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Significant climate risks are associated with a positive carbon–tem-

perature feedback in northern latitude carbon-rich ecosystems, mak-

ing an accurate analysis of human impacts on the net greenhouse

gas balance of wetlands a priority. Here, we provide a coherent

assessment of the climate footprint of a network of wetland sites

based on simultaneous and quasi-continuous ecosystem observa-

tions of CO2 and CH4 fluxes. Experimental areas are located both

in natural and in managed wetlands and cover a wide range of

climatic regions, ecosystem types, andmanagement practices. Based

on direct observations we predict that sustained CH4 emissions in

natural ecosystems are in the long term (i.e., several centuries) typ-

ically offset by CO2 uptake, although with large spatiotemporal

variability. Using a space-for-time analogy across ecological and cli-

matic gradients, we represent the chronosequence from natural to

managed conditions to quantify the “cost” of CH4 emissions for

the benefit of net carbon sequestration. With a sustained pulse–

response radiative forcing model, we found a significant increase

in atmospheric forcing due to land management, in particular for

wetland converted to cropland. Our results quantify the role of

human activities on the climate footprint of northern wetlands

and call for development of active mitigation strategies for man-

aged wetlands and new guidelines of the Intergovernmental Panel

on Climate Change (IPCC) accounting for both sustained CH4 emis-

sions and cumulative CO2 exchange.

wetland conversion | methane | radiative forcing | carbon dioxide

For their ability to simultaneously sequester CO2 and emit
CH4, wetlands are unique ecosystems that may potentially

generate large negative climate feedbacks over centuries to
millennia (1) and positive feedbacks over years to several cen-
turies (2). Wetlands are among the major biogenic sources of

CH4, contributing to about 30% of the global CH4 total emis-
sions (3), and are presumed to be a primary driver of interannual
variations in the atmospheric CH4 growth rate (4, 5). Meanwhile,
peatlands, the main subclass of wetland ecosystems, cover 3% of
the Earth’s surface and are known to store large quantities of
carbon (about 500 ± 100 Gt C) (6, 7).
The controversial climate footprint of wetlands is due to the

difference in atmospheric lifetimes and the generally opposite
directions of CO2 and CH4 exchanges, which leads to an uncertain
sign of the net radiative budget. Wetlands in fact have a great
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potential to preserve the carbon sequestration capacity because
near water-logged conditions reduce or inhibit microbial respira-
tion, promoting meanwhile CH4 production that may partially or
completely counteract carbon uptake. Potential variations of the
CO2/CH4 stoichiometry in wetlands exposed to climate and land-
use change require the development of mitigation-oriented man-
agement strategies to avoid large climatic impacts.
The current and future contribution of wetlands to the global

greenhouse gas (GHG) budget is still uncertain because of our
limited knowledge of the combined and synergistic response of
CH4 and CO2 land–atmosphere exchange to environmental
variability (8, 9) and land-use change (e.g., wetland restoration,
drainage for forestry, agriculture, or peat mining) (9, 10). Fluxes
of CH4 and CO2 from natural wetlands show large spatiotem-
poral variations (11, 12), arising from environmental inter-
actions controlling the production, transport, consumption, and
release of CH4 (13, 14) as well as the dynamic balance between
photosynthetic and respiratory processes that regulate the net
accumulation of carbon in biomass and soil. Environmental
factors such as variations in air and soil temperature, water table,
and substrate availability for methanogenesis lead to a high
spatial and temporal variation of CH4 emissions (15–17). The
magnitude of emissions is also controlled by the balance between
CH4 production and oxidation rates and by transport pathways:
diffusion (18), ebullition (19), and aerenchyma transport (20).
Climate change influences the GHG balance of wetlands

