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ABSTRACT

NGC 1313 X-2 is one of the brightest ultraluminous X-ray sources in the sky, at both X-ray and optical wavelengths; therefore, quite
a few studies of available ESO VLT and HST data have appeared in the literature. Here, we present our analysis of VLT/FORS1 and
HST/ACS photometric data, confirming the identification of the B ∼ 23 mag blue optical counterpart. We show that the system is part
of a poor cluster with an age of 20 Myr, leading to an upper mass limit of some 12 M⊙ for the mass donor. We attribute the different
results with respect to earlier studies to the use of isochrones in the F435W and F555W HST/ACS photometric system that appear
to be incompatible with the corresponding Johnson B and V isochrones. The counterpart exhibits significant photometric variability
of about 0.2 mag amplitude, both between the two HST observations and during the one month of monitoring with the VLT. This
includes variability within one night and suggests that the light is dominated by the accretion disk in the system and not by the mass
donor.

Key words. galaxies: individual: NGC 1313 – accretion, accretion disks – black hole physics – galaxies: star clusters –
X-rays: binaries – X-rays: individuals: NGC 1313 X-2

1. Introduction

1.1. Context

Ultraluminous X-ray sources (ULXs) are extragalactic X-ray
sources that are not at the nucleus of their galaxy, emitting
well above the Eddington limit of a 10 M⊙ black hole (LX ∼

1039 erg s−1) if we assume that they emit isotropically. An im-
portant question is whether they contain intermediate mass black
holes (Colbert & Mushotzky 1999; Makishima et al. 2000),
whether they are beamed (King et al. 2001), or if they are
rather normal X-ray binaries with super-Eddington emission
(Begelman 2002).

The first clues about their compact nature came from X-ray
studies showing that ULXs are variable on timescales of years
down to minutes. Well-studied examples are Holmberg IX X-1
(La Parola et al. 2001), ULXs in the Antennae (Fabbiano et al.
2003) or M74 X-1 (Krauss et al. 2005). Therefore, ULXs are
accreting systems displaying spectra that were first described
by a soft multicolor disk blackbody plus power-law continuum
(Miller et al. 2003). The soft component was interpreted as a
cool accretion disk (kT ∼ 150 eV). Using standard (Shakura
& Syunyaev 1973) multicolor disk models (M ∼ L1/2T−2

in ), this
would imply black hole (BH) masses ∼103−104 M⊙ assuming
that the disk extends to the innermost stable circular orbit (as is
thought to be the case in Galactic black-hole X-ray binaries in
the disk-dominated high/soft state). However, it has been sug-
gested (Roberts 2007; Soria 2007) that the assumptions might

well be misleading: the observed energy distribution can be in-
terpreted with alternative spectral models based on a cool outer
disk and a Compton-scattering-dominated inner region. In this
scenario, much lower masses (<∼100 M⊙) are required for most
ULXs, even in the absence of strong beaming.

Further clues to the ULX nature come from X-ray time-
variability studies. The detection of low-frequency quasi-
periodic oscillations (LF-QPOs) in a few ULXs exclude strong
X-ray beaming (Strohmayer & Mushotzky 2003; Dewangan
et al. 2006; Mucciarelli et al. 2006; Strohmayer et al. 2007).
By analogy with Galactic BHs and with some AGNs (McHardy
et al. 2006), the characteristic frequencies of the LF-QPOs and of
the breaks observed in the power-density-spectra of a few ULXs
suggest masses in the intermediate mass black hole (IMBH)
range (Strohmayer et al. 2007; Shaposhnikov & Titarchuk 2007),
if the varying component is emitted at or near the innermost
stable circular orbit. However, as for the spectral interpretation,
lower BH masses would be implied if the oscillations come from
a larger region, perhaps associated with the thermal/non-thermal
transition of the accretion flow. On longer timescales (weeks to
years), spectral state transitions have been observed in a few lu-
minous sources (e.g. La Parola et al. 2001; Soria & Motch 2004;
Soria et al. 2007), but it is not yet clear how they compare with
the “canonical” state transitions in Galactic BHs (e.g. Remillard
et al. 2003).

Optical studies of ULXs have revealed point-like counter-
parts with blue colors (Goad et al. 2002; Liu et al. 2002; Kaaret
et al. 2004; Liu et al. 2004; Soria et al. 2005; Kuntz et al. 2005;
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Mucciarelli et al. 2005; Grisé et al. 2006; Liu et al. 2007; Rosado
et al. 2008), consistent with early-type donors (and more specif-
ically, with 10−20 M⊙ blue supergiants). However, the optical
emission may have a strong, perhaps dominant contribution from
the accretion disk (which should also have blue colors). This
makes it more difficult to identify the spectral type and mass
of the donor star from the luminosity and colors of the optical
counterpart.

In many cases, optical counterparts are embedded in highly-
supersonically expanding ionized nebulæ (with possible contri-
butions due to photoionization) and possibly related to the pres-
ence of jets (Pakull & Mirioni 2002, 2003; Kaaret et al. 2004;
Abolmasov et al. 2007a,b; Pakull & Grisé 2008). The study of
nearby ULXs undergoing little interstellar extinction revealed
that stellar counterparts are usually part of small young star clus-
ters or OB associations (Zezas et al. 2002; Goad et al. 2002;
Grisé et al. 2006; Liu et al. 2007; Abolmasov et al. 2007b). But
they are sometimes found slightly separated from these stellar
associations (Zezas et al. 2002), as if they received a kick during
a supernova event (which in this case could strengthen the stellar
mass nature of the black hole). Radio counterparts are found in
only few cases (Miller et al. 2005; Soria et al. 2006; Lang et al.
2007). They are spatially resolved, and have a spectrum consis-
tent with optically-thin (steep) synchrotron emission. Thus, they
are likely to be jet-powered radio lobes, not core emission from
the collimated inner jet as observed in microquasars.

ULXs are mostly found in star-forming spirals or irregular
galaxies (Irwin et al. 2004; Swartz et al. 2004). Because of their
extragalactic nature, these sources are optically faint. Telescopes
with large collecting area such as the VLT and/or high spatial
resolution such as HST are therefore required for the study of
their optical counterparts and immediate environments.

1.2. NGC 1313 X-2 ULX

Here, we study ULX X-2 in the barred spiral galaxy NGC 1313,
which is located at a distance of about 4 Mpc (3.7 Mpc accord-
ing to Tully 1988, 4.13 Mpc according to Méndez et al. 2002).
NGC 1313 has a mass of M = 1010.25 M⊙ (Karachentsev et al.
2004); this is roughly in the mass range where galaxies appear
to be most efficient at producing ULXs (Swartz et al. 2008). X-2
is quite distant from the galactic nucleus, ≈6′ (corresponding to
7 kpc) to the south. At this position, there are no obvious signs
of recent, extensive star formation. The galactic interstellar (IS)
extinction is low (E(B − V) ∼ 0.1, Schlegel et al. 1998): this
makes X-2 one of the best targets for an optical spectroscopic
and photometric study of a ULX and its host environment.

