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Abstract. We address the problem of how cooperative (altruistic-like) behavior
arises in natural and social systems by analyzing an Ultimatum Game in complex
networks. Specifically, players of three types are considered: (a) empathetic,
whose aspiration levels, and offers, are equal, (b) pragmatic, who do not
distinguish between the different roles and aim to obtain the same benefit, and
(c) agents whose aspiration levels, and offers, are independent. We analyze the
asymptotic behavior of pure populations with different topologies using two kinds
of strategic update rules: natural selection, which relies on replicator dynamics,
and social penalty, inspired by the Bak–Sneppen dynamics, in which players are
subject to a social selection rule penalizing not only the less fit individuals, but
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also their first neighbors. We discuss the emergence of fairness in the different
settings and network topologies.

Keywords: network dynamics, applications to game theory and mathematical
economics, socio-economic networks
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1. Introduction

Human cooperation has been the focus of intense debate within the theoretical framework
of evolutionary theories for a long time [1, 2]. In particular, altruistic behavior, in
which individuals perform acts costly to themselves to confer benefits on the rest of the
population, has often been identified as a key mechanism for cooperation. A number of
theoretical approaches have been developed to explain the emergence of human altruism.
Kin selection theory [3] accounts for situations in which it pays (inclusive fitness) to
help relatives that share some fraction of the genetic pool. In the absence of such
kin relationships, repeated interactions have also been shown to lead to cooperation,
as well as different kinds of reciprocity mechanisms [2], [4]–[6]. Recently, a series of
behavioral experiments in which interactions are anonymous and one-shot have shown that
humans can punish non-cooperators (altruistic punishment) and reward those individuals
who cooperate (altruistic rewarding) [2], [7]–[10]. This so-called strong reciprocity can
actually explain the observed cooperative behavior in terms of group and cultural selection.
However, standard evolutionary game theory is still far from explaining how cooperation
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may arise from selection at the individual level. Recent steps in this direction [11]
have contributed to filling this gap, although a general theoretical framework is still
needed.

On the other hand, recent discoveries on the architecture of biological, technological
and social systems have shown that the structure of these systems has important
consequences for their dynamical behavior [12, 13]. In particular, the dynamical features
observed for heterogeneous, scale-free networks are radically different from those for
homogeneous networks. This difference is due to the presence of highly connected
nodes. For instance, in epidemic spreading, the hubs are very efficient in propagating
the disease [14, 15], to the extent that in heterogeneous networks the epidemic threshold
vanishes in the limit of infinite system size. In some other processes, the hubs play the
opposite role. An example is given by rumor spreading [16], for which a larger number
of ‘infected’ nodes are obtained in homogeneous networks. Finally, there are situations
where hubs play a more subtle role. This is the case for synchronization phenomena [17].
In many systems, scale-free (SF) networks exhibit a smaller threshold for the onset of
synchronization. However, the stability of the fully synchronized state is less robust in SF
networks than in random graphs.

Motivated by the aforementioned results, studies of evolutionary game theory models
on heterogeneous networks have attracted great attention in the last few years [6], [18]–
[24]. Issues such as the influence of the social structure in cooperative behavior, as well
as the role of the highly connected nodes, have been mainly explored in the context of
the Prisoner’s Dilemma [19]–[21, 23]. The results obtained indicate that SF networks are
best suited to support cooperation and that hubs play a fundamental role in spreading
cooperation through a positive feedback mechanism, even when this is expensive. The
same kinds of results have been recently reported for public good games [25].

Here we focus on the Ultimatum Game (UG), another kind of game extensively used
to model altruistic behavior [26], but not adequately explored in the context of complex
networks, though spatial effects have been considered to some extent (see for instance [27]
for the UG model on regular 1D and 2D lattices). The standard UG considers that two
players bargain to divide a fixed reward between them. Suppose that one of these play-
ers acts as proposer, offering a division of the reward. The other, henceforth called the
respondent, can accept or reject this proposal, but cannot make a counter-offer. If the
respondent accepts, the reward is divided as agreed; otherwise both receive nothing. For a
one-shot game played anonymously, the rational solution (the subgame perfect Nash equi-
librium solution) is that in which the proposer would offer the smallest possible share and
the respondent would accept it. However, plenty of experimental results indicate that the
rational solution is not what actually happens. For instance in the social context, it has
been shown that the mean offer is usually between 40% and 50% and that offers below 20%
of the reward are often rejected [28, 29]. This has been interpreted as an example of altru-
istic punishment [7, 10], i.e., the tendency to impose sanctions on unfair individuals with a
cost for the punisher. However, costly punishment has been proven [30] to be maladaptive
(winners do not punish) which leaves open the question of how this trait has evolved.

We implement here two kinds of evolution rules (see below): one is fitness dependent
and is based on a pairwise comparison, in the spirit of [21, 23], and the second one is
inspired by the Bak–Sneppen model [31]–[33] of punctuated equilibrium. Summing up,
in the present work, we study an UG model on Erdős–Rényi and scale-free networks
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The Ultimatum Game in complex networks

with three different kinds of settings of the parameters characterizing the players. The
asymptotic evolutionary states reached following the two update rules cited above are
analyzed and compared in the three different frameworks.

