
XAPP672 (1.0) September 2, 2003 www.xilinx.com 1
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary The UltraController™ embedded processor solution is available as a complete reference
design, with documentation, to be utilized as a lightweight PowerPC™ microcontroller. The
32-bit input / 32-bit output design created as a simple block, ready to integrate into larger
designs, requires only a reset and a clock input. The UltraController solution utilizes the
available PowerPC processor(s) in the Virtex-II Pro™ device and several block RAMs. The
UltraController design is available for a variety of applications including logic and data control,
device configuration, system monitoring, and simple data manipulation. A reference design,
created both in fabric and on the UltraController processor, clearly demonstrates substantial
fabric savings by moving slow logic into the UltraController processor. This allows users to
reduce cost by utilizing smaller devices. A block diagram of the UltraController solution is
shown in Figure 1.

Introduction Technical Advantages

The embedded PowerPC (PPC405) processor in Virtex-II Pro FPGAs gives the UltraController
solution all of the advantages of a system-on-a-chip processor.

• Tight connectivity to fabric reducing latency

• Reduced board area

• Elimination of pins typically required when connecting to an external processor

• Associated power reduction both for the processor, and the switching current required with
an external processor interface.

The simple I/O interface in the UltraController solution eliminates the need for fabric
instantiated busses and thus utilizes less than 50 logic cells. This makes a PowerPC solution
nearly zero cost for simple microcontroller applications.

Application Note: Virtex-II Pro Family

XAPP672 (1.0) September 2, 2003

The UltraController Solution: A
Lightweight PowerPC Microcontroller
Author: Glenn C. Steiner

R

Figure 1: UltraController Block Diagram

GPIO
Interface

PPC405
Core

PowerPC System

I S
id

e
C

on
tr

ol
le

r

D
 S

id
e

C
on

tr
ol

le
r

BRAM BRAM

32

32

x672_01_080703

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

2 www.xilinx.com XAPP672 (1.0) September 2, 2003
1-800-255-7778

Introduction
R

The UltraController solution allows designers to make a trade-off between slow logic
implemented in fabric versus implementing the same control function in the PowerPC
processor. If unused block RAM is available, the logic functions implemented by the PowerPC
processor are free. A reference design created in both fabric and on the PowerPC processor
showed that 2,400 logic cells equated to 16k Bytes of code/data storage. Trade-offs of this type
can save designers from moving to a larger part by transferring slower fabric functions into the
PowerPC processor.

Technical Characteristics and I/O Interface

An UltraController solution utilizing the Power PC Processor includes:

• 32, 32-bit general purpose registers

• 64-bit arithmetic

• 64-bit instruction-side on-chip memory (OCM) block RAM interface

• 32-bit data-side on-chip memory block RAM interface

• 64-bit time-base

• Support for debug through a JTAG port, with available graphical debuggers

There are several advantages to placing code and data in an OCM. The OCM provides a direct
connection to the PowerPC execution unit eliminating the need for an interface bus.
Additionally, using the OCM memory interface guarantees a fixed latency of execution for a
higher level of determinism.

As shown in Figure 2, the UltraController interface includes:

• 32-bit input port

• 32-bit output port

• Reset input

• Clock input

Using external multiplexers, a user can create larger input and output configurations.

The UltraController interface function is implemented via I/O operations utilizing port B of the
data-side block RAM. The UltraController design includes a two-state controller to sequentially
read a dedicated RAM location and latch the information for fabric access in a 32-bit wide
output register; or to read system input data from a 32-bit wide bus into a dedicated RAM
location. User C code is created to write or read from the dedicated I/O locations. A side benefit
of the RAM interface is the ability to read back written data. This allows stateless output
operations to be created via a read, modify selected bits, and write-back operation. As
demonstrated in the reference design, this is easily done in a few lines of C code.

The UltraController reference solution is delivered in two configurations with source examples
and top-level modules in both VHDL and Verilog. Separate downloadable files accomodate a
single processor in a dual processor Virtex-II Pro device. The implementations are shown in
Table 1.