1.2.1. X-ray properties

The source has been extensively studied in X-rays (see Feng
& Kaaret 2006, for a study of 12 archival XMM-Newton ob-
servations; Mizuno et al. 2007, for a recent Suzaku study), and
has an average isotropic luminosity of ≈6 × 1039 erg s−1 in the
0.3−10 keV band. It was seen to vary in intensity by about 50%
in a few hours (Mizuno et al. 2007) and exhibits also significant
variability on time scales of months and years. The X-ray spec-
trum of X-2 can be fitted by at least 2 phenomenological models
corresponding to 3 alternative physical mechanisms:

a) a hot thermal component (kTin ≈ 1.2−1.3 keV) dominat-
ing above 2 keV, plus a soft down-scattered component. The
hot thermal component was physically interpreted as a “slim

disk” around a stellar-mass black hole, at super-Eddington
accretion rates (Mizuno et al. 2007);

b) a cool thermal component (kTin ≈ 0.15 keV) plus a power-
law-like component dominating above 2 keV. Physically, this
can be interpreted in two ways:
i) as an optically-thick accretion disk extending to the inner-

most stable circular orbit, plus an optically-thin corona,
around an intermediate-mass black hole (M ∼ 1000 M⊙),
with accretion rates below 0.1 times Eddington (Miller
et al. 2003);

ii) as an optically-thick disk, directly visible only far away
from the innermost stable orbit, and replaced (or covered)
at smaller radii by a hotter region (kT ∼ a few keV),
optically-thick to electron scattering. This scenario may
allow for less massive black holes (<∼100 M⊙) at accre-
tion rates ∼ a few times Eddington (Roberts 2007; Soria
2007).

These three physical models predict different characteristic
sizes, colors and luminosities for the accretion disk. Optical
studies can provide new constraints, if we can disentangle the
optical contributions from the irradiated donor star and the
accretion disk.

1.2.2. Optical properties

At optical wavelengths, studies by Pakull & Mirioni (2002);
Pakull et al. (2006); Ramsey et al. (2006) revealed the presence
of a huge ionized nebula (extension 18′′ × 26′′, correspond-
ing to 350 × 500 pc at a distance of 4.0 Mpc) at the position
of X-2. The high expansion velocity of ∼100 km s−1 (Ramsey
et al. 2006) underlines the suggestion that we are seeing emis-
sion from radiative shocks. This is supported by the presence of
enhanced [OI] and [SII] forbidden lines (e.g. Pakull & Mirioni
2002; Abolmasov et al. 2007a,b). However, contributions due
to photoionization by the X-ray source cannot presently be ex-
cluded. The search for an optical counterpart of the ULX has
motivated to carry out deep imaging of the field around it, us-
ing the European Southern Observatory Very Large Telescope
(ESO/VLT) and the Hubble Space Telescope Advanced Camera
for Surveys (HST/ACS).

Multi-band photometry of the counterpart and of the sur-
rounding stellar population can constrain the nature of the donor
star, but results reported in the literature are quite discordant (see
Mucciarelli et al. 2005, 2007; Ramsey et al. 2006; Liu et al.
2007). In particular, the age of the small cluster or association
of relatively young stars around the ULX appears not to be well
constrained. Determining this value is of great interest, not at
least because it tells us whether or not the ULX donor is a mas-
sive early-type star, and hence helps to constrain the physics and
duration of the high mass-transfer phase.

In this paper, we analyze the full set of our photometric VLT
observations (some results were previously reported in Pakull
et al. 2006) together with archival HST/ACS data. We will show
that the ULX counterpart is part of a 20-Myr-old star cluster,
which is not expected to contain uncollapsed stars more massive
than ≈12 M⊙. Combining ground-based and HST data, we will
present a detailed photometric light curve of the ULX counter-
part, which shows large variability on timescales of hours and
days. This suggests that the optical emission is dominated by an
accretion disk with possible contributions by the X-ray-heated
secondary.



F. Grisé et al.: The ultraluminous X-ray source NGC 1313 X-2 153

Table 1. The VLT FORS1 observations for NGC 1313 X-2.

Filter Exposure time (s) Number of exposures Central wavelength of filter (Å) FWHM of filter (Å)
B 420 24 4290 880

840 4
V 600 2 5540 1115
R 500 4 6570 1500
Hα 1500 2 6563 61
[OI] 1300 2 6295 69
[OIII] 1500 2 5001 55

2. Observations

2.1. VLT observations

The first set of data comes from an observing programme
(ID 072.D0614; PI: M. Pakull) carried out with the VLT/FORS1
instrument. Photometric monitoring was done over 9 nights and
a spectroscopic study over 4 nights, between 2003 December 20
and 2004 January 15. The field around X-2 was observed in
broadband filters (standard B,V,R) and in some narrow-band fil-
ters (Hα, [OIII]λ5007 and [OI]λ6300) (see Tables 1 and 2 for
details). We also monitored the source in the B band with a to-
tal of 16 observations, each with an exposure time of 840 s.
Usually, we obtained one observation per night, except for
2003 December 24, when the field was observed 7 times. Each
observation consisted of two dithered sub-exposures taken di-
rectly one after the other, and averaged to increase the signal-to-
noise ratio. We also obtained two observations in R and one in
V to study the color of the source and of its stellar environment.
This paper mainly concentrates on photometric results; we leave
the discussion of the spectroscopic results to a subsequent paper.

2.2. HST observations

The second dataset was obtained from the HST/ACS archive
(programme GO-9796; PI: J. Miller). Observations were carried
out on 2003 November 22, with the Wide Field Camera (WFC)
in the F435W, F555W and F814W filters, and with the High
Resolution Camera (HRC) in the F330W filter. An additional
observation was done on 2004 February 22 with the WFC in
the F555W filter. More detailed information about those expo-
sures is summarized in Table 3. We re-analyzed the data using
the latest calibration files at the time of the analysis (STSDAS
v3.5) and applied the standard correction for the spatial distor-
tion (Multidrizzle 2.7.2, Koekemoer et al. 2002).

3. Data analysis

3.1. VLT data

The near environment of X-2 is crowded, so in order to ob-
tain the best possible photometric measurements, we used
point-spread-function (PSF) fitting routines in DAOPHOT II
(Stetson 1992), a sub-package of the MIDAS photometry soft-
ware. We calibrated our absolute photometry using the expo-
sures from 2003 December 24 for the B and R bands, and
2003 December 25 for the V band; both nights were photomet-
ric. Service mode observations also included standard star ob-
servations of the Landolt fields PG0231 and SA101; our trans-
formations from the instrumental to the BVR system are fully
consistent with the zeropoints and color terms provided by ESO.

Table 2. Log of our VLT FORS1 broad-band observations.