2. The model

In our model we consider N individuals associated with the nodes of a graph. The graph
topologies that we will study are of two different kinds: Erdős–Rényi (ER) and scale-free
(SF) networks. An ER network is characterized by a degree distribution that decays
exponentially for large k, while in a SF network the degree distribution follows a power
law of the form Pk ∼ k−γ . We consider SF networks with γ ≈ 3 [34]. Therefore, while in
ER networks the number of contacts shared by individuals shows a finite variance, in SF
networks we find nodes, usually referred to as hubs, that interact with a large fraction of
the population.

2.1. Playing the Ultimatum Game

The individuals on the nodes of the aforementioned networks play the Ultimatum Game
(UG). At each time step, each individual plays a round robin of the game with all its
neighbors, as dictated by the graph. In each round, individuals play the UG twice with
each neighbor, both as proposers and as respondents. The reward to divide in each of
these two games is equal to 1. An individual i (i = 1, . . . , N) is characterized by two
parameters: pi, qi ∈ [0, 1]. When i acts as proposer it offers a division pi of the reward, so
that the respondent will earn pi if the proposal is accepted. Instead, when agent i plays
as respondent, it will accept only offers larger than its acceptance threshold qi. Therefore,
when two individuals (i, j) bargain, their payoffs, Πi and Πj, evolve according to the
following rules:

• Player i offers the amount pi to j. If pi ≥ qj , the offer is accepted and the payoffs of
i and j are incremented by ΔΠO

ij = (1 − pi) and ΔΠR
ji = pi respectively. Conversely,

if pi < qj , agreement is not possible and both players get nothing and their payoffs
remain the same, ΔΠO

ij = ΔΠR
ji = 0.

• When player i is the respondent, the same rules apply. Therefore, upon agreement
(pj ≥ qi), players i and j increase their payoffs by ΔΠR

ij = pj and ΔΠO
ji = (1 − pj)

respectively.

The final payoffs of a node i after playing with all its neighbors is

Πi =
∑

l∈Γi

(ΔΠO
il + ΔΠR

il ), (1)

where Γi denotes the set of i’s neighbors.
In the following, we will study three different settings for the values of the parameters

pi and qi:

(A) For each agent i, pi = qi [35]. This is usually called a fair or empathetic setting since
each agent offers the same reward that it is disposed to accept.

(B) For each agent i, pi = 1 − qi [36]. This is a role ignoring or pragmatic setting since
each agent wants to get the same reward both as respondent and as proposer.

(C) The values of pi and qi are independent for each agent.

doi:10.1088/1742-5468/2009/09/P09012 4

http://dx.doi.org/10.1088/1742-5468/2009/09/P09012


J.
S

ta
t.

M
e
c
h
.

(2
0
0
9
)

P
0
9
0
1
2
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The second choice B stands for a situation in which players do not differentiate
between roles (role-ignoring agents). In other words, regardless of whether they act
as proposers or responders, they are determined to obtain a fixed quantity from each
interaction, so qi = 1−pi [36]. This situation is in contrast with the case of an empathetic
or fair and role-distinguishing setting A, according to which individuals do distinguish
among roles. In this case the threshold of acceptance is set equal to the one for proposals
(qi = pi), so as to get half of the total stake on average. Finally, in the third setting C
the quantity offered and the threshold of acceptance are completely independent as in the
original formulation of the UG.

Note that in both cases A and B, the corresponding relations p(q) allow one to obtain
simple rules for the conclusion of a deal between two players. Given that the offer pi

proposed by player i is accepted by j only if pi ≥ qj we have the two following scenarios:

(A) Case p = q: if pi �= pj , i and j always conclude a deal, but only in one of the two
directions. In particular, the accepted offer is the largest one: max{pi, pj}. If for
example pi > pj, the payoffs are incremented as follows:

ΔΠij = ΔΠO
ij = 1 − pi, (2)

ΔΠji = ΔΠR
ji = pi. (3)

If pi = pj the deal is concluded in both directions and their payoffs are incremented
with ΔΠij = ΔΠji = 1, which is the maximum possible reward after the interaction
between two players of type A.

(B) Case p = 1 − q: both players i and j will obtain rewards both as proposers and
respondents if the condition pi + pj ≥ 1 is verified. In this case, their payoffs are
incremented as follows:

ΔΠij = ΔΠO
ij + ΔΠR

ij = (1 − pi) + pj , (4)

ΔΠji = ΔΠO
ji + ΔΠR

ji = (1 − pj) + pi. (5)

When pi + pj < 1 no payoff is obtained in the round.

We illustrate the different orderings in payoffs for the two kinds of players in figure 1.

2.2. Updating the strategies

Once a player has bargained with all its neighbors, the accumulated payoff drives the
update of their strategies. This update process takes place at the individual level, in the
same spirit as in [11], and follows two different schemes.