through thawing of the near-surface permafrost (21, 22) and
thaw lakes (23), increased nitrogen availability due to acceler-
ated decomposition of organic matter (24), and modification of
the water tables with consequent shifts in CH4 emissions (1, 25).
A review of carbon budgets of global peatlands concluded that
these ecosystems may remain a small but persistent sink that
builds a large C pool, reducing the atmospheric CO2 burden,
whereas the stimulation of CH4 emissions induced by climate
warming may be locally tempered or enhanced by drying or
wetting (26). The climate footprint of wetlands can also be af-
fected by anthropogenic activities such as the conversion of
natural ecosystems to agricultural or forested land (10, 27).
Draining peatlands for forestry may lead to a C loss and reduced
CH4 emissions (10, 26), whereas land use for agriculture typically
reduces the CH4 emissions and increases N2O emissions (26).
Several studies have analyzed the impact of northern peat-

lands on the Earth’s radiative budget either by computing the
radiative forcing (RF) of sustained CH4 and CO2 fluxes (2) or by
multiplying the annual ecosystem exchange of CO2 and CH4 with
the global warming potentials of the two gases (28–30). However,
although this latter approach is useful for comparison, its ap-
propriateness in computing the actual RF has been questioned
(31–33). An alternative approach for assessing the impact of
peatland draining/drying on the RF has been applied by driving

an atmospheric composition and RF model with pre- and post-
drainage measured fluxes of CO2, CH4, and N2O (34).
Here, we ask, what is the climate cost of CH4 emissions com-

pared with the benefit of net carbon sequestration? We assessed
this question, using data from a network of wetland observational
sites where direct and quasi-continuous CO2 and CH4 chamber
and eddy covariance measurements are performed. Using the
space for time analogy, flux observations at sites with contrasting
land cover are combined with a sustained pulse–response model to
predict the potential future RF of natural wetlands converted to
agricultural or forested land.

Results and Discussion

As the land–atmosphere fluxes of CH4 and CO2 in wetlands can
be opposite in sign and very different in magnitude, their net
impact on the climate system is difficult to assess and predict. In
particular, CH4 emissions from wetlands are continuous and thus
add a positive term to the radiative balance (31) that can be
partially or totally offset by a sustained carbon sequestration (35).
The availability of consistent and simultaneous measurements of
ecosystem CO2 and CH4 fluxes provides an opportunity to address
these issues, using direct observations collected at 29 both natural
and managed wetlands located in the Northern Hemisphere (Fig.
1A). Details on site locations, climate, vegetation type, measure-
ment techniques, and yearly/seasonal GHG budgets are reported
in SI Text, Site Analysis and SI Text, Measurement Techniques and
Gap-Filling Methods (Tables S1–S5).
The trade-off between CH4 net emission and CO2 net seques-

tration in wetlands is evident in Fig. 1B, where most sites are
sources of CH4 (positive ecosystem fluxes) and CO2 sinks (nega-
tive values of net ecosystem exchange, NEE). Given that CH4 has
a relatively short lifetime in the atmosphere (∼10 y) compared to
CO2, the radiative balance of these two gases depends on the
timeframe of the analysis. As an example of this dependence, the
two red–blue equilibrium lines in Fig. 1B represent the ratio of
sustained CO2 and CH4 fluxes that would result in a zero net
cumulative radiative balance over 20 y and 100 y. The lines were
simulated with a sustained pulse–response model (27) and used in
this study also to calculate the RF of management options. The
model generates the following flux ratios: −31.3 g and −19.2 g
CO2-C·m

−2
·y−1 per gram CH4-C·m

−2
·y−1 for 20 y and 100 y,

respectively. This implies that a continuous emission of 1 g
CH4-C·m

−2
·y−1 and uptake of 31.3 g CO2-C·m

−2
·y−1 would have

a positive cumulative RF (warming) for the first 20 y and a nega-
tive cumulative RF (cooling) after that. Sites that fall on the right
side of the equilibrium lines have a positive radiative budget and
those on the left side have a negative radiative budget for the
specified 20-y or 100-y timeframe (Fig. 1B). Under the current
climate, 59% of arctic and boreal sites’ and 60% of temperate
sites’ observations have a positive radiative balance compared with
both 20-y and 100-y equilibrium lines. All but one of the forested
wetlands [arctic/boreal (AB)5, AB7, temperate (T)9, and T11]
currently have a negative net radiative balance owing to their
considerable CO2 uptake and relatively low CH4 emissions (Fig.
1B and Fig. S1). Sites located between the two lines have a positive
or negative radiative budget, depending on the time span of the
analysis (e.g., AB9, AB4, and T8, Fig. 1B).
Changes in the water level in wetlands substantially alter the