Filter Observation date MJD at mid-exposure Seeing (′′)
B 2003 Dec. 21 52 994.12864 0.60

2003 Dec. 22 52 995.04826 0.56
2003 Dec. 23 52 996.08222 0.66
2003 Dec. 24 52 997.03231 0.58

52 997.08794 0.68
52 997.09836 0.71
52 997.12389 0.67
52 997.20328 0.69
52 997.21365 0.76
52 997.24293 0.50

2003 Dec. 25 52 998.17256 0.46
2003 Dec. 27 53 000.22022 0.70
2003 Dec. 28 53 001.17035 0.69
2003 Dec. 29 53 002.21072 0.58
2003 Dec. 30 53 003.04551 0.65
2004 Jan. 15 53 019.04868 0.57

V 2003 Dec. 25 52 998.07801 0.55
R 2003 Dec. 24 52 997.11028 0.75

52 997.22568 0.80

3.2. HST data

Our field of interest (Fig. 1) also appears moderately crowded
in the HST/ACS drizzled images, so we used again DAOPHOT II
for our photometric analysis. In order to obtain a realistic esti-
mate of the photometric errors, we multiplied the pixel values by
the exposure time, which gave us the number of detected e− per
pixel; we then added the background counts subtracted by the
HST pipeline. We selected a sample of bright, isolated stars in
the field to model the PSF; we allowed the PSF to vary quadrat-
ically as a function of spatial position in the frame. We used a
radius of 3 pixels for PSF fitting to the other stars. We carried
out aperture photometry of isolated stars with SExtractor (Bertin
& Arnouts 1996) in order to calculate the aperture corrections
between PSF-derived brightnesses and those from a 0.′′5 aperture
radius (Table 5). Finally we applied the values given in Sirianni
et al. (2005) to correct between 0.′′5 aperture and infinite aperture
photometry.

From the ACS instrumental magnitudes, we calculated the
standard magnitudes in both the VEGAMAG and the Johnson-
Cousins systems. We are aware of the limitations of such trans-
formations, especially for stars with peculiar spectral features.
But we chose to do so in order to facilitate a comparison be-
tween the ground-based and HST photometry. Although, in prin-
ciple, it should not be necessary to transform between these sets
of magnitudes (Sirianni et al. 2005), it turns out (as we dis-
cuss in Sect. 4.5) that the interpretation of the data in terms of
published isochrones differs substantially between the (F435W,
F555W) system on the one hand and the (B,V) system on the
other. In order to check the transformations given by Sirianni
et al. (2005) between these two photometric systems, we used
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Table 3. The HST/ACS observations for NGC 1313 X-2.

ID Instruments Filter Date MJD at mid-exposure Exposure time (s) FWHM of filter (Å)
j8ola2010 HRC F330W 2003 Nov. 22 52 965.44294 2760 173.82
j8ol02040 WFC F435W 2003 Nov. 22 52 965.37542 2520 293.47
j8ol02030 WFC F555W 2003 Nov. 22 52 965.31531 1160 360.02
j8ol02010 WFC F814W 2003 Nov. 22 52 965.30656 1160 654.64
j8ol06010 WFC F555W 2004 Feb. 22 53 057.22947 2240 360.02

Fig. 1. Left panel: true color image (blue = F435W; green = F555W; red = F814W) of the region around X-2, from our HST/ACS observations.
1′′ represents 19.4 pc at the distance of NGC 1313. The stellar environment is mainly composed of red stars from an old population. Two blue-star
associations can be seen: the main one to the west of the ULX counterpart and the other (smaller) one to the south-east. Right panel: zoomed-in
view of the immediate vicinity of the counterpart, in the F435W filter. The ULX counterpart is the bright point-like source at the center of the
image. Contours of the Hα emission (at 10, 30, 50, 70 and 90% flux level above the background) are overplotted, from our VLT observations. Both
young stellar associations are located or projected inside the Hα nebula.

our data to derive our own calibration. We selected bright stars
in the VLT image that are not saturated or resolved into mul-
tiple stars by ACS. We found that our own set of transforma-
tions are consistent with those of Sirianni et al. (2005), which
we use for consistency with other studies. We interpreted our
color−magnitude diagrams in the two photometric systems by
comparing them with evolutionary tracks and isochrones from
the Padua group (Bertelli et al. 1994; Girardi et al. 2000;
Salasnich et al. 2000; Girardi et al. 2002) and the Geneva group
(Lejeune & Schaerer 2001).

We estimated the completeness limit in all frames by adding
1000 artificial stars in each 0.2 mag bin between 24.8 mag
(where the completeness is 1 in all filters) and 28.6 mag (where
the completeness is 0 for all filters). For each bin we took the
mean of the number of stars recovered in three runs as the com-
pleteness fraction.

4. Results and discussion

4.1. Distance and metallicity of NGC 1313

The HST spatial resolution is required for any stellar popula-
tion study in NGC 1313 (see Méndez et al. 2002; Pellerin et al.
2007; Rizzi et al. 2007, for recent work). The central region of
the galaxy is dominated by young stellar populations; by contrast
the field around X-2 contains few young stars and appears to be
dominated by an older population. This is clearly shown in our

(V − I, I) color−magnitude diagram (Fig. 2) of the ≈7200 stars
identified in the ULX neighbourhood (the region around X-2
shown in Fig. 1).

For old stellar populations, the location of the red giant
branch (RGB) in color−magnitude diagrams (in particular, (V −
I, I)) is a good indicator of distance and metallicity. In our case,
the RGB is very prominent. We estimated the position of its tip
(TRGB) by determining the point at which the first derivative of
the I-band luminosity function has a maximum. We find that it
occurs at I0(TRGB) ≈ 24.0 ± 0.1 mag (after correcting for extinc-
tion). The distance can be expressed by:

(m − M)0 = I0(TRGB) − MITRGB

where (m−M)0 is the distance modulus and MITRGB is the absolute
magnitude of the TRGB. Taking MITRGB = −4.05 ± 0.02 (Rizzi
et al. 2007), we find that the distance modulus to NGC 1313 is
(m − M)0 ≈ 28.05 ± 0.11, corresponding to a distance of 4.07 ±
0.22 Mpc. This is in agreement with the results of Méndez et al.
(2002) and Rizzi et al. (2007) who studied the north-western re-
gion of the galaxy (distance modulus of 28.08 ± 0.06 mag and
28.15 ± 0.03 mag, respectively).

The intrinsic color of the RGB depends on the metal content
of its stars (Da Costa & Armandroff 1990). A useful empirical
relation between color at MI = −3.5 mag (half a magnitude
below the tip) and metal abundance is

[Fe/H] = −12.64 + 12.61(V − I)0,−3.5 − 3.33[(V − I)0,−3.5]2.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809557&pdf_id=1
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Fig. 2. (V − I, I) color–magnitude diagram of all the stars located in the
ACS field (see Fig. 1, left panel). The estimated 50% and 90% com-
pleteness limits are overplotted, as are the RGB loci of three Galactic
globular clusters of various metallicities (from left to right: M 15,
NGC 6752 and NGC 1851; data from Da Costa & Armandroff 1990).

Table 4. Galactic globular clusters used for comparison with
NGC 1313.

Cluster [Fe/H] MI,TRGB

NGC 7078 (M 15) –2.17 –4.095
NGC 6752 –1.54 –3.948
NGC 1851 –1.29 –4.039

(Lee et al. 1993). To highlight the metallicity dependence, we
overplotted the RGB loci (scaled to the distance of NGC 1313)
of galactic globular clusters (Da Costa & Armandroff 1990) with
different metal abundances (Fig. 2 and Table 4).

We took horizontal cuts across the RGB at two magnitudes:
I = 24.5 ± 0.1 mag, I = 25.0 ± 0.1 mag. We determined the
number distributions at those magnitudes, and corrected them
for the completeness fraction. We can clearly identify the num-
ber peak in both histograms (Fig. 3) and their decline towards
redder values of V − I. This suggests that we are seeing the cen-
tral locus of the RGB in NGC 1313. We estimate (V − I)0,−3.5 =

(1.30 ± 0.08) mag (left panel of Fig. 3).