• Natural selection. In this framework, originally introduced in [37, 38], each player i in
the network selects at random one neighbor j and compares its payoff Πi with that
of j, Πj. If Πj > Πi, player i adopts the strategy of j, (pj , qj), for the next round of
the UG with a probability proportional to the payoff difference:

Pij =
Πj − Πi

2 max{ki, kj}
, (6)

where ki and kj are the degrees of i and j respectively. However, if Πi ≤ Πj , i keeps
its strategy for the following round.
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The Ultimatum Game in complex networks

Figure 1. The figures show the partition of the strategies space for two UG
players (i and j) into different regions. Each of these regions is labeled according
to the payoff ordering: green areas correspond to the case Πi > Πj, blue areas to
Πj > Πi. The regions in white correspond to the case of a zero reward for both
players, Πi = Πj = 0. (See the text for the details.) (a) p = q and (b) p = 1 − q.

• Social penalty. The player with lowest payoff in the whole population and its
neighbors, no matter how wealthy they are, are removed. These agents are replaced
in their nodes by new players with random strategies (so that they only inherit their
contacts).

In the case of natural selection, there is a pairwise comparison thanks to which fittest
strategies are replicated with a rate proportional to their success, with the result of
eventually spreading over the whole population [21]. As we will discuss, these dominant
strategies might not promote the welfare of the population since they act at a local level.
In contrast, social penalty acts at the global level; the removal of all the neighbors of the
least fit agent is a catastrophic effect triggered by its extinction (see [31] for a discussion on
the evolutionary justification of this updating rule) and not related to individuals’ fitness
but to the network of interactions. This undiscriminating (and likely unfair) social penalty
is imposed on those agents that in the community are responsible for the low fitness of the
dying agent; thus it is quite different from the current notion of (altruistic) punishment
commented on above. With this evolutionary rule, a player, in order to survive, has to
take care not only of its payoff, but also of the neighbors’ one: if an individual exploits its
neighborhood so that it takes a large stake of the total reward, it would risk being dropped
out of the game as a result of one of its neighbors being that with the lowest payoff in
the population of players. In both the social penalty and natural selection contexts, after
the implementation of the update rule, the payoffs of the agents are reset to zero. This
means that players have no memory of the previous round payoffs, although they keep
their strategies; consequently it is a one-shot game and no mechanism of reputation has
been explicitly introduced [36].

In the following, we will analyze the scenarios concerning these two updating rules in
ER and SF topologies for the three strategic settings A, B and C introduced above.
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The Ultimatum Game in complex networks

3. The Ultimatum Game with natural selection

The behavior of players of type A (empathetic) and B (pragmatic) can be easily predicted
in a well-mixed population when a replicator-like dynamics is at work. Because of this, in
the following two subsections we will first discuss the evolution of the game in a well-mixed
population and then compare it with the numerical results obtained for homogeneous and
heterogeneous networks.

3.1. Networks of type A players (p = q)

As mentioned above, in a round robin between two empathetic (q = p) players i and j the
largest offer, say pi, is always accepted by the player offering less, hence j, and the payoffs
obtained will be those of equations (2) and (3). In the case of pi > pj, two situations
are possible: (i) pi > 0.5, yielding Πj > Πi, and (ii) pi < 0.5, yielding Πi > Πj (see
figure 1(a)).

In the case of the dynamics of a well-mixed population where all the individuals
interact with the rest of the players, given the distribution D(p) of offers in the population
one finds that the payoff received by the strategist offering x is Π(x) = G(x)+ 〈p〉−H(x)
where

G(x) = (1 − x)

∫ x

0

D(p) dp, (7)

H(x) =

∫ x

0

pD(p) dp, (8)

〈p〉 =

∫

1

0

pD(p) dp. (9)

In the case of replicator dynamics, the increase or decrease of the fraction of players
using strategy x is determined by Π(x) − 〈Π〉, 〈Π〉 being the average payoff in the
population. For a uniform distribution D(p) = 1 one obtains Π(x) − 〈Π〉 = x − 3x2/2
and one concludes that from an initial uniform distribution the highest values of p will
soon become extinct, and the highest increase in frequency will occur for values centered
at x = 1/3. Once most of the players use offers below 1/2, the selective advantage is
for players with higher p (below 1/2). Thus, one expects the values of p to concentrate
at p = 1/2. This two-stage dynamics will be obtained also in the context of complex
networks.

We show the results obtained with this dynamics on top of ER and SF networks. In
both cases the networks have N = 104 nodes and average degree 〈k〉 = 4. The evolutionary
dynamics starts with assigning to each individual of the population a random offer pi

(and thus pi = qi) uniformly distributed in the interval [0, 1]. Then, we follow the system
evolution for a number of time steps until a stationary regime is reached. The results
presented are averaged over at least 103 realizations of both the underlying network and
the initial conditions.

Figures 2(a) and (b) show the time evolution of the distribution of offers D(p) in
the population for both ER and SF networks. It is evident that for ER networks the
distribution D(p) after t = 2 × 104 generations shows qualitatively the shape predicted
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The Ultimatum Game in complex networks

Figure 2. Distribution of offers D(p) for ER and SF networks in the cases p = q

((a) and (b)) and p = 1 − q ((c) and (d)) when a replicator-like update rule,
equation (6), is at work.

using the well-mixed assumption. Moreover, the two-stage evolution explained above is
also confirmed by looking at the time evolution of D(p). From t = 1 to 102 the strategists
with p > 0.5 are removed and invaded by those players with low values of p. After this
initial stage, the flow of strategies goes from low values of p towards p = 0.5, reaching the
final distribution peaked at p ≃ 0.5 with a fast decaying tail at p < 0.5.