Figure 2: UltraController Interface Block Diagram

gpio_in<0:31> gpio_out<0:31>

sys_clk

sys_rst

x672_02_063003

http://www.xilinx.com

Introduction

XAPP672 (1.0) September 2, 2003 www.xilinx.com 3
1-800-255-7778

R

Implementing an UltraController Design

The UltraController reference design consists of a completed and tested EDK PowerPC design.
The HDL reference implementation provided with this application note includes code examples
in Verilog and VHDL. The PowerPC software reference design example is in C code. The
reference code implements a simple melody repeat game. This implementation provides the
opportunity to demonstrate simple, but common I/O functions necessary in a wide variety of
designs. Contained in the simon.c reference design are module examples of LED and LCD
display drivers, square-wave sound generation, push-button reading, and a software state
machine. The block diagram in Figure 3 shows device signal connections to the UltraController
interface for the reference design.

To demonstrate the flexibility of the UltraController and its interfaces, a frequency counter was
created utilizing the UltraController reference design. The frequency-counter implementation is
not covered in ths application note. The design accepts a 1 Hz to 200 MHz signal input,
simultaneously measures its frequency and period, computes the frequency, and then
automatically scales and formats the output for display on an LCD. This design requires reading
two 32-bit counters and was accomplished by multiplexing the two 32-bit inputs into the 32-bit
input port of the UltraController interface. The diagram in Figure 4 shows the UltraController
frequency counter implementation. Design and debug required less than two days. The
implementation time breakdown follows:

• ½ day for event and time base counter design, simulation, and debug.

• 1 day for software design, implementation, and debug

• ½ day for system integration and debug

Table 1: UltraController Module Names and Memory Characteristics

Module Name Instruction-Side Memory Data-Side Memory

uc_4i_4d 8 KB, four block RAMs 8 KB, four block RAMs

uc_8i_8d 16 KB, eight block RAMs 16 KB, eight block RAMs

Figure 3: UltraController Reference Design
x672_03_081403

Switch Inputs

Clk

32 32

Reset

UltraController

2 x 6
LCD

4 11

4

http://www.xilinx.com

4 www.xilinx.com XAPP672 (1.0) September 2, 2003
1-800-255-7778

Using the UltraController Reference Design
R

Using the
UltraController
Reference
Design

Reference Design Environment

The UltraController reference design requires the following Xilinx software products to build a
system:

♦ ISE - Version 5.2.03i (Service Pack 3)

♦ EDK - Version 5.2i / EDK 3.2.2 Build EDK_Cm.22 (service pack 2)

The reference design can be demonstrated utilizing the following hardware:

♦ Memec Design (Insight) Virtex-II Pro P4 Development Board

♦ Xilinx Parallel Cable IV for bit-stream download and code debug

Other information on building the UltraController reference design using the above products,
any update information, and board configuration data is found in the ReadMe/QuickStart file
included with the reference design.

HDL Implementation and FPGA Fabric Connection

The UltraController reference design is delivered with a sample top level module:
UltraController_Demo. There is only one module instantiated by the UltraController_Demo
module: uc_4i_4d (or uc_8i_8d).

The uc_4i_4d (or uc_8i_8d) module contains the PowerPC core, JTAG, reset controller, block
RAM interfaces, block RAM, and the GPIO interface module. The UltraController_Demo
module contains the following example Verilog code. Both Verilog and VHDL are available in
the reference design file. The Verilog example follows:

Figure 4: UltraController Frequency Counter

x672_04_080703

32

Signal-In Event
Counter

Time-
base

Counter

Time-base Counter

200 MHz

100 MHz

Reference 32
Reset

UltraController

2 x 16
LCD

32 32

Clk

11

120 FFs

5.1 KB Code

2.2 KB Data

http://www.xilinx.com

Using the UltraController Reference Design

XAPP672 (1.0) September 2, 2003 www.xilinx.com 5
1-800-255-7778

R

module UltraController_Demo(
sys_clk,
nsys_rst,
gpio_in,
gpio_out
);

input sys_clk;
input nsys_rst;
input [29:31] gpio_in; // 3 inputs for Push Buttons
output [16:31] gpio_out; // 15 outputs for LCD and LEDs