Using the relation in Lee et al. (1993), we infer [Fe/H] ≈
−1.9 ± 0.3, which is what we qualitatively expect from an old
population at the outskirts or in the halo of a disk galaxy. For
example, a relation between metal abundance of the halo pop-
ulation and absolute V magnitude of the host galaxy was high-
lighted by Mouhcine et al. (2005) (in particular, their Fig. 3).
For NGC 1313, which has MV = −18.72 mag (de Vaucouleurs
et al. 1991), the expected metal abundance of its halo is [Fe/H] ≈
−2−−1.5, in agreement with the abundance we found for the old
population in the ULX field.

At fainter magnitudes, MV
>∼ −2.5 mag, the RGB is very

spread out and there is a substantial contribution from stars with
0.5 <∼ (V − I)0 <∼ 1.0 (Fig. 3, right panel). They are consistent
with a population of younger stars, with ages around 1−2 Gyr.
Star formation in the field surrounding the ULX may have had
various episodes until as recently as 1 Gyr, before the last, lo-
calized episode, responsible for the formation of the few young
stars around the ULX (Fig. 1 and Sect. 4.3.1).

4.2. Identification of the optical counterpart

In earlier studies of this ULX (Mucciarelli et al. 2005), two pos-
sible optical counterparts, named C1 and C2, were suggested.
A more accurate astrometric calibration of the Chandra and
HST images pointed in favour of C1 (Ramsey et al. 2006;
Liu et al. 2007). The two objects are separated by 0.′′8, i.e.
16 ACS pixels. More importantly and contrary to the claims
of Mucciarelli et al. (2005), we found (Pakull et al. 2006) that
they can also be clearly resolved in our VLT spectra with a pro-
jected distance of 4 pixels corresponding to 0.′′5. The character-
istic high-excitation emission line spectrum displaying a broad
HeIIλ4686 line that we observed in C1 (Pakull et al. 2006; Grisé
et al., in preparation) provides the decisive proof that this is the
optical counterpart of the ULX. Since C1 is a blue stellar object
(see Table 5), this result is also in agreement with the typical blue
colors found in most other optical ULX counterparts (Goad et al.
2002; Liu et al. 2002, 2004; Kuntz et al. 2005; Liu et al. 2007). In
fact, the optical counterpart is expected to contain emission from
both the irradiated accretion disk and the donor star. A possible
explanation for the prevalence of blue colors was suggested by
Madhusudhan et al. (2007) and by Patruno & Zampieri (2008),
based on theoretical evolutionary tracks of X-ray irradiated stars
in a binary system.

4.3. Groups of young stars around X-2

4.3.1. Masses and age

The multicolor image (Fig. 1) already suggests that the stellar
population immediately around X-2 is dominated by blue stars,
in addition to a more uniform distribution of red, old stars that
otherwise dominate the outskirts of the galaxy. The blue stars are
largely concentrated in two areas separated by 15′′ (See Fig. 1);
the cluster located north-east of the ULX appears more rich in
stars.

Color–magnitude diagrams (Figs. 4−6) confirm that there
are two populations of stars in the field: the old, dominant popu-
lation of the host galaxy and a blue population with −0.25 mag <
B−V < 0.0 mag. The brightest members of the young population
are at V ≈ 23 mag, corresponding to MV ≈ −5 mag. We empha-
size here that all the bright stars plotted in green in the diagrams
(Figs. 4−6) were also detected in the UV band (F330W filter),
which confirms that they belong to a young population; the red
stars are not visible in the UV band. The brightest blue stars
(V <∼ 24 mag) have probably already left the main sequence,
moving along the blue supergiant tracks.

Using isochrones from the Padua (Bertelli et al. 1994;
Girardi et al. 2000; Salasnich et al. 2000; Girardi et al. 2002)
or Geneva (Lejeune & Schaerer 2001) evolutionary tracks and
taking into account a reddening E(B − V) = 0.1 mag and an
extinction based on the Cardelli law (Cardelli et al. 1989), we
derive an age for the cluster stars of ≈20± 5 Myr, which is in dis-
agreement with the value (<∼10 Myr) reported by Liu et al. (2007)
(Sect. 4.5). Our age estimate is based on the most luminous stars
that do not suffer from large photometric errors. We used tracks
corresponding to a metallicity Z = 0.008, as suggested by stud-
ies of HII regions (Walsh & Roy 1997; Hadfield & Crowther
2007); but the inferred ages are only weakly dependent on metal-
licity. Looking at the evolutionary tracks shown in Fig. 6, we
find that the track of a 12 ± 4 M⊙ star agrees with the expected
distribution of the most luminous blue stars. We conclude that
both the mass (12 M⊙) and brightness (V ≈ −5 mag) of these
stars are consistent with the inferred age of ≈20 Myr. If on the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809557&pdf_id=2
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Fig. 3. Color distribution of the stars in our HST/ACS field, at two values of I: 0.5 and 1.0 mag below the TRGB. The vertical lines correspond to
the RGB position of three galactic globular clusters at different metallicities.

Fig. 4. HST/ACS color–magnitude diagrams for the stellar field around the ULX. HST/ACS magnitudes were transformed into the Johnson-
Cousins system. Padua isochrones for stars of different ages are overplotted. Typical photometric errors are also plotted. Data have been corrected
for the Galactic extinction (E(B −V) = 0.10 mag), the bar at the top left corner illustrating this effect. Left panel: color−magnitude diagram in the
(B,V) system. Right panel: color−magnitude diagram in the (V, I) system. The same isochrones are plotted in the two panels, i.e. for 10, 20, 50,
200 and 500 Myr at Z = 0.008. We can see that the two diagrams are largely consistent with each other, excluding the need for a high extragalactic
reddening E(B − V) = 0.23 advocated by Liu et al. (2007). This gives an age of about 20 Myr for the brightest stars in the young cluster.

Table 5. Brightness of the ULX counterpart in different filters, from the HST/ACS observations. Magnitudes are expressed both in the HST/ACS
Vegamag system and in the Johnson-Cousins (UBVRI) system, when possible. When converting from F555W to V for the 2004 Feb. 22 observation,
we assumed that the (B−V) color of the counterpart was the same as on 2003 Nov. 22. We also give the brightnesses reported by Liu et al. (2007),
that are consistent with our results except for the F330W/U band.

Filter Exposure time (s) Date Aperture correction (mag) VEGAmag Johnson magnitude VEGAmaga

F330W/U 2760 2003 Nov. 22 0.885 21.733 ± 0.018 / 22.037 ± 0.021
F435W/B 2520 2003 Nov. 22 0.441 23.423 ± 0.018 23.49 23.470 ± 0.017
F555W/V 1160 2003 Nov. 22 0.467 23.587 ± 0.032 23.57 23.625 ± 0.026
F814W/I 1160 2003 Nov. 22 0.467 23.614 ± 0.032 23.61 23.640 ± 0.043
F555W/V 2400 2004 Feb. 22 0.421 23.426 ± 0.037 ≈23.41 23.472 ± 0.021

a These values come from Liu et al. (2007) and are cited for comparison with our work.

other hand we increase the reddening to E(B − V) = 0.20 mag
we obtain ages around 10 Myr. However, in this case the two
color−magnitude diagrams become less consistent and for a red-
dening of E(B−V) = 0.30 mag, as proposed by Liu et al. (2007),
the two diagrams are no longer consistent with each other. In
fact, the color−magnitude diagram in the (B,V) system is al-
most non-physical at this high reddening value because a few
bright stars would have a (B−V) color <∼−0.4 mag. Our indepen-
dent estimate of the reddening (Sect. 4.5) based on the Balmer

decrement of the nebula confirms a low reddening value
(≈0.13 mag) towards X-2.