In the case of SF networks the asymptotic distribution of offers D(p) becomes broader
with respect to ER graphs. Remarkably the two-stage process is also observed since most
of the strategies with large values of p are removed in the first time steps. On the
other hand, at variance with the ER networks case, some strategies with p > 0.5 survive
in the final population. This result is the consequence of having individuals, named
hubs, with large degree kh > 〈k〉. The analysis of a ‘coarse-grained’ picture of a degree-
homogeneous population of size N and mean degree 〈k〉 with an individual connected to
a large number, kh, of individuals of this population can help us to understand what takes
place for SF networks. Suppose that the population has reached its internal equilibrium
and therefore pi ≃ 0.5 for all its members. In the case ph < 0.5 (selfish hubs), a hub
obtains a payoff Πh = kh/2 while the members of the population connected to the hub

doi:10.1088/1742-5468/2009/09/P09012 8
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obtain Πi = 〈k〉+1/2. In this case, the hub survives (i.e. satisfies Πh ≥ Πi) for every value
ph < 0.5 provided that kh ≥ 2〈k〉 + 1, a condition that is easily verified in SF for large
degree nodes. On the other hand, if ph > 0.5 (generous hubs) we have Πh = kh(1 − ph)
and on average 〈Π〉 = 〈k〉 + ph for the individuals connected to the hub. Therefore, if
generous hubs are to survive in the system they cannot offer more than ph ≤ (1−〈k〉/kh).
This maximum offer tends to 1 as kh grows, thus explaining the existence of a tail for
p > 0.5 in the distribution D(p) of SF networks. In both cases, the strategy of the hubs
is eventually replicated by the rest of the population and after enough generations the
payoff of the hub is Πh = kh while 〈Π〉 = 〈k〉 for its neighbors. Hence, heterogeneity can
help the fixing of altruistic behavior in nodes provided they have a large enough number
of contacts to obtain enough payoff.

3.2. Networks of type B players (p = 1 − q)

Let us now focus on case B. In this context, two players i and j conclude a deal only
when pi + pj ≥ 1. If this condition holds, the consensus is automatically reached in both
directions, and the payoffs of the players are those specified in equations (4) and (5). The
line (see figure 1(b)) pi = 1 − pj separates the area of unsuccessful strategies (below the
line), since no payoff is obtained, from that of the successful ones (above the line). This
latter region can be further divided into two triangular areas: that of pi > pj , yielding
Πj > Πi, and that of pj > pi, giving Πi > Πj . Obviously, the border between the two
regions is specified by pi = pj (see figure 1(b)).

For a well-mixed case with a distribution density of offers D(p), the payoff of strategist
x is Π(x) = G′(x) + H ′(x) where

G′(x) = (1 − x)

∫

1

1−x

D(p) dp, (10)

H ′(x) =

∫

1

1−x

pD(p) dp. (11)

For an initial uniform density D(p) = 1, one obtains Π(x) − 〈Π〉 = −3x2/2 + 2x − 1/2
whose graph is the mirror-symmetric version, around x = 1/2, of the one obtained for
type A players. Thus, one expects a fast extinction of lowest offers and an initially higher
growth of offers around 2/3. Once offers below 1/2 become extinct, one easily realizes that
for any arbitrary corresponding density (D(p) = 0 for p < 1/2), Π(x) − 〈Π〉 = 〈p〉 − x, so
the selective advantage is for offers as close to p = 1/2 as possible. Therefore one expects
a progressive displacement to p = 1/2 values of the maximum of the evolving density.

When performing simulations of B players on ER networks, similarly to what happens
for A players (see section 3.1), the asymptotic distribution of offers agrees with the well-
mixed predictions, as figure 2(c) confirms. Here the distribution at t = 2 × 104 shows a
peak at p = 0.5 and a fast decaying tail for p > 0.5. This tail proves that strategies move
towards p = 0.5 from the right, i.e. from the successful region of the N -dimensional space.
Remarkably, the strategies with p < 0.5 are totally removed from the population already
at t = 100.
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The distribution of offers D(p) in SF networks, figure 2(d), also shows a peak around
p = 0.5 but with a tail for p > 0.5 decreasing more slowly than in ER networks.
This behavior can be explained again with the presence of highly connected players.
Following the same argument as was used for A players, a hub with an offer ph > 0.5,
connected to a large number kh of individuals with p ≃ 0.5 and mean degree 〈k〉, obtains
a payoff Πh = kh(3/2− ph), whereas for the individuals connected to the hub, on average
〈Π〉 = 〈k〉+ph +1/2. In this setting, the hub will survive and spread its strategy provided
ph ≤ (3/2 − 〈k〉/kh). Therefore offers of hubs can also reach p = 1 as observed in the
distribution D(p) for SF networks. Like in the case of type A players, once the hub’s
neighbors have imitated its strategy the payoffs of the hub and its neighbors are Πh = kh

and 〈Π〉 = 〈k〉 respectively. In the case ph < 0.5, since the condition ph + pi ≥ 1 is no
longer verified, the region with p < 0.5 keeps on being forbidden, in agreement with the
sharp decay of D(p) in figure 2(d).