// Instantiate BUFGP on Input Clock
wire uc_sys_clk
BUFGP U1 (.I(sys_clk), .O(uc_sys_clk));

// Instantiate the UltraController Core
system uc_4i_4d (

.sys_rst (~nsys_rst | RST), // I - Active High reset

.sys_clk (uc_sys_clk), // I

.gpio_out (gpio_out), // O

.gpio_in (gpio_in) // I
);

endmodule

In this example, the external clock after buffering, and GPIO input and outputs are passed
directly through to the UltraController module. The external negative reset (active Low) is
inverted and passed through to the UltraController module.

With new designs, connect a reset line and clock to enable the UltraController. Then connect
gpio_out and gpio_in to the appropriate pins in the target design.

UltraController Port Connections

Table 2 has the definitions for the UltraController module port connections.

Table 2: UltraController Module Port connections

Port I/O Description

sys_rst I UltraController module reset (active High). Resets all logic
within the UltraController module, including the PowerPC
core and the GPIO interface. Does NOT reset the PowerPC
memory.

sys_clk I CPU clock – Clock signal for the PowerPC core. See Table 5
for maximum allowable frequencies

gpio_out[0:31] O – 32 bit bus UltraController 32 bit output port. Data written by the
PowerPC processor to the corresponding block RAM
memory address is latched in an output register on every-
other rising edge of sys_clk.
(gpio_in reads alternate with gpio_out writes)

gpio_in[0:31] I – 32 bit bus UltraController 32 bit input port. Data is read by the GPIO
state machine and written to block RAM on every-other
rising edge of sys_clk.
(gpio_in reads alternate with gpio_out writes)

http://www.xilinx.com

6 www.xilinx.com XAPP672 (1.0) September 2, 2003
1-800-255-7778

Using the UltraController Reference Design
R

GPIO Interface Timing

The UltraController GPIO interface utilizes a two-state state-machine to transfer data to and
from a block RAM interface on alternating rising clock edges. First, on a rising clock edge, fabric
supplied data to gpio_in is written to a fixed block RAM location. Subsequently this data can be
read by a user defined software routine. On the next rising clock edge, data located in a fixed
block RAM location is latched into a register and made available to the FPGA fabric. The timing
diagram in Figure 5 summarizes the GPIO operation.

ISE Design Files Provided

Table 3 shows the source modules for the ISE project:

Figure 5: GPIO Timing

sys_clk

Cycles:

sys_rst

gpio_in

BRAM Contents
OUT_PORT
0xFE000000

BRAM Contents
IN_PORT

0xFE000000

gpio_out

Data 3 Data 4

Data 3 Data 4

Data 1 Data 2

Data 1 Data 2

Out In Out In Out In Out

x672_11_082803

Table 3: ISE Source Modules Included in UltraController Reference Solution

File Name Description

..\projvav\uc_4i_4d.v or

..\projvav\uc_4i_4d.vhd

..\projvav\uc_8i_8d.v or

..\projvav\uc_8i_8d.vhd

Top-level UltraController reference example module. A "4" indicates four
block RAMs and an "8" indicates eight block RAMs.

..\hdl\system.v or

..\hdl\system.vhd
Platform Studio generated UltraController module including the PowerPC
core. Must be added as a sub-module of the top-level module.

..\projvav\uc_4i_4d.ucf

..\projvav\uc_8i_8d.ucf
User constraint file for the UltraController implementation.

..\ppc405_1\code\executable.elf The compiled object file data to be loaded into block RAM. Must be added
as a sub-module of the top-level module.

..\implementation\system_stub.bmm Block RAM definitions created by Platform Studio. Must be added as a
sub-module of the top-level module.