It may be somewhat surprising that we do not see any red su-
pergiants, which should be present in a 20 Myr-old population,
and are often observed in other ULX fields of similar age (e.g.
near NGC 4559 X-1, Soria et al. 2005). Evolutionary tracks (e.g.
Geneva tracks, Lejeune & Schaerer 2001) at Z = 0.008 show
that stars in our inferred mass range move to the red part of the
diagram for ≈0.4 Myr, return onto the blue loop for ≈1.3 Myr
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Fig. 5. HST/ACS color–magnitude diagrams in the VEGAMAG photometry system. Left panel: color−magnitude diagram in the (F435W,
F555W) system. Right panel: color−magnitude diagram in the (F555W, F814W) system. Our results are mostly consistent with those of Liu
et al. (2007); however, we argue that we need a significantly lower extinction than claimed in that paper: E(B − V) = 0.10 mag instead of
E(B − V) = 0.33 mag which was used to bring the two color−magnitude diagrams into agreement. By comparing these diagrams with those of
Fig. 4, we see that the (V, I) and (F555W, F814W) isochrones are consistent with each other. However, the isochrones in the (B,V) and (F435W,
F555W) systems are shifted by ≈0.1 mag in color with respect to each other. We thus find that the Padua isochrones in the (F435W, F555W) system
are different from those in the (B,V) system, transformed with the Sirianni et al. (2005) equations.

Fig. 6. HST/ACS color–magnitude diagrams (Johnson-Cousins photometry) with Geneva evolutionary tracks for stars of different initial masses
(4, 7, 12 and 20 M⊙) with Z = 0.008. Left panel: color−magnitude diagram in the (B,V) system. Right panel: color−magnitude diagram in the
(V, I) system. Both diagrams are consistent with a mass ≈12 M⊙ for the brightest young stars in the field.

and then end up on the red side again for the last ≈0.04 Myr of
their lives. We observe 5 stars brighter than MV = −4.5 mag,
currently evolving off the main sequence, towards the blue su-
pergiant phase. By taking a blue-to-red supergiant ratio ∼3, a
value observed in metal-poor galaxies (Langer & Maeder 1995),
we expect to find about 1 or 2 red supergiants. Given this small-
number-statistics (coupled with the uncertainty in the duration
of the red-supergiant phase), we do not consider the absence of
red supergiants in the young cluster to be significant.

4.3.2. Comparison with OB associations

It had been known for some time that ULXs are often asso-
ciated with galaxy-wide or extended starburst regions (e.g. the
Antennae, Zezas et al. 2002). However, some of them, such as
Holmberg IX X-1 (Grisé et al. 2006; Ramsey et al. 2006) and
the ULX target of this study, seem to be far from any large-scale
star-forming activity. But the advent of large optical telescopes
and the use of HST have now permitted the detection of small
groups of young stars also around these ULXs, strengthening

the association of ULXs with young stellar populations. X-2 is
far from the center of its host galaxy, in a region where no re-
cent large-scale star-formation episodes have occurred. Only the
two young groups of stars described above are present, super-
imposed on a predominantly old- and intermediate-age popula-
tion. These young groups are certainly not gravitationally bound,
because their density is too low (some tens of stars scattered
over 200 pc). Based on their integrated luminosities, we infer
from Starburst99 simulations (Leitherer et al. 1999) that the two
young stellar associations have masses M ≈ (5 ± 1) × 103 M⊙
for the north-west group and M ≈ (1.5 ± 0.5) × 103 M⊙ for
the south-east group. So, they have similar masses and sizes as
typical OB associations in our Galaxy and other Local Group
galaxies (∼103 M⊙ in ≈200 pc, e.g. Gouliermis et al. 2003). The
obvious question is what triggered this recent, isolated episode
of star formation in this outer part of the galaxy? It was sug-
gested (e.g. Soria 2006) that several ULXs are located in re-
gions perturbed by tidal interactions or collisions. An intriguing,
unexplained feature of NGC 1313 (in particular, of its southern
half) is the presence of isolated HII regions (located ≈3′ north
of the ULX), and of some unusual, expanding HI supershells.
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Fig. 7. Difference between VLT/FORS1 and HST/ACS photometry, in the B (left panel) and V band (right panel). For this comparison, we only
used bright, isolated stars. We find that 40% of them lie within the combined photometric errors of the HST and VLT observations (solid red lines),
and for most of the others the difference is only ≤0.1 mag (dashed blue lines).

Table 6. Brightness of the ULX counterpart in different filters, from our VLT/FORS1 observations. To minimize the effects of variability, the
B − V color was estimated using the 2003 Dec. 25 B exposure, while the B − R color was estimated using the 2003 Dec. 24 B exposure.

Filter Exposure time (s) Date Magnitude Absolute magnitude
B 420/840 2003 Dec. 24/25 23.40 ± 0.02 / 23.44 ± 0.03 –5.0
V 600 2003 Dec. 25 23.45 ± 0.04 –4.9
R 500 2003 Dec. 24 23.58 ± 0.05 –4.6

It was previously suggested (Sandage & Brucato 1979;
Blackman 1981; Peters et al. 1994) that the southern side of
the galaxy has been affected by a collision or tidal interaction
with a satellite galaxy. However, it was also noted (Ryder et al.
1995) that the largest HI supershell is spatially associated with
the southern HII regions. Thus, it is also possible that the iso-
lated HII regions and other local episodes of star formation are
the result of collisions of large HI clouds with the galactic disk
(Marcelin & Gondoin 1983). It was recently noticed that such
phenomena may be associated with localized star formation in
NGC 4395 (Heald & Oosterloo 2007). We speculate that the
isolated complex of young stars around the ULX may also have
been formed through a similar event.

4.4. Comparison between HST and VLT photometry

One of the objectives of our study is to see whether there have
been significant changes in the brightness of the ULX counter-
part between the HST and VLT observations. To do so, we need
to compare its brightness with those of neighboring, isolated
stars in the two observations. This will also provide a check on
the absolute photometric calibration between the two datasets.
Such a comparison is partly hampered by the difference in reso-
lution: most of the stars detected as single sources in the VLT im-
ages are resolved into multiple components in the HST images.
Besides, the brightest stars are usually saturated in one or the
other datasets.

Nonetheless, there are about twenty bright, isolated sources
that appear point-like and not saturated in either of the VLT and
HST images. Crucially, the seeing of the VLT observations was
good enough (Table 2) to resolve the true ULX counterpart from
its close companion. In Fig. 7 we show the magnitude differ-
ence of these stars observed with FORS1 and ACS B and V fil-
ters. For ≈40% of these stars the HST and VLT brightnesses are
the same within the photometric errors of the two observations.
But even for the other stars, the discrepancy does not exceed

≈0.1 mag in either filter. Overall, the standard 1σ deviations are
σB = 0.05 mag and σV = 0.07 mag. We conclude that absolute
photometry between VLT and HST can be achieved to a preci-
sion of less than about 0.1 mag.