Interestingly, at variance with the case for type A players in which the unsuccessful
strategies of the well-mixed case (p > 0.5) are allowed for the high degree nodes of SF
networks, in the case of B players the unsuccessful region of strategies of the well-mixed
limit (p < 0.5) is always empty, regardless of the underlying topology of interactions.

3.3. Networks of type C players (independent p and q)

Finally, we explore the situation according to which players are allowed to choose their
offers p and acceptance thresholds q independently. In figures 3(a) and (b) we plot the
distribution of offers D(p) for ER and SF networks respectively. Remarkably the two
distributions show a maximum around p ≃ 0.3, indicating that offers are quite poor in
this third setting. In the case of ER, nearly all the offers are concentrated around the
maximum and time evolution shows that large offers disappear first from the population,
like for the case of players A on ER networks. For SF networks D(p) is remarkably
broader, having nonzero values for the entire range of p ∈ [0, 1]. Therefore, only in SF
networks do we observe some degree of altruistic behavior, although the probability of
finding offers with p > 0.5 is lower than that for p < 0.5.

Turning our attention to the distribution of acceptance thresholds D(q) (figures 3(c)
and (d)) we observe that the two networks present quite similar behaviors since in both
players accept low offers although they are still far from a fully rational behavior (q = 0).
In particular, for ER networks any offer above 0.4 will be accepted. In the case of
SF networks this global threshold is slightly larger, although the probability of finding
acceptance thresholds with q > 0.5 is extremely low. Interestingly, in both distributions
we find that the probability of finding players with q = 0 is nonzero.

We have also checked what the correlation, if any, is between the values of p and q
chosen by the players in order to unveil whether there is a natural tendency towards one of
the two settings A (p = q) and B (p = 1− q). In figure 4 the two scatter plots are realized
by representing the set of individual strategies {(pi, qi)} observed in the asymptotic state
for several realizations of the UG dynamics. In both ER (figure 4(a)) and SF (figure 4(b))
networks one can observe that pi ≥ qi holds for most of the populations. This tendency
clearly indicates that players are neither of type A nor of type B, although, given the
low value of the average offer p ≃ 0.3, their behavior resembles more that of players of
type A.
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Figure 3. The distributions of offers D(p) ((a) and (b)) and of acceptance
thresholds D(q) ((c) and (d)) for ER ((a) and (c)) and SF ((b) and (d)) networks
when a replicator-like update rule, equation (6), is at work.

3.4. Degree of selection

From the scatter plots in figure 4 we observe that the strategies in ER networks fill the
unit square more densely than the strategies in SF ones. This result indicates that the
selection of strategies is larger for SF networks, i.e. the number of strategies that survive
in SF networks after natural selection is remarkably lower than for homogeneous networks.

In figure 5 we report the fraction of different strategies found in a population of ER
and SF networks once the dynamical equilibrium is reached. It is clear that in SF networks
selection acts more strongly than in homogeneous populations since after selection takes
place only a few strategies remain. We have checked that this is due to the presence of hubs
and their ability to replicate their strategies across their surroundings (that usually involve
a large fraction of the population). In particular, for the cases of A and B players, we
have already shown that a hub can play the UG successfully with a well-mixed population
using a broad range of p values; namely, in the thermodynamic limit (kh → ∞), we have
ph ∈ [0, 1] for type A and ph ∈ [1/2, 1] for type B. Any of these values of p, when replicated
by the well-mixed population in the next generations, will increase the payoff difference

doi:10.1088/1742-5468/2009/09/P09012 11

http://dx.doi.org/10.1088/1742-5468/2009/09/P09012


J.
S

ta
t.

M
e
c
h
.

(2
0
0
9
)

P
0
9
0
1
2

The Ultimatum Game in complex networks

Figure 4. Scatter plot of the individual strategies (pi, qi) in the asymptotic regime
for ER (a) and SF (b) networks. For the ER case we have plotted the agent
strategies {(pi, qi)} corresponding to four randomly chosen realizations, whereas
for SF networks eight realizations have been used. From the plots it is clear that
in most cases pi > qi in both topologies.

Figure 5. Degree of selection, measured as the number of different asymptotic
strategies divided by N , for ER and SF networks in the three different settings:
(A) p = q, (B) p = 1 − q and (C) p and q independent.

between hubs and the rest of the individuals. Therefore, the dynamics of the well-mixed
population in contact with the hub is finally frozen with the p value dictated by it. From
figure 5 it becomes clear that the same happens for populations of C players. Note also
that the fact that the number of different strategies observed during the equilibrium of
SF networks is smaller than that in ER networks is not inconsistent with the fact that
the distribution D(p) in SF displays long tails since this distribution is constructed by
averaging over many different equilibria.
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4. Social penalty

In this section, we change the scenario for the selection rule of strategies, focusing on
the application of the so-called ‘social penalty’ after each round robin of the UG. Let us
remark that, with this evolutionary rule, in order to survive a player has to take care
not only of its payoff, but also of those of its neighbors, since the poorest player of the
network is replaced together with all its neighbors. Therefore, if an individual exploits its
neighborhood so that it takes a large stake of the total reward, it would risk being dropped
out of the game as a result of one of its neighbors being that with the lowest payoff in
the population of players. Consequently, what drives the evolution of the distribution of
p values among the population is the balance between the conflicting interests of earning
more (to avoid being the poorest) and earning less (to avoid being stigmatized). This
conflict could, in principle, be solved in the case of hubs in SF networks: being the most
connected elements, hubs are topologically favored to accumulate a large payoff per round.
Therefore a hub can afford large degrees of altruism providing its neighbors with enough
payoff to survive and, at the same time, without any risk of being itself the poorest element
of the population.