..\projvav\tf_uc.tf Reference design test fixture to be used for simulation. See the
UltraController tutorial on the UltraController web site
(www.xilinx.com/processor) for test fixture usage.

http://www.xilinx.com
http://www.xilinx.com/processor

Using the UltraController Reference Design

XAPP672 (1.0) September 2, 2003 www.xilinx.com 7
1-800-255-7778

R

The files listed in Table 4 are generated by Platform Studio in building the UltraController
system. They are delivered as part of the .zip file to enable an ISE build without regenerating
netlists in Platform Studio.

UltraController System Performance

For design implementation simplicity and reduced power consumption an UltraController
implementation using the PowerPC core and OCM running at the same speed (1:1) yields the
maximum system frequency and performance (Table 5).

While highly dependent on coding style, raw input and output performance provide a starting
point for determining if a microprocessor implementation will meet system requirements.
Several tight input and output loops were tested to demonstrate system performance. The
Code Example reads the previously output value, and then enters a tight loop to output the
shifted and inverted values 1, 2, 4, and 8. The benchmark of this output loop is 20 million
cycles-per-second (MCPS) or 1/10th of the processor clock speed.

Code Example

Port_value = *OUT_PORT &0xFFFF0FFF;
For (I=1; I < 16; I += i) // count 1, 2, 4, 8
{
*OUT_PORT = port_value | (~I << 12);
}

Input/Output Performance

The next three tables list the output benchmark and input/output performance. Table 6 was
generated using the Code Example. Table 7 uses the Xio macro described in the Reading and
Writing to the GPIO Interface using C Coding section. Table 8 is the results from a "processing
loop" where data is read, a decision is made based upon the input, and a value is output
dependent upon the input.

Table 4: Additional ISE Modules Included in the UltraController Reference Solution

File Name Description

..\implementation*.ngc Generated netlists for the PowerPC block and associated blocks

..\hdl*.v

..\hdl*.vhd
Generated Verilog or VHDL wrappers for the PowerPC block and
associated blocks

Table 5: UltraController Performance

Speed Grade -5 -6 -7

UltraController Version MHz DMIPs MHz DMIPs MHz DMIPs

4 x 4 175 193 195 215 200 220

8 x 8 160 176 180 198 195 215

Table 6: Benchmark -- Output Loop (Read Outside, Modify and Write Inside)

Speed Grade -5 -6 -7

UltraController Version MHz
I/O

MCPS
MHz

I/O
MCPS

MHz
I/O

MCPS

4 x 4 175 17.5 195 19.5 200 20

8 x 8 160 16 180 18 195 19.5

http://www.xilinx.com

8 www.xilinx.com XAPP672 (1.0) September 2, 2003
1-800-255-7778

Using the UltraController Reference Design
R

Mapping Between Fabric GPIO Pins and Software Ports

The reference design is targeted for the Insight (Memec) Virtex-II Pro (P4) development board.
The following mapping exists between the calling C code, the hardware interface, and the
Virtex-II Pro (XC2VP4 - FG456) device pins:

Description Code Bit GPIO Output Bit Device Pin
LCD D0 0 31 D7
LCD D1 1 30 F9
LCD D2 2 29 D5
LCD D3 3 28 D6
LCD D4 4 27 C7
LCD D5 5 26 D8
LCD D6 6 25 C8
LCD D7 7 24 E8
LCD RS 8 23 E6
LCD EN 9 22 E7
-- 10 21
Sound 11 20 U5
LED 1 12 19 V8
LED 2 13 18 W6
LED 3 14 17 U10
LED 4 15 16 V10

Description Code Bit GPIO Input Bit Device Pin
SW 1 0 31 V7
SW 2 1 30 W5
SW 3 2 29 AA12

For the C code, bit 0 is considered to be the least significant bit. However, for the PowerPC core
and its connected devices, bit 31 is the least significant bit. The C code interface routines
shown in the next section manipulate the mapping between the two systems of numbering bits.