We have then carried out a photometric study of the
ULX counterpart in the VLT/FORS1 images (Table 6). Its col-
ors could be affected by an additional error of ≈0.1 mag due to
variability in one of the filters between different observations.
As we do not have consecutive frames in different filters, we
used the closest observations available to minimize the effect
of color variability. Once again, we can see that the absolute
brightness measured in the VLT frames is in good agreement
with the HST results. We will later show (Sect. 5.2) that the re-
maining differences could be explained as intrinsic variability of
the ULX counterpart.

4.5. On the conversion between the ACS photometric
system and more standard colors

The HST/ACS data of X-2 have also been analyzed and dis-
cussed in two recent papers (Ramsey et al. 2006; Liu et al. 2007).
We have carefully retraced their analyses and noticed some dif-
ferences with respect to the results we have independently ob-
tained from the same dataset. Most of the discrepancy seems to
be related to the choice of photometric system for the datapoints
and the evolutionary tracks employed.

We analyzed the data in two different ways which, in prin-
ciple, should lead to identical conclusions. First, we com-
pared the datapoints directly measured in the HST/ACS sys-
tem colors with the Padua isochrones in the HST/ACS system.
Then, we transformed the HST/ACS colors to the more-standard
Johnson-Cousins colors via the Sirianni et al. (2005) transforma-
tions, and compared these datapoints with the Padua Johnson-
Cousins isochrones. Both sets of isochrones were independently
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calculated and supplied by Girardi et al. (2002) and Girardi1

(in preparation).
Surprisingly these two methods give different results (Figs. 4

and 5), leading to different estimates of stellar ages and
masses! To investigate the reason for this discrepancy, we
also transformed the Padua Johnson-Cousins isochrones to
the HST/ACS system using the recommended Sirianni et al.
(2005) transformations: the result is different from the Padua
HST/ACS isochrones supplied by Girardi (in preparation), es-
pecially for the B band.

Comparing our results with those of Liu et al. (2007), we
can immediately see the effect of this discrepancy. Although
our observed brightnesses and colors are consistent with theirs
(Table 5), our determination of the age of the young stellar pop-
ulation is different (≈20 Myr instead of their <∼10 Myr), with ob-
vious consequences for the physical interpretation of the ULX.
The Padua HST/ACS isochrones suggest different ages of the
young stars in the (F555W versus F435W−F555W) and (F814W
versus F555W−F814W) color−magnitude diagrams (Fig. 5). An
obvious way to reconcile this discrepancy is to take the younger
age and assume a high local extinction, which led Liu et al.
(2007) to conclude that E(B − V) = 0.33 mag.

However, as we showed in Sect. 4.3.1, if we transform the
observed brightnesses and colors to the Johnson-Cousins system
and compare them with the Padua Johnson-Cousins isochrones,
we obtain the same age in the (V versus B−V) and (I versus V−I)
color−magnitude diagrams (Fig. 4) with no need for an extinc-
tion greater than the Galactic line-of-sight value. An indepen-
dent argument in favor of low extinction comes from the spec-
trum of the bubble nebula around the ULX, in which the Balmer
decrement suggests E(B − V) = 0.13 ± 0.03 mag (Grisé et al.,
in preparation), which is inconsistent with the higher values ad-
vocated by Liu et al. (2007). Thus, we suspect that the Padua
Johnson-Cousins isochrones are the more reliable set of tracks.
In any case, we emphasize that the discrepancy between the two
widely-used sets of tracks in the literature deserves further inves-
tigation. We caution that conclusions based on ACS F435W and
F555W photometry alone and in combination with correspond-
ing Padua evolutionary tracks may well be misleading.

The F435W and F555W filter data from the same
HST/ACS dataset were also studied by Ramsey et al. (2006).
They derived an age >∼107 yr and stellar masses <∼10 M⊙.
Although their results appear to be in agreement with ours, we
cannot directly compare our analysis with their approach, be-
cause their paper does not provide information on how they con-
verted from F435W and F555W to B and V bands. Moreover,
there seem to be some inconsistencies because the galactic ex-
tinction is not accounted for when they estimate the stellar age.
Finally, Ramsey et al. (2006) found that the ULX counterpart
has MV = −3.96 ± 0.02 mag, which is clearly inconsistent (by
≈1.0 mag) with both our result and that of Liu et al. (2007).

5. Nature of the ULX optical counterpart

5.1. Constraints from photometry

We have seen (Sect. 4.3.1) that the young population of stars is
consistent with an age of (20 ± 5) Myr, and with an upper mass
limit for non-collapsed stars of (12± 4) M⊙. Although it is prob-
lematic to draw any inferences about the ULX mass-donor star
from photometry alone, due to unknown effects of X-ray irradi-
ation and binary evolution (Patruno & Zampieri 2008), we can

1 See http://pleiadi.pd.astro.it and http://stev.oapd.
inaf.it/cmd for data access

at least say that the ULX optical counterpart shares the same
brightness and colors as the brightest stars in the young asso-
ciation. If the counterpart is believed to be optically dominated
by a normal star, its magnitude (MV ∼ −5 mag) is consistent
with those of an early B-type or a late-type O star, although its
colors ((B − V)0 ∼ −0.18, (V − I)0 ∼ −0.16) are more consis-
tent with an already somewhat evolved B-type star. But taking
into account that we also expect a contribution from the accre-
tion disk to the integrated properties of the ULX counterpart (see
Sect. 5.2), the estimated values of brightness and hence mass
for the donor star are necessarily upper limits. In fact, numeri-
cal models of stellar-mass black-hole X-ray binaries with donor
stars in the mass range 2−17 M⊙ (Rappaport et al. 2005) sug-
gest that the accretion disk should dominate the optical emission
from the binary system.

From the empirical point of view, we draw attention to the
well-known van Paradijs & McClintock (1994) diagram which
shows a strong correlation over 10 absolute magnitudes be-
tween the observed quantity Σ and the absolute visual magni-
tude MV for disk dominated low mass X-ray binaries. Here,
Σ = (LX/1038 erg/s)1/2 × (P/1 h)2/3 × (M/(2 M⊙))1/3 which
reflects the simple assumption that the total bolometric luminos-
ity Lbol of an X-ray irradiated disk is proportional to the X-ray
luminosity and the disk area. At optical wavelengths, the surface
brightness varies as T 2, hence Lopt ∼ L

1/2
bol × a, where a is the or-

bital separation. Following black hole binary evolutionary model
computations by Podsiadlowski et al. (2003) and Rappaport et al.
(2005), an orbital period of 1−6 days and a total mass of some
20 M⊙ are expected for the ULX which, using LX ∼ 1040 erg/s
results in logΣ = 2.2−2.7. In the van Paradijs & McClintock
(1994) diagram such values correspond to an absolute disk mag-
nitude MV = −4.0−−5.0 which in fact is close to the observed
brightness of the optical counterpart of X-2.

Taking the likely disk contribution into account, we conclude
that the donor star in the ULX system has a mass of ≈10 M⊙
(Rappaport et al. 2005).