Notice that, at variance with the natural selection case, successful strategies do not
replicate but simply survive in the long term. Therefore, as the removed individuals are
replaced by new players with randomly chosen strategies the equilibrium is approached
more slowly than in networks driven by natural selection. The results presented below
correspond to the numerical simulations of the UG dynamics over times up to t = 107,
and averaged over at least 102 different realizations of the networks and initial conditions.

4.1. Networks of type A players (p = q)

In figures 6(a) and (c) we show the evolution of the distributions of offers D(p) of type
A players at different times. In the case of ER networks (figure 6(a)) the distribution is
nearly flat (with slowly decreasing tails at both extremes), indicating that any strategy
can survive in a population of type A players with homogeneous degree. On the other
hand, the case of SF networks (figure 6(c)) reveals a more selective population since a
large number of individuals offer a quantity around p ≃ 0.75. However, although there is
a well-defined maximum, it is evident that nearly all the offers can survive.

The maximum of SF networks can be explained by looking at the mean offer of players
with degree k:

〈p〉k =

∑

{i|ki=k} pi

NP (k)
. (12)

Figure 6(e) plots this quantity as a function of the degree k. It is evident from the
figure that those players with low connectivity (the largest part of the population in SF
networks) are the ones playing with the offers around p ≃ 0.75. On the other hand, offers
from high degree nodes are very low. This latter result indicates that hubs are far from
being altruistic in the case of a population of type A players. Moreover, in the case of
a hub connected to a large number of low degree nodes, the offers from the hub will be
automatically rejected since ph is lower than those offered by the leaves. Besides, since
most of the leaves offer p > 1/2 to the hub, it takes the largest part of the reward in
all of its interactions with the leaves. Therefore, hubs exploit their neighboring leaves
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Figure 6. Distribution of offers D(p) for ER and SF networks in the cases p = q

((a) and (c)) and p = 1 − q ((b) and (d)) when social penalty is used as the
update rule. Panels (e) and (f) show the values of 〈p〉k as a function of k for the
cases p = q and p = 1 − q in SF networks.
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in a population of type A players, thus contradicting the arguments about the need for
generosity from hubs when social penalty is at work.

4.2. Networks of type B players (p = 1 − q)

In the case of type B players the stationary distributions of offers D(p) for ER and SF
networks are shown in figures 6(b) and (d) respectively. Interestingly, the two distributions
show the same average value for the offers, 〈p〉 ≃ 0.5. Though of equal average value,
the distribution densities are strikingly different for the two kinds of networks. While for
ER networks D(p) is almost flat with slowly decreasing tails at both extremes (such as
in the case of type A players), it is bimodal for the SF network. The two local maxima
of D(p) in SF networks are placed at p ≃ 0.3 and 1. In principle this result indicates the
polarization of the population into altruistic and selfish individuals. Therefore, the degree
heterogeneity of SF networks promotes a very different microscopic balance of conflicting
aims, as reflected in the bimodal D(p), with respect to the mostly uniform density of
strategies observed in near homogeneous networks (ER).

The answer for such a bimodal distribution in SF networks can be obtained by looking
at figure 6(f), which shows the dependence of 〈p〉k on the degree of the nodes. In this
case the mean offer is seen to increase with the degree, in agreement with the expected
behavior for high degree nodes in SF networks explained above. Moreover, the hubs of
the network display a completely altruistic behavior p → 1. In this way, since the relation
between the offers of two players pi + pj ≥ 1 must hold in order to conclude a deal, low
degree nodes attached to hubs both achieve the former successful combination of offers
and maximize its reward by choosing low values of p.

It is possible to show that, within the context of a SF network of type B players,
hubs can afford full generosity without any risk. Let us define the ‘interacting degree’ of
node i, kint

i , as the number of neighbors of i with whom it interacts successfully (i.e. those
satisfying pj +pi ≥ 1, the interacting neighborhood). If we consider a hub in a SF network,
kh ≫ 1, then under the assumption that p is distributed in its neighborhood following the
same distribution as in the whole network, we obtain

kint

h
= kh

∫

1

1−ph

D(p) dp = kh(1 − F (1 − ph)), (13)

where F is the (cumulative) distribution function of D(p). Under the same assumptions,
it follows that the payoff received by a hub is

Πh = kh[1 − F (1 − ph)]

[

(1 − ph) +

∫

1

1−ph

p dF

]