Table 7: Benchmark -- Output Loop with Xio_x Macro
(Read Outside, Modify and Write Inside)

Speed Grade -5 -6 -7

UltraController Version MHz
I/O

MCPS
MHz

I/O
MCPS

MHz
I/O

MCPS

4 x 4 175 12.5 195 13.9 200 14.2

8 x 8 160 11.4 180 12.8 195 13.9

Table 8: Benchmark -- Processing Loop
(Read Input Inside, Decision, Modify and Write Inside)

Speed Grade -5 -6 -7

UltraController Version MHz
I/O

MCPS
MHz

I/O
MCPS

MHz
I/O

MCPS

4 x 4 175 7 195 7.8 200 8

8 x 8 160 6.4 180 7.2 195 7.8

http://www.xilinx.com

Using the UltraController Reference Design

XAPP672 (1.0) September 2, 2003 www.xilinx.com 9
1-800-255-7778

R

Software Implementation

The port, memory, and processor speed values for the delivered software reference solution
are listed in Table 9.

Typically the GPIO addresses are not used since the addresses are passed via the linker script
to the GPIO routine. Simply reference the memory locations pointed to by OUT_PORT and
IN_PORT (see examples in Reading and Writing to the GPIO Interface using C Coding).

To increase or decrease the memory sizes, use the information in Appendix A.

The stacks are set at 1024 and 2084 bytes for the uc_4i_4d and uc_8i_8d designs respectively.
Actual implementation dictates the amount of stack needed. It is always better to start with too
much stack space and then adjust downwards upon completion of the design.

A Heap is utilized when a C program dynamically allocates memory via a specific function
called malloc. For small microcontroller applications this is not done. The UltraController heap
is set to four bytes.

When using a timing function called "usleep", the software system must be notified of the
processor speed. This is done via the Core Clk Freq (aka: processor speed) setting as noted in
Table 9.

Table 9: Port, Memory, and Processor Speed Characteristics

Description uc_4i_4d uc_8i_8d How To Change

32-Bit output port address (gpio_out) 0xFE000000 0xFE000000 not recommended — change linker script

32-Bit input port address (gpio_in) 0xFE000004 0xFE000004 not recommended — change linker script

Instruction Memory Start Address 0xFFFFE000 0xFFFFC000 See Appendix A for changing memory size

Instruction Memory End Address
(including boot vector)

0xFFFFFFFF 0xFFFFFFFF not recommended — last address contains
boot vector

Data Memory Start Address 0xFE000008 0xFE000008 Not recommended — requires changing I/O
port addresses. Change memory end address
to change size.

Data Memory End Address 0xFE001FFF 0xFE003FFF See Appendix A for changing memory size

Stack Size 1024 bytes 2048 bytes Platform Studio
Menu: Options/Compiler Options
Tab: Details
Parameter: Stack Size

Heap Size 4 bytes 4 bytes Platform Studio
Menu: Options/Compiler Options
Tab: Details
Parameter: Heap Size

Processor Speed (used for usleep) 100 MHz 100 MHz Speed should match implemented PowerPC
frequency.
Platform Studio
Menu: Options/Compiler Options
Tab: Environment
Parameter: Core Clk Freq

http://www.xilinx.com

10 www.xilinx.com XAPP672 (1.0) September 2, 2003
1-800-255-7778

Using the UltraController Reference Design
R

Reading and Writing to the GPIO Interface using C Coding

Using the supplied GPIO software interface module: gpio.c, the GPIO input port appears as the
variable IN_PORT. The GPIO output port appears as the variable OUT_PORT. Using C code
programming conventions, these memory locations are referenced as pointers as in the
following examples:

*OUT_PORT = data_to_be_output;
data_to_be_read = *IN_PORT;

However, to assure proper synchronization of data read and written to the I/O interfaces via the
GPIO interface utilizing block RAM, it is strongly suggested that the user utilize the Xilinx in-line
macros to force memory synchronization. Implement the previous examples as:

XIo_Out32((XIo_Address)OUT_PORT, data_to_be_output);
data_to_be_read = XIo_In32((XIo_Address)IN_PORT);

The module utilizing the Xilinx in-line I/O macros must contain the following statements to force
inclusion of the Xilinx I/O library and to force instantiation of the function calls as in-line macros:

#define USE_IO_MACROS
#include "xio.h"

Since output writes are written through the block RAM, all data written is also saved in the
associated RAM location. This enables the ability to read data previously written to the output
port.