With the currently available data, it is however difficult to
make more specific statements about the companion star. More
information will come from our spectroscopic study currently in
progress2, which will constrain the orbital period and hence the
size of the system, and will help in resolving the stellar and disk
contribution to the optical spectrum. Deep spectra will possibly
identify narrow absorption lines from the donor star as well as
broader emission lines from the disk.

5.2. Photometric variability in the VLT data

In addition to determining average brightnesses and colours,
we have searched for short and long term variability of the
ULX counterpart. To that end we have applied differential pho-
tometry by using four relatively bright (B ∼ 19−20 mag) com-
parison stars with relative photometric errors <0.03 mag. We
have plotted (Fig. 8, left panel) the B-band light curve of the
counterpart and of a slightly fainter comparison (check) star of
similar brightness. Each datapoint refers to an 840-s observation,
which can be either a single exposure or two consecutive 420-s
exposures, depending on the observational setup. The observing
conditions were clear with good (sub-arcsec) seeing (Table 2).
The error bars are relatively large because of the relatively large
airmasses in many of our exposures; NGC 1313 is low in the
Paranal sky (airmass >∼1.3).

2 13 h of observations executed on VLT/FORS1.
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Fig. 8. Left panel: B-band variability of the ULX counterpart (red datapoints) over 1 month of observations with VLT/FORS1. The blue datapoints
show the much less variable behavior of a comparison star of similar brightness and color; its zeropoint has been shifted downwards by 0.22 mag
for clarity. Right panel: zoomed-in view of the ULX brightness during the 2003 December 24 observations: the source (red datapoints) shows
≈0.10 mag variability on timescales of about one hour. See Sect. 5.2 for a discussion on the statistical significance of such variability.

First, we found a trend of increasing brightness for the
ULX counterpart (Fig. 8), with a change of ≈0.2 mag over the
whole observing period. Moreover, repeated observations dur-
ing the night of December 24 show the ULX counterpart to also
be variable on timescales of about one hour. By contrast, the
comparison star shows significantly less scatter, and is consistent
with having a constant brightness within the photometric errors.
The maximum amplitude of the variations is 0.22 ± 0.04 mag for
the ULX counterpart, and only 0.06 ± 0.05 mag for the compari-
son star. We used a χ2 test to assess more quantitatively whether
or not the observed variability is statistically significant. To do
this, we calculated

χ2 ≡

n∑

i=1

(xi − x̄)2

σ2
i

,

where n is the number of observations (with n−1 degrees of free-
dom), xi are the measured brightnesses, x̄ the median brightness
and σi the error on each measure. Here we multiplied the for-
mal error given by DAOPHOT by 1.15 in order to match the error
distribution of the stars in the field with the expected χ2 distribu-
tion in Fig. 9. For the ULX counterpart, we obtain χ2 = 69.0 for
15 d.o.f., corresponding to a probability of only 7 × 10−9 for the
null hypothesis of constant brightness. For the comparison star
we obtain χ2 = 9.7 for 15 d.o.f., corresponding to a constant-
brightness probability of 84%. During the night of December 24,
we find χ2 = 13.6 for 6 d.o.f. for the counterpart which translates
into a probability of 3.4% for it being constant. The comparison
star has χ2 = 5.2 for 6 d.o.f., which gives a probability of 52%
for the null hypothesis.

Thus, we have clear evidence that the ULX counterpart is
variable on timescales ranging from hours to several days dur-
ing our VLT observations. We further tested the significance of
this variability by comparing the behavior of all the point-like
sources in the brightness range 23 mag < B < 24 mag. For 92 out
of 109 sources (84%), we obtain a constant-brightness proba-
bility of more than 5%, as expected from non-variable sources
(Fig. 9). The ULX counterpart clearly shows much higher scatter
in its brightness measurements, compared with most other stars.
Only 2% of the field stars display variability equal or greater than
the ULX counterpart. In fact, a careful inspection of the position
of the stars on the frame shows that the great majority of stars
with a probability below 0.1% for the null hypothesis of constant
brightness are located in the north-west sector, where crowding

Fig. 9. χ2 test of the null hypothesis (no brightness variability) for all
the stars in the VLT/FORS1 frame with 23 mag < B < 24 mag. With
a χ2 ≈ 84.97 for 15 degrees of freedom (i.e., a probability of constant
brightness of 7 × 10−9), the ULX counterpart is more variable than al-
most all the other sources in the field, including the star we chose for
comparison in Fig. 8. Overplotted is the χ2 distribution for 15 degrees
of freedom.

is more severe, or are situated in the immediate vicinity of other
bright stars. In those cases, a very small fluctuation of the seeing
may severely affect PSF fitting and brightness estimates. These
stars were removed from the sample and are therefore not plot-
ted in Fig. 9. Note that the ULX counterpart does not suffer from
confusion with any other nearby sources. In conclusion, we ar-
gue that the observed variability of the ULX counterpart is sta-
tistically significant and is not due to spurious effects such as
source confusion.

We believe that the observed scatter in the ULX brightness
is a real effect, probably due to the same kind of short-term vari-
ability seen in many low-mass X-ray binaries (for example, in
LMC X-2: McGowan et al. 2003). This is generally understood
as disk reprocessing of variable X-ray emission although simul-
taneous optical and X-ray observations do not always show a
clear correlation between the brightnesses in these bands.

Other luminous stars are also known to display irregular
∼0.2 mag variations in their light curves: in particular, Be stars
(e.g. Dachs 1987), which would also have a luminosity consis-
tent with this ULX counterpart. In Be stars, the variability is
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mostly due to the formation of a circumstellar disk or extended
envelope, with typical radii of a few times the stellar radius (e.g.
Porter & Rivinius 2003). However, the donor star in a ULX is
thought to be almost persistently filling its Roche lobe; accre-
tion onto the BH from a stellar wind or a Be disk is not sufficient
to produce the observed, persistent X-ray luminosity and would
probably give rise to large X-ray outbursts.

In any case, the optical variability suggests a non-negligible
flux contribution from the accretion disk – unlike the situation
encountered in normal high-mass X-ray binaries, where the op-
tical light is dominated by emission from the OB mass donor.

In order to look for periodic variations we computed a Lomb-
Scargle periodogram of the light curve (IDL scargle routine3,
Joern Wilms 2000); however, no significant period was found.
This indicates that we are not primarily seeing ellipsoidal vari-
ations of the companion star over the binary orbit as would be
expected by a Roche-lobe filling star not seen pole-on. However,
such variations could be masked by the random variations of the
reprocessed X-ray flux on the accretion disk and on the irradi-
ated hemisphere of the companion.

In view of this interpretation, it is useful to compare the opti-
cal and X-ray variability. X-2 was observed by XMM-Newton at
the same time as the VLT observation. It was found (Mucciarelli
et al. 2007) that the X-ray brightness rose sharply between
2003 Dec. 21 and 25 (resp. MJD 52 294 and MJD 52 998) and
declined again afterwards. By contrast, we do not see a corre-
sponding optical flare on a similar timescale (Fig. 11). The opti-
cal counterpart did not become fainter after the end of the X-ray
flare; instead, it was ≈0.2 mag brighter on 2004 Jan. 15 than
during 2003 Dec. 24−25, even though the X-ray luminosity was
lower by a factor 2.