ratio of CH4 and CO2 fluxes. Recent warming and drying in the
Arctic has led to increased CO2 losses from the soil, in some
cases switching arctic regions from a long-term carbon sink to
a carbon source (36). In other cases, the drying of arctic and
boreal wetlands reduces CH4 emission without generating larger
CO2 emissions, owing to the compensation between accelerated
decomposition of organic matter and an increase in net primary
productivity (NPP) (37–39). As an example of management
impacts, data show that the CO2 and CH4 emissions of the site
AB3a dropped toward a near zero net radiative budget one year

Significance

Wetlands are unique ecosystems because they are in general

sinks for carbon dioxide and sources of methane. Their climate

footprint therefore depends on the relative sign and magni-

tude of the land–atmosphere exchange of these two major

greenhouse gases. This work presents a synthesis of simulta-

neous measurements of carbon dioxide and methane fluxes to

assess the radiative forcing of natural wetlands converted to

agricultural or forested land. The net climate impact of wet-

lands is strongly dependent on whether they are natural or

managed. Here we show that the conversion of natural wet-

lands produces a significant increase of the atmospheric radi-

ative forcing. The findings suggest that management plans for

these complex ecosystems should carefully account for the

potential biogeochemical effects on climate.
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after drainage, whereas sites that were drained a long time ago,
such as AB6 and AB7, have large carbon uptake rates (Fig. 1).
Different responses of CH4 and CO2 budgets at drained tem-

perate wetlands compared with boreal or arctic wetlands mainly
occur due to management activities. At these sites draining for
agricultural use suppresses CH4 emissions and enhances CO2 ef-
flux owing to accelerated peat degradation, exploitation through
grazing, and carbon export (T2, T10, and T14). Conversely,
rewetted former agricultural areas or restored wetlands typically
emit CH4 (T13) at a rate that in the short term is not offset by the
CO2 sink (T4). Although most of the studied temperate wetlands
have a positive radiative budget, natural forested wetlands show
significant carbon uptake driven by high rates of photosynthesis
that offsets ecosystem respiration (T9 and T11). The long-term
CH4 and CO2 balance of these ecosystems thus ultimately depends
on the fate of the carbon stored in the trees.
At temperate latitudes, it is interesting to note that the two

rice paddies (T3 and T7) that in general are known as major
contributors to atmospheric CH4 (5% of the total emissions and
about 10% of the anthropogenic emissions) (3) are also char-
acterized by large CO2 uptake. However, the net GHG budget of
this crop is further complicated by significant carbon imports
(fertilization) and exports (harvest and dissolved organic car-
bon). Based on site observations, carbon losses due to harvest
account for 67% and 70% of net ecosystem exchange at T3 (40)
and T7, respectively, so that the net GHG balance from these
ecosystems is strongly influenced by the carbon exports.
To quantify the effect of ecosystem management on the net

climate impact of multiple GHG fluxes, we applied an analytical
approach based on the concept of radiative forcing. RF is a widely
used metric in climate change research to quantify the magnitude of
an externally imposed perturbation to the incoming long-wave ra-
diative component of the Earth’s atmospheric energy budget (41).
Two types of human perturbations were considered: the conversion
of natural wetlands to agricultural land and the conversion of
natural forested wetlands to managed forested wetlands. Natural
wetlands with full annual GHG budget were used as reference and

paired in all possible combinations to managed sites (SI Text, Ra-
diative Forcing Calculations and Table S6). Based on the difference
between natural and perturbed ecosystems, we calculated the net
RF due to CO2 and CH4 fluxes for 100 y, using a sustained pulse–
response model (27) (SI Text, Radiative Forcing Calculations). The
contribution of N2O fluxes to the RF was accounted for only in
agricultural sites (AB6, AB14a,b, T10, and T14) where significant
emissions of this GHG can be observed (3).
Losses of carbon due to harvest and natural disturbances (e.g.,