The next example reads the block RAM location containing the data previously written, masks
out the data area to be changed (LCD MASK), ORs in the "data_to_be_output", and then writes
the data to the output port.

tmp32 = XIo_In32((XIo_Address)OUT_PORT);
XIo_Out32((XIo_Address)OUT_PORT, tmp32 & LCD_MASK | data));

Finally, the data being accessed can not reside in the low order bits of the port. Thus, the
desired output data must be shifted left by an appropriate number of bits to be properly
positioned (LCD_OFFSET in the following example). Utilizing this technique, the LCD output
routine is:

void GPIO_writeLCD(Xuint32 data)
{
Xuint32 tmp32;
tmp32 = XIo_In32((XIo_Address)OUT_PORT); // Read Output Port
XIo_Out32((XIo_Address)OUT_PORT, tmp32 & LCD_MASK | (data << LCD_OFFSET)
);
}

Where the data read from the output port is temporarily held in the unsigned 32-bit integer
(Xunit) variable tmp32.

In a similar manner, a read of three push buttons will consist of calling the following function:

Xuint32 GPIO_readSwitch(void)
{
Xuint32 tmp32;
tmp32 = XIo_In32((XIo_Address)IN_PORT); // Read Input Port
return((~tmp32 & SWITCH_MASK) >> SWITCH_OFFSET); // Return switch bits
}

In this example, the input port is read and assigned to the temporary variable tmp32, the three
bits of interest are masked out by SWITCH_MASK, the result is right shifted by
SWITCH_OFFSET to align the least significant bit with bit zero, and the data is inverted to show
a High (1) bit interpreted as a button push.

http://www.xilinx.com

Using the UltraController Reference Design

XAPP672 (1.0) September 2, 2003 www.xilinx.com 11
1-800-255-7778

R

The following code implements a complete I/O module for the data word output to a two line
LCD and reading three push buttons:

#define USE_IO_MACROS
#include "xio.h"

Xuint32 OUT_PORT[1] __attribute__ ((section(".io_reg")))={ 0 };//Address 0
Xuint32 IN_PORT[1] __attribute__ ((section(".io_reg")))={ 0 };//Address 4

#define LCD_MASK 0xFFFFFC00
#define LCD_OFFSET 0
#define LCD_MASK 0xFFFFFC00
#define LCD_OFFSET 0
#define SWITCH_MASK 0x00000007
#define SWITCH_OFFSET 0

// Write LCD
void GPIO_writeLCD(Xuint32 data)
{
Xuint32 tmp32;
tmp32 = XIo_In32((XIo_Address)OUT_PORT); // Read Output Port
XIo_Out32((XIo_Address)OUT_PORT, tmp32 & LCD_MASK | (data << LCD_OFFSET)
);
}

// Read Switches -- invert value (Return a 1 = pressed)
Xuint32 GPIO_readSwitch(void)
{
Xuint32 tmp32;
tmp32 = XIo_In32((XIo_Address)IN_PORT); // Read Input Port
return((~tmp32 & SWITCH_MASK) >> SWITCH_OFFSET); // Return switch bits
}

As shown in shown in the previous code, the following statements should be copied to any new
user I/O routine interfacing with the GPIO interface:

Xuint32 OUT_PORT[1] __attribute__ ((section(".io_reg")))={ 0 };//Address 0
Xuint32 IN_PORT[1] __attribute__ ((section(".io_reg")))={ 0 };//Address 4

These statements create a mapping between the Linker-Script declaration of the input and
output memory locations and the memory pointers (OUT_PORT and IN_PORT) referenced by
the C code interface.

http://www.xilinx.com

12 www.xilinx.com XAPP672 (1.0) September 2, 2003
1-800-255-7778

Reference Design
R

Software Design Files Provided

The sources in Table 10 are in the Platform Studio project directory.

