of diabetes, and the exclusion of those with
recent major heart disease or stroke [33]. Ideally, the
model would be derived from a large-scale epidemiological
study of diabetic patients. Until such a model is
published, our model has significant advantages for
diabetic patients over other published models : particu-
larly, the inclusion of HbA

"c
, as discussed above.

The exclusion from the model-fitting process of years
0–4 of the study data is one consequence of the use of a
clinical trial, with selection criteria, rather than a truly
population-based study. The first years of the study were
known to have mortality rates lower than in the general
population [39], and the exclusion of years 0–4 is both
necessary (results not shown) and sufficient (Figures 1
and 2) for a good model fit. However, application for
patients with less than 4 years of diagnosed diabetes
involves backward extrapolation. The reliability of the
model for forward extrapolation has been examined
using temporal cross-validation methods, and is avail-
able from URL: http:}}cs.portlandpress.com}cs}101}cs
1010671add.htm. A more stringent test will be possible
when data from UKPDS post-study monitoring are
published, but this does not remove the need to test the
generalizability of the model to other populations. We
hope that the provision of the equations in software form
[42] will encourage the comparison of the model to
cohorts being studied elsewhere.

The potential applications of this model are many. A
variation of the model was used to estimate increases in
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life expectancy in UKPDS cost-effectiveness analyses
[52–54]. The model can be used by health planners to
estimate resource use, and, in conjunction with preva-
lence figures, the burden of complications. We intend to
provide the model as a software package including the
‘Risk Engine’ that should prove useful to health care
providers, health economists, clinicians and people with
diabetes. The software will be distributed free of charge
to non-profit organizations.
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APPENDIX

Choice of model
This model form was chosen for its interpretability in
diabetic patients, and for its close fit to the UKPDS data.
It was motivated by the approximate multiplicative effect
of age on risk observed in the UKPDS. For example,
categorizing age at entry to study into ten-year groups,
univariate Cox proportional hazards modelling finds risk
ratios relative to the 35–45 age group are 1.73 for age
group 45–55 and 2.98 for age group 55–65. Since 1.73#¯
2.99, this strongly suggests a model of the form

P(t)£βAGE for some parameter β. The model we have
used has the approximate property P(t)£β

"

AGE[dt, so
that risk increases by a factor of β

"
with each year of age

at diagnosis of diabetes and by a factor d with each year
subsequent to diagnosis of diabetes. The model may
therefore be interpreted as one in which the risk of CHD
increases with age, but the risk increases more per year
after diagnosis of diabetes, as is suggested by previous
analyses of data on Q-wave infarction and hypertension
[31].

Regression dilution
The term ‘regression dilution’ describes the behaviour of
parameter estimates in regression and in survival analy-
sis when a predictor variable cannot be measured
precisely, for example, due to within-subject bio-
variability. As uncertainty increases in the measurement
of the predictor variable, the apparent size of the effect
parameter is decreased or ‘diluted’ [55]. We used a
maximum likelihood method to estimate the extent of
this effect for HbA

"c
, systolic blood pressure and log-

lipid ratio in our model. The method estimates a
correction factor for the log of each effect parameter [51].
The method is not exact for a proportional hazards
model, but the approximation is good for a study with
high levels of censoring [56]. The estimated correction
factors are 1.33 for HbA

"c
, 1.25 for systolic blood

pressure and 1.22 for the lipid ratio (total cholesterol to
HDL cholesterol. These imply that, were the model to be
applied to perfect measures of each variable, β

&
should be

increased to 1.183".$$¯ 1.250, β
'

to 1.088".#&¯ 1.111,
and β

(
to 3.845".##¯ 5.171. Since variables are centred

around their means in the model equation (for example,
HbA

"c
is used as H®6.72), no adjustment is required to

the intercept parameter q
!
.

These corrections have not been incorporated into the
parameter estimates in Table 3, as users of the model will
in general also have imprecise measurements of HbA

"c
,

blood pressure and lipids for any given individual.
Assuming the values entered into the model were
recorded with similar precision to those on which the
model was built, no correction is necessary. The corrected
parameters should only be used where all biovariation
has been removed; for example, by taking the average of
a very large number of measurements.

Conversely, users may have estimates less precise than
our own, such as a single measurement of HbA

"c
where

we have used a mean of two values. In this case the
parameter values in Table 3 would be over-estimates, and
β
&
, β

'
, and β

(
should be decreased to 1.144, 1.073 and 3.11

respectively. To derive these, note that it follows from the
derivation of the maximum likelihood method that if the
correction factor for the mean of two readings of a
variable is 1(λ}2), then the correction factor for the
same variable measured with a single reading is (1λ).
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For HbA
"c

, for example, the correction factor for the
two-point mean was 1.33 ¯ 1(0.66}2) ; now observe
that 1.144("+!.'') ¯ 1.250, and so 1.144 is the estimated
value that β

&
would have taken had it been derived from

single measures of HbA
"c

, rather than two-point means.

Mathematical properties of the model
equation
Recall the formula

P(t) ¯ 1®exp(®qdt−"),
where

q ¯ q
!
β
"

AGE–
&&β

#

SEXβ
$

AC

β
%

SMOKβ
&

H–
'.(#β

'

(BP−"$&.()/"!

β
(

ln(LR)−".&*.

From the Taylor expansion

exp(®x) ¯ 1®x(x#}2)O(x$),

where O(x$) denotes terms in x$ and higher powers of x,
it follows that

1®exp(®x) ¯ xO(x#),

and so for typically small values P(t) is approximately
equal to qdt−". For example, P(t) ¯ 0.049 when qdt−".
Then

P(t)E qdt−"¯ q
!
β
"

AGE–
&&β

#

SEXβ
$

AC

β
%

SMOKβ
&

H−'.(#β
'

(BP−"$&.()/"!

β
(

In(LR)−".&*dt−",

and the model is approximately a proportional hazards
model on discrete time with baseline hazard function
q
!
dt−" and risk ratios β

"
, …, β

(
. It also follows that q

!
has

an interpretation as the approximate probability of CHD
in the first year of diagnosis for a 55-year old, non-
smoking White or Asian-Indian male with H ¯ 6.72, SBP
¯ 135.7 and LR ¯ exp(1.59) ¯ 4. 9. To see that the
formula for P(t) is equivalent to the formula for R

T
(t),

define S
T
(t) ¯ 1®R

T
(t). Then

S
T
(t) ¯ [1®P(T1)][1®P(T2)] …

[1®P(it)] ¯ exp[®q(dTdT+" …

dT+t−")] ¯ exp[®qdT(1®dt)}(1®d )]

by application of the standard formula for a geometric
progression, and the formula for R

T
(t) follows. Then R(t)

is the special case T ¯ 0.
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