mainly fires, wind throw, and pests) were also taken into account
in the RF calculation, either in the form of annual harvest (for
agricultural land) or after each rotation for wood harvest, and
assumed every 100 y for natural disturbances in forested wet-
lands (42–44). It was assumed that all of the removed biomass
was emitted into the atmosphere as CO2 during the same year.
The results of the RF simulations (Fig. 2) are thus dependent on
the ecosystem and management type. Results show that at all
timescales the net effect of GHG emissions in arctic and boreal
natural wetlands converted into agricultural sites (Fig. 2A) is
a large positive RF, whereas the conversion of drained wetlands
into energy crops (AB6) results in a minor negative RF for the
100-y simulations. The temperate wetlands (Fig. 2B) that were
converted into agriculture sites showed, in general, a positive
RF with a large spread among sites induced by management
intensity [e.g., intensive (T10) vs. extensive (T14) grazing]. Given
that the carbon balance of forest ecosystems largely depends on
the fraction of harvested biomass, we carried out an uncertainty
analysis by perturbing the harvest rate of the accumulated NPP
according to two Gaussian distributions for natural (50 ± 10%,
observed harvest rate at AB7) and managed (67 ± 10%) (45) sites,
respectively (SI Text, Radiative Forcing Calculations). To evaluate
the uncertainty generated by our assumptions, NPP was estimated
with two alternative methodologies: (i) applying average ratios of
NPP/gross primary productivity derived from the partitioning of the
observed NEE (46), based on a recent meta-analysis (NPP/GPP =

0.39 and 0.49 for boreal and temperate forests, respectively) (47),
and (ii) summing the observed NEE to the soil respiration rates
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Fig. 1. (A) Global distribution of the 29 measurement sites involved in the present analysis. Triangles represent sites with annual budgets (Y) and circles
represent sites with growing season budgets (S). Site IDs and description are reported in SI Text, Site Analysis and Tables S1 and S2. (B) CH4 vs. CO2 flux (in
grams C·m−2

·y−1) for arctic/boreal and temperate wetlands relative to the modeled RF equilibrium lines. The two blue–red equilibrium lines represent the
ratio of sustained CO2 and CH4 fluxes (grams CO2-C·m

−2
·y−1 per gram CH4-C·m

−2
·y−1) that would result in a zero cumulative RF over the period indicated for

the line (20 y and 100 y). The slope of the line depends on the constant CO2 uptake rate that would be needed for compensating the positive RF of a unit CH4

emission at a fixed changing time. The arrow pointing down (AB3a to AB3b) indicates the carbon flux change at the specific site after a drainage experiment.

4596 | www.pnas.org/cgi/doi/10.1073/pnas.1416267112 Petrescu et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1416267112/-/DCSupplemental/pnas.201416267SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1416267112/-/DCSupplemental/pnas.201416267SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1416267112/-/DCSupplemental/pnas.201416267SI.pdf?targetid=nameddest=ST6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1416267112/-/DCSupplemental/pnas.201416267SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1416267112/-/DCSupplemental/pnas.201416267SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1416267112/-/DCSupplemental/pnas.201416267SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1416267112/-/DCSupplemental/pnas.201416267SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1416267112/-/DCSupplemental/pnas.201416267SI.pdf?targetid=nameddest=ST2
www.pnas.org/cgi/doi/10.1073/pnas.1416267112


reported in the IPCC Wetland Supplement for natural and managed
wetlands (48).
Results for the boreal site pair (AB5→AB7) show that the

confidence intervals cross the x axis and therefore the ultimate
sign of the RF depends on the harvest rate. In addition, with
both methods used for the calculation of NPP, at average harvest
rates the RF is not statistically different from zero (Fig. 2C). In
contrast, for the temperate site pair (T9→T11) RF is positive,
independently of the management intensity and of the applied
methodology (Fig. 2D). Our analysis demonstrates that, to assess
the RF of wetland management, both CH4 fluxes and the

concomitant changes in CO2 emissions have to be accounted for.
This is especially true at the decadal timescales for boreal wet-
lands converted to forest or agricultural land (Fig. 2 E and F).