Reference
Design

The reference design, in VHDL and Verilog is located on the Xilinx web site at:

www.xilinx.com/ultracontroller

For additional information, there are tutorials for the UltraController solution. These tutorials
cover:

• Changing software code

• Simulation in ModelSim SE or PE

• Debugging fabric logic with ChipScope Pro tools

• Debugging software code with a GNU project debugger (GDB).

Conclusion For simple control, system monitoring, or I/O functions, the UltraController reference design is
an ideal solution. By using OCM interfaces, and a GPIO connected to the second port on the
data-side OCM block RAM, the need for processor busses is eliminated. Thus, the design
utilizes less than 50 logic cells.

UltraController solutions are especially attractive when the design can be partitioned into a fast
portion ("nanosecond logic") implemented in the FPGA fabric, and a slow portion ("millisecond
logic") implemented in the PowerPC processor. In these situations the UltraController solution
saves valuable FPGA fabric resources by trading logic cells, for code and data RAMs. These
savings enable utilization of smaller devices and help to avoid design creep into larger devices.
This ultimately leads to overall cost savings.

By utilizing the predefined and tested UltraController solution, several design process
challenges are removed, and the design time for an embedded controller solution is shortened.

Table 10: Platform Source Modules Included in UltraController Reference Solution

File Name Description

simon.c Reference design example. Contains the main() and various sub-functions.
Primary body of code implements a simple memory melody repeat game.

lcd.c LCD driver. Contains LCD initialization function, low level LCD output func-
tion, and function to write two strings; one each to the upper and lower lines
of the LCD display.

gpio.c 32-bit input and 32-bit output functions. Collection of modules to output to and
read from target devices on the reference design board. The LCD output and
switch input functions as described in the Reading and Writing to the GPIO
Interface using C Coding section. Write to LEDs and write to speaker pin
functions are also included.

linker_script Text file describing how to link compiled sources together for a target system.
See Appendix A for changing the linker script to accommodate memory size
changes.

http://www.xilinx.com/ultracontroller
http://www.xilinx.com

Appendix A

XAPP672 (1.0) September 2, 2003 www.xilinx.com 13
1-800-255-7778

R

Appendix A Changing Memory Size

The UltraController reference design is delivered as a series of predefined configurations. This
section outlines the steps to customize the amount of instruction or data memory. The minimum
memory size for instruction memory is 4 Kb or two block RAMs. The minimum memory size for
data memory is 8 Kb or four block RAMs. Memory sizes must be multiples of two: 4 Kb, 8 Kb,
16 Kb, and so on.

Changing Instruction-Side or Data-Side Block Memory Size

For maximum performance, placement of the instruction and data block memories is critical.
Xilinx recommends constraining the location of the memory in the .ucf file or through the use of
the Xilinx Floorplanner tool for placement of the memory blocks. Both of the provided examples
can be used for placement of the memory blocks (Figure 6). For designs utilizing less than eight
instruction or eight data memory blocks, start with the uc_8i_8d design module and eliminate
memory blocks as appropriate. Similarly, for larger designs, start with the uc_8i_8d design
module and add memory blocks as appropriate.

Figure 6: Floorplanner Examples Showing Placement of Block Memory for uc_4i_4d

http://www.xilinx.com

14 www.xilinx.com XAPP672 (1.0) September 2, 2003
1-800-255-7778

Appendix A
R

Changing Instruction-Side Block Memory Size

Inside the Platform Studio software:

1. Change the program start address under Options / Compiler Options - Details Tab. The
screen capture in Figure 7 illustrates the dialog. The current address is 0xFFFFE000.

Figure 7: Program Start Address

http://www.xilinx.com

Appendix A

XAPP672 (1.0) September 2, 2003 www.xilinx.com 15
1-800-255-7778

R

2. Change the hardware memory starting address (isbram) under Project / Add/ Edit Cores.
The screen capture in Figure 8 illustrates the dialog. The current address is 0xFFFFE000.