, (14)

where the integral is the average of p in the ‘interacting’ neighborhood of the hub.
Provided that this average is larger than θb/kh, the limit when ph → 1 is

lim
ph→1

Πh > θb. (15)

If θb is an upper bound of mini Πi, then a hub will not have the minimum payoff even if
it offers the whole stake and accepts any offer. One can give a simple estimate for the
upper bound θb: for kmin = 2, the less connected nodes offering 0 and linked to two fully
generous neighbors will obtain 4. That is, we can assume θb ≤ 4, in the argument above.
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In other words, if the average value of the hubs neighbors pave > θb/kh (which is at most
4/kh), hubs can give away almost the whole stake. In particular, in the thermodynamic
limit where kh diverges, they can offer p = 1. Therefore, hubs can afford full generosity.
Moreover, they minimize the risk of being stigmatized by adopting high values of p. In
other words, they not only can afford full generosity, but also it is better that they do if
they want their neighbors to be safe.

4.3. Networks of type C players (independent p and q)

We analyze now the case when the values of offers p and acceptance thresholds q are
independent. After having obtained quite different results in populations of type A and
type B players, one of our aims here is to unveil whether any of these latter behaviors is
also observed when players are free to decide the relation between p and q. In figure 7 we
sketch the main results for ER and SF networks.

In the case of ER networks we show in figures 7(a) and (c) the time evolution of the
distributions D(p) and D(q) respectively. It is interesting to follow the time evolutions of
the two distributions. While at t = 104 roughly all the offers and acceptance thresholds
are equally probable, for large enough times the two distributions become bimodal: first,
strategies having p < 0.25 and q > 0.75 are clearly favored; at the same time, both
distributions show a peak at low and high values of p and q respectively. Therefore, the
two distributions are slightly polarized towards high and low values of p and q.

In SF networks the situation is completely different. In figures 7(b) and (d) we find
asymptotic distributions with a well-defined maximum at intermediate values of both p
and q. In particular the two maxima are placed at p ≃ 0.4 and q ≃ 0.6, indicating that
the population converges to an equilibrium where the mean offer is similar to those values
found in experiments whereas the acceptance threshold is larger than what is typically
observed, indicating an idiosyncratic behavior [29]. It is also interesting to report on the
time evolution of the two distributions. From the figure it is clear that at moderate times
t = 104 the population focus on low offers and high acceptance thresholds, a situation in
which a few deals can be concluded and thus the global payoff is minimum. At t = 105 the
low p and high q regions are abandoned and the population tends to concentrate around
the maxima of the asymptotic distributions at t = 106 and then a large amount of deals
can be concluded.

Looking at the distributions of p and q across degree classes, 〈p〉k (figure 7(e)) and
〈q〉k (figure 7(f)), we see clearly that the population occupying the regions around the
maxima of both D(p) and D(q) are those players of low degree. Interestingly, in the case
of 〈p〉k there is a range, from intermediate to high degrees, where a constant average offer
〈p〉k ≃ 0.5 is reached. Similarly, in the same range of degrees, the values of the acceptance
thresholds stabilize around 〈q〉k ≃ 0.2. The overall trends of both functions are that
〈p〉k grows with the degree (similarly to what is found in SF networks of type B players)
whereas 〈q〉k decreases with k. This indicates that high degree nodes, supported in their
topological advantage, accept the low offers from the leaves and offer a large part of the
stake to them, thus favoring their survival.

From figures 7(e) and (f) we can conclude a coarse-grained description of the
population: individuals with high (low) values of p display low (high) acceptance
thresholds. Although this description is based on average values across degree classes
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Figure 7. The distributions of offers D(p) ((a) and (b)) and thresholds of
acceptance D(q) ((c) and (d)) for ER ((a) and (c)) SF ((b) and (d)) networks
when social penalty is used as the update rule. Panels (e) and (f) show the values
of 〈p〉k and 〈q〉k as a function of k in SF networks.
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Figure 8. Scatter plot of the individual strategies (pi, qi) in the asymptotic regime
for ER (a) and SF (b) networks. For both the ER and SF cases we plot the
population of 104 randomly chosen realizations. In both topologies the most
frequent combination that emerges is pi = 1− qi, resembling the case for players
of type B.

it is clear that the assumption p = q is no longer valid when players are allowed to chose
p and q freely. We have checked the true correlation between the individuals values of pi

and qi for ER and SF networks. In figure 8 we show the set values of the pairs {(pi, qi)}
obtained in the asymptotic regime. Surprisingly, the accumulation of points along the
curve p = 1 − q indicates that social penalty promotes in both topologies the same
behavior of type B players for a large part of the population. This result validates the
assumption made above about the two strategic groups in SF networks. Additionally, the
observed trend p = 1− q nicely explains the composition of the two peaks observed in the
distributions D(p) and D(q) in ER networks: the maximum corresponding to large (low)
offers is formed by the same individuals as form the maximum at low (large) acceptance
thresholds.