5.3. Variability in the combined VLT/HST data set

We showed in Sect. 4.4 that the absolute photometry of our
HST and VLT observations are consistent with each other.
Therefore, we can extend our variability study by adding the
two HST/ACS datapoints to the B-band VLT light curve dis-
cussed earlier. We do not have an F435W HST/ACS observation
on 2004 Feb. 22, but we have used the F555W brightness and
converted it to a B brightness by using the B − V color mea-
sured in the 2003 Nov. HST data. Assuming that the color has
stayed constant, we find that the optical counterpart has bright-
ened by ≈0.15 mag with respect to the first HST observation
three months earlier (Fig. 10).

6. Conclusions

We combined the high sensitivity of VLT/FORS1 and the high
spatial resolution of HST/ACS for a detailed photometric study
of the optical counterpart to the ULX X-2 and of its immedi-
ate environment in the southern part of the galaxy NGC 1313.
The dominant stellar population in that region of the galaxy is
old (>1 Gyr). From the brightness and colours of its red giant
branch, we re-estimated the distance to the galaxy as 4.07 ±
0.22 Mpc, consistent with previous studies which used obser-
vations from the north-west part of the galaxy. We also esti-
mated that the average metallicity of the old stellar population
is [Fe/H] = −1.9 ± 0.3, consistent with the typical metallicity
found in haloes of spiral galaxies of similar size.

3 http://astro.uni-tuebingen.de/software/idl/aitlib/

timing/scargle.html

Fig. 10. Combined B-band light curve of the ULX counterpart between
2003 November 22 and 2004 February 22, from the VLT/FORS1 and
HST/ACS data. The HST/ACS datapoints are the first and last one.

Fig. 11. X-ray (top) and B-band (bottom) light curve of the ULX coun-
terpart. Note that the X-ray flux is taken from Mucciarelli et al. (2007).

Near the ULX, we highlighted two groups of (a few) young
stars, spread out over ≈200 pc, and hence more similar to an
OB association (or more likely, two separate associations close
to each other) rather than to a bound cluster. They clearly stand
out in brightness and colors over the surrounding old population.
There are no other similar groups of young stars in this region
of the galaxy, nor are they connected to spiral arm features. The
reason for this recent, localized episode of star formation is un-
clear, but the ULX is clearly associated with this young popula-
tion. We speculate that the local star-formation episode may have
been triggered by a collisional event (proposed for the Gould’s
Belt in the Milky Way) with a satellite galaxy or, more likely,
with a fast-moving HI cloud transiting across the disk plane (for
which there is independent evidence in NGC 1313).

We estimate that the largest association of young stars has
an age ≈20 Myr and a stellar mass ≈5 × 103 M⊙. The ULX op-
tical counterpart appears as one of the brightest stars in the
association, without any obvious color or brightness anomaly.
Using standard stellar evolutionary tracks, we constrain its mass
to be <∼12 M⊙; or even less, if the accretion disk is signifi-
cantly contributing to the source luminosity. Our mass estimate
is smaller than reported in previous work (Liu et al. 2007),
and correspondingly, we estimate relatively older ages for the
young stars. We argue that the most likely reason for that is
a discrepancy between the Padua isochrones in the HST/ACS

http://astro.uni-tuebingen.de/software/idl/aitlib/timing/scargle.html
http://astro.uni-tuebingen.de/software/idl/aitlib/timing/scargle.html
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809557&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809557&pdf_id=11
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VEGAMAG system and those in the standard Johnson-Cousins
system. The two sets of isochrones are not related to each
other via the same Sirianni transformations (Sirianni et al.
2005) that are generally accepted as the best way to trans-
form the brightness and colors of the observed sources from
the HST/ACS VEGAMAG system to the Johnson-Cousins sys-
tem. We showed that the HST/ACS isochrones indicate differ-
ent ages for the same dataset, in the (F814W, F555W−F814W)
and (F555, F435−F555W) color−magnitude diagrams. By con-
trast, the Johnson-Cousins isochrones give consistent ages, when
applied to the same datapoints transformed via Sirianni’s equa-
tions. For this reason, we believe that the Johnson-Cousins
isochrones are more reliable. In any case, this is an issue de-
serving further investigation. Although the resulting differences
in masses and ages may appear small, they can have a large effect
on the physical interpretation of the ULX, for example regarding
its accretion rate and duration of the active phase.

One of the most significant findings of this work is the short-
term variability of the ULX counterpart, by up to ≈0.2 mag,
on timescales of hours and days. This is detected both in the
HST/ACS and in the VLT/FORS1 datasets, and even more evi-
dent in the combined dataset. There is no evidence of periodicity.
This suggests that the variability is not due to ellipsoidal varia-
tions. Instead, it may be caused by varying X-ray irradiation of
the donor star and (more likely) a stochastically-varying contri-
bution from the accretion disk.

Our work, and other recent multi-band studies of ULXs,
suggest that those systems share most of their properties with
Galactic X-ray binaries, although at higher luminosities. The
donor star need not be an extraordinarily massive object, or even
an O star; in fact, it appears to be a common-or-garden B star.
The accretion disk may be as luminous (or possibly even more
luminous) as the donor star, even in the optical bands, which
is consistent with a high X-ray luminosity and high accretion
rate. We also showed that the total stellar mass in the young stel-
lar associations around the X-2 ULX is <104 M⊙: thus X-2 is
clearly not in a super-star-cluster. This means that whatever the
nature of the compact object is (stellar-mass or IMBH), it was
not formed via a runaway-coalescence scenario as proposed by
Ebisuzaki et al. (2001) and Portegies Zwart & McMillan (2002).
But X-2 has been proposed as one of the best candidates for
an IMBH (M ∼ 1000 M⊙), because this ULX has a supersoft
spectral component at 0.15 keV (Miller et al. 2003). We have
shown in our study that X-2 sits in a normal OB association
so if this ULX is an IMBH, it means that there must be other
ways of forming such objects. More likely, we suggest that X-2
is not an IMBH and that it was formed within the stellar associ-
ation via a more conventional stellar evolutionary scenario. We
point out here that X-2 is not an exceptional case. Indeed, most
other luminous ULXs do not sit in super-star-clusters either (e.g.
Holmberg IX X-1), but are part of much smaller associations.
In those cases, either there is a different way to form IMBHs,
or more likely most of them have a mass <∼100 M⊙ and formed
from ordinary stellar evolution.

For a definitive answer on the BH mass it is crucial to derive
the parameters of the binary system, via phase-resolved observa-
tions. The apparently random variability of the optical counter-
part, interpreted as the effect of X-ray reprocessing in the accre-
tion disk and on the surface of the secondary will probably mask
periodic variability such as ellipsoidal variations or the X-ray
heating curve. Thus, it may be hard to detect the signature of
the binary period from photometric observations. On the other
hand, spectroscopic observations (currently in progress) may al-
low us to determine the phase-resolved radial-velocity curve of

the HeIIλ4686 disk emission line, and hence to constrain the
BH mass.

Based on observations made with ESO Telescopes at the
Paranal Observatory under programme ID 072.D0614 and
on observations made with the NASA/ESA Hubble Space
Telescope, obtained from the data archive at the Space Telescope
Institute. STScI is operated by the association of Universities
for Research in Astronomy, Inc. under the NASA con-
tract NAS 5-26555.
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