3. Under the System Tab, double-click on Linker Script to edit the linker script. In the defines
section change IOCM_SIZE to the new memory size. In the MEMORY section change the
isocm ORIGIN to the new memory starting address and change the LENGTH
appropriately. The current _IOCM_SIZE is 8k. The current address is 0xFFFFE000. The
current LENGTH is 8k (bytes) less four bytes for the boot vector.

/* Define sizes of memory and I/O space */
_IOCM_SIZE = 8k;
_DOCM_SIZE = 8k;
_IO_REG_SIZE = 8; /* 8 bytes for GPIO */
MEMORY {
isocm : ORIGIN = 0xFFFFE000, LENGTH = 8k - 4
bootm : ORIGIN = 0xFFFFFFFC, LENGTH = 4
io_reg_mem : ORIGIN = 0xFE000000, LENGTH = 8
dsocm : ORIGIN = 0xFE000008, LENGTH = 8k - 8
 }

4. Edit the file xmd.ini located in the Platform Studio project directory. Change the start
address (isocmstartadr) and memory size respectively. In the following example, the
current address is 0xFFFFE000 and the current size is 0x2000 or 8k. This command line
notifies XMD where the instruction-side memory is located.

ppcconnect -debugdevice isocmstartadr 0xFFFFE000 isocmsize 8192
isocmdcrstartadr 0x18 dcrstartadr 0x78002000

Changing Data-Side Block Memory Size

The GPIO interface maps to the lowest eight bytes of the data-side block memory space. To
minimize effort do not modify the data-side starting address since it is easiest to change the
memory size by changing end address. The following changes are made from inside of the
Platform Studio:

Figure 8: Instruction-Side Memory Address

http://www.xilinx.com

16 www.xilinx.com XAPP672 (1.0) September 2, 2003
1-800-255-7778

Revision History
R

1. Change the hardware memory ending address (dsbram) under Project / Add/ Edit Cores.
The screen capture in Figure 9 illustrates the dialog. The current address is 0xFE001FFF.

2. Under the System Tab, double-click on Linker Script to edit the linker script. In the defines
section change _DOCM_SIZE to the new memory size. In the MEMORY section change
the dsocm LENGTH to the new memory size. The current _DOCM_SIZE is 8k. The current
LENGTH is 8k (bytes) less eight bytes for the GPIO interface.

/* Define sizes of memory and I/O space */
_IOCM_SIZE = 8k;
_DOCM_SIZE = 8k;
_IO_REG_SIZE = 8; /* 8 bytes for GPIO */
MEMORY {

MEMORY {
 isocm : ORIGIN = 0xFFFFE000, LENGTH = 8k - 4
 bootm : ORIGIN = 0xFFFFFFFC, LENGTH = 4
 io_reg_mem : ORIGIN = 0xFE000000, LENGTH = 8
 dsocm : ORIGIN = 0xFE000008, LENGTH = 8k - 8
 }

Revision
History

The following table shows the revision history for this document.

Figure 9: Data-Side Memory Address

Date Version Revision

09/02/03 1.0 Initial Xilinx release.

http://www.xilinx.com

	The UltraController Solution: A Lightweight PowerPC Microcontroller
	Summary
	Introduction
	Technical Advantages
	Technical Characteristics and I/O Interface
	Implementing an UltraController Design

	Using the UltraController Reference Design
	Reference Design Environment
	HDL Implementation and FPGA Fabric Connection
	UltraController Port Connections
	GPIO Interface Timing
	ISE Design Files Provided

	UltraController System Performance
	Input/Output Performance
	Mapping Between Fabric GPIO Pins and Software Ports
	Software Implementation
	Reading and Writing to the GPIO Interface using C Coding
	Software Design Files Provided

	Reference Design
	Conclusion
	Appendix A
	Changing Memory Size
	Changing Instruction-Side or Data-Side Block Memory Size

	Revision History