Conclusions

The recent availability of simultaneous and continuous ecosystem
observations of CH4 and CO2 fluxes in wetlands provides funda-
mental insights into the climate footprint of these ecosystems to
support the development of sustainable mitigation strategies based
on ecosystem management. Careful accounting of both CO2 and
CH4 fluxes (and N2O fluxes where significant) is essential for an

A B

C D

E F

Fig. 2. Trends of radiative forcing (RF, period 2000–2100) for paired sites and ecosystem types. (A and B) Net RF for CO2, CH4, and N2O in natural wetlands
converted to agricultural land. (C and D) Net RF for the conversion of natural forested wetland to managed forests (AB5→AB7 and T9→T11). For each of the
two pairs an uncertainty analysis on the effect of the harvest rate is presented. (E and F) Cumulative RF of individual gases at 20 y and 100 y for all site pairs,
with their net RF (circles ± SD). The forcing units refer to the mean global impact of 1 m2 of wetland area (SI Text, Radiative Forcing Calculations). Site IDs can
be found in SI Text, Site Analysis and Tables S1 and S2.
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accurate calculation of the climate impact of wetlands. We also
stress the importance of direct and quasi-continuous chamber or
eddy covariance flux measurements over annual timescales for the
observation of ecosystem responses to environmental drivers and
management (e.g., flooding, drainage, and land use change) that
may be missed with intermittent manual chamber measurements.
The net GHG budget of these ecosystems is spatially and tem-

porally variable in sign and magnitude due to the generally opposite
direction of CH4 (emission) and CO2 (uptake) exchange and,
therefore, can be easily altered by both natural and anthropogenic
perturbations (SI Text, Site Analysis and Table S3). Management
and land use conversions in particular play a critical role in de-
termining the future GHG balance of these ecosystems. Our results
prove that management intensity strongly influences the net climate
footprint of wetlands and in particular the conversion of natural
ecosystems to agricultural land ultimately leads to strong positive
RF. These considerations suggest that future releases of GHG in-
ventories based on IPCC guidelines for wetlands should indeed
address the relationship between the fluxes of CH4 and CO2, the
management intensity, and the land use/land cover change on the
net GHG balance as well as on the RF of these complex ecosystems.

Materials and Methods

This study is based on measurements of net ecosystem exchange of CO2 and
CH4 trace gas exchange performed with eddy covariance and/or chamber
methods (SI Text, Site Analysis and Tables S1 and S2). Most of the included
study sites are part of FLUXNET, an international network of sites where
energy and GHG fluxes are continuously monitored with a standardized
methodology (49). The RF due to wetlands management was calculated for
CO2, CH4, and, where significant (agricultural sites AB6, AB14a,b, T10, and T14),
N2O fluxes, using a sustained pulse–response model (27). Annual concentration
pulses were derived from the flux differences between pristine wetlands, taken
as reference, and wetlands converted to either cropland or forests.

Natural-managed site pairs were defined for all possible combinations of
similar ecosystem types with available annual CO2 and CH4 budgets within
each climatic or management-related category (arctic/boreal or temperate
regions, cropland or forest; SI Text, Radiative Forcing Calculations and Table S6).
These site pairs were selected to represent plausible and representative
wetland conversions, and thus part of the sites were excluded from this
analysis (e.g., rice fields). In the simple pulse–response RF model used here
the perturbations to the tropospheric concentrations of CO2, CH4, and N2O

were derived by integrating the effect of a series of consecutive annual mass
pulses that correspond to the mean annual balances of these gases (27) (SI
Text, Radiative Forcing Calculations). Different radiative efficiencies and
atmospheric residence times of CO2, CH4, and N2O were taken into account,
as well as the annual variation of their background concentrations. RF was
calculated for a 100-y period starting from 2000, assuming that the back-
ground concentrations increase as in the A2 scenario of the Special Report
on Emissions Scenarios (SRES). The RF methodology is described in detail in SI

Text, Radiative Forcing Calculations. The data reported in this paper are
tabulated in SI Text and part is archived in the FLUXNET database and/or
published in peer-review articles as shown in SI Text references.
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