5. Discussion and conclusions

We have studied the Ultimatum Game when the individuals play among themselves
according to a network of interactions. In the networks considered in this study individuals
can have a homogeneous number of neighbors (Erdős–Rényi graphs) or, in contrast,
present a high degree of heterogeneity in the number of contacts (scale-free networks).
From this perspective, we analyze how the existence of different connectivity classes in
scale-free networks affects the behavior of the system. The Ultimatum Game dynamics
has been studied for three different frameworks: (i) role distinguishing, or empathetic,
agents (players offer the same quantity as they want to be offered), (ii) role ignoring,
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or pragmatic, agents (players want to obtain the same amount both as responders and
proposers) and (iii) agents with independent values for offers and acceptance thresholds.
Besides, we have explored two different mechanisms for implementing the selection rule
at each generation, namely: (i) natural selection, according to which players replicate the
fittest agents, and (ii) social penalty, according to which, at each generation, the poorest
agent is removed together with its neighbors.

Within the context of natural selection we have observed that the results derived from
well-mixed arguments for the case of role distinguishing and role ignoring agents agree well
with those obtained for degree-homogeneous populations, where the distributions of offers
are quite focused around 50%. Instead, in the case of heterogeneous networks, the presence
of highly connected nodes changes the distribution quantitatively (not qualitatively)
making it broader, since hubs can afford to make nearly all possible offers. When agents
are allowed to choose their offers and thresholds of acceptance independently, offers tend
to decrease in both Erdős–Rényi and scale-free graphs to 40%. Surprisingly, thresholds
of acceptance are remarkably low, although they are still far from the rational economic
behavior and almost any offer above the 30% of the stake is accepted. Therefore altruistic
punishment, understood as the rejection of low offers, arises in the context of natural
selection regardless of the underlying topology.

Interestingly, the replication of fittest strategies yields the selection of strategies in the
asymptotic regime being remarkably frequent, especially in the case of scale-free networks.
This selection is explained in terms of the existence of hubs and their ability to obtain a
large reward with a broad range of strategies and thus to dictate the final behavior of the
entire population.

When social punishment is implemented the dynamical behavior of the system
changes radically. With this selection rule agents have to consider not only their own
benefit but also the fitness of their neighbors. Within this context, we have found two
drastically different behaviors for empathetic and pragmatic agents. In particular, for
scale-free networks, low degree nodes and high degree nodes display opposite behaviors in
the two settings. On one hand, in a population of role distinguishing agents, leaves are
those proposing a large portion of the stake (above 50%) whereas hubs show low offers
(below 20%). On the other hand, for role ignoring agents the situation is the opposite,
since large offers (nearly 100%) come from hubs while leaves display selfish behavior. It
is therefore in this latter setting where true altruistic behavior is observed. Note that
altruism arises in a self-organized manner with selection acting locally: highly connected
agents optimize their chances to survive by increasing their generosity, without risking
being ‘the poorest in town’.

Probably the most interesting result is obtained when, in the framework of social
punishment, players can adapt their offers and acceptance thresholds independently.
Surprisingly, the dynamical equilibria of both homogeneous and heterogeneous networks
resemble to a large extent that of role ignoring agents. In particular we have shown that,
in the SF network, the large degree nodes, although not displaying full altruism, offer a
large reward (more than 50%) to their neighbors and accept low offers (below 20%). On
the other hand, the opposite behavior is found in players with few connections. We have
further confirmed that, in the long run, players adapt their strategies and converge to the
setting of role ignoring agents, the framework where full altruistic behavior is observed.
Let us remark that the abundance of highly generous individuals observed when social
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Figure 9. The distributions of offers D(p) ((a) and (c)) and thresholds of
acceptance D(q) ((b) and (d)) for natural selection ((a) and (b)) and social
penalty ((c) and (d)) settings on SF networks. The networks are generated using
the model in [39] and p and q are independent.

penalty is at work does not arise due to reputation [36], nor to the punishment of costly
individuals [30], but from a purely scale-free effect combined with a social enforcement of
altruism.

Finally, we point out that a full and satisfactory understanding of the models exposed
here may well demand studying the dependence on other important topological features
(such as the clustering coefficient, degree–degree correlations, etc) or incorporating the
competition between different kinds of individuals (role ignoring and role distinguishing)
into the model formulation. In particular, we have explored how our results change when
the underlying SF networks have a non-vanishing clustering coefficient when p and q are
independent (type C players). This is not an easy issue, as one should first construct
networks with a tunable clustering coefficient while keeping the rest of the topological
properties unaltered. The model proposed in [39] can be used for such a study as it
generates scale-free networks with varying clustering properties but leaving the rest of
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topological features roughly the same. Our results indicate that no general conclusion can
be reached as the effects of the clustering depend on several factors, of both topological and
dynamical nature. As shown in figure 9, in the case of natural selection, the distribution
D(q) does not change when the clustering coefficient of the networks is increased from
0 to 0.7, while D(p) changes if the clustering coefficient exceeds 0.2 in such a way that
the average offer increases. In contrast, for the social penalty setting, D(p) remains
roughly unaltered whatever the clustering of the network is, whereas D(q) deviates from
its behavior for non-clustered networks as soon as the clustering coefficient is increased,
leading to a distribution with a peak at very high acceptance thresholds. All of these
findings are aspects to explore further in future works.
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[21] Gómez-Gardeñes J, Campillo M, Floŕıa L M and Moreno Y, 2007 Phys. Rev. Lett. 98 108103
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