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Species distribution models (SDM) are commonly used to obtain hypotheses on either the realized or the potential
distribution of species. The reliability and meaning of these hypotheses depends on the kind of absences included in the
training data, the variables used as predictors and the methods employed to parameterize the models. Information about
the absence of species from certain localities is usually lacking, so pseudo-absences are often incorporated to the training
data. We explore the effect of using different kinds of pseudo-absences on SDM results. To do this, we use presence
information on Aphodius bonvouloiri, a dung beetle species of well-known distribution. We incorporate different types of
pseudo-absences to create different sets of training data that account for absences of methodological (i.e. false absences),
contingent and environmental origin. We used these datasets to calibrate SDMs with GAMs as modelling technique and
climatic variables as predictors, and compare these results with geographical representations of the potential and realized
distribution of the species created independently. Our results confirm the importance of the kind of absences in
determining the aspect of species distribution identified through SDM. Estimations of the potential distribution require
absences located farther apart in the geographic and/or environmental space than estimations of the realized distribution.
Methodological absences produce overall bad models, and absences that are too far from the presence points in either the
environmental or the geographic space may not be informative, yielding important overestimations. GLMs and Artificial
Neural Networks yielded similar results. Synthetic discrimination measures such as the Area Under the Receiver
Characteristic Curve (AUC) must be interpreted with caution, as they can produce misleading comparative results.
Instead, the joint examination of ommission and comission errors provides a better understanding of the reliability of

SDM results.

Estimating the different aspects of the geographical dis-
tribution of species from the fragmentary distribution data
(presence/absence data) that are commonly available is of
great value for both basic and applied purposes. Such an
approach has been named “niche-based modelling”, “eco-
logical niche modelling”, “habitat suitability modelling”,
“climate envelope modelling” or “species distribution
modelling”, among other denominations. For convenience,
herein we use the latter in its abbreviated form, SDM.
An exhaustive search in the ISI Web of Science including
both these topics and the names of a number of authors
publishing in the field yield 2333 studies published so far
at the end of 2008. The increase in the number of
publications followed an almost exponential rate since the
original formulation of the theoretical framework in the
1980s by the seminal works of Busby (1986) and Austin
et al. (1990), among others. From 1995 the net rate of
increase in the number of published papers is 20.2 yr ™'
(Fig. 1). Such widespread interest is an indicator of this field
of research having become a hot topic in the ecological,

biogeographical or conservation literature in the last two
decades, and that its attraction among biologists is still
increasing. However, is this interest justified by a true
success of SDM in describing the distribution of species?
A great part of these modelling exercises overlook the
conceptual and methodological implications of discerning
between potential and realized distributions, as well as the
influence of the kind and quality of the primary data used
to build the models (Jiménez-Valverde et al. 2008a).
Theoretically, each organism is adapted to specific tolerance
zones or “niches” which, in a Grinellian sense, can be
considered as the set of abiotic requirements in which a
species can maintain a net positive rate of population
increase without immigration (Grinnell 1917, Soberén and
Peterson 2005, Soberén 2007, 2010, Colwell and Rangel
2009, Soberén and Nakamura 2009). It follows that if
the main environmental variables that delimit such “niche”
were known, then it would be possible to estimate the
potential distribution of the species (i.e. the places
environmentally suitable to maintain its populations), at
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Figure 1. Number of published papers (line) and variation in the
number of accumulated papers (points) on species distribution
modelling found in ISI Web of Science after performing an
exhaustive search by topics and authors.

least at relatively coarse geographical scales (Sober6n and
Nakamura 2009, Soberén 2010). However, if we were to
use distributional data to generate such hypothesis, it would
be necessary to assume that the environmental conditions in
the localities where the species is present (herein, presences)
provide a reliable description of its whole requirements.
Such assumption implies that 1) the distribution of a
species is an accurate geographical representation of its
niche, and 2) the distributional data are not biased and
recover the whole gradient of environmental conditions in
which the species can inhabit.

Unfortunately, these two intrinsic requirements are
never true. First, temporal changes in the environmental
conditions and non-environmental processes such as dis-
persal limitations or historical factors constrain the poten-
tial distribution of species (Pulliam 1988, 2000, Ricklefs
and Schluter 1993, Hanski 1998, Ricklefs 2007). Thus,
species are never in equilibrium with the environment
(Svenning and Skov 2004, Aratjo and Pearson 2005) and
presence points reflect their realized, not their potential,
distributions. Second, most distributional data have not
been collected with standardized sampling protocols. Hence,
bias and lack of coverage are general characteristics of
the presences known for most species (Dennis et al
1999, Dennis and Thomas 2000, Hortal et al. 2007,
2008) and, so, they virtually never reflect the whole spec-
trum of conditions inhabited by the species in the time
frame considered. The quality and representativeness of
the distributional data are especially important because
the sample from which the relationships among variables
are inferred should be representative of the population
described (Zar 1999). In other words, the training data
used on SDM must represent the environmental gradi-
ents of the study region adequately (Kadmon et al. 2004,
Horrtal et al. 2008).

Our purpose is to highlight that distribution predictions
are necessarily of provisional nature, especially when biased
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data are used. Certainly, SDM could be highly useful to
study and/or represent the distributions of groups for which
the available information is not only scarce but also
impossible to obtain in the near future, such as insects.
However, scarce data in hyperdiverse taxa usually imply
environmental and geographical biases (Hortal et al. 2007,
2008, Lobo et al. 2007). This fact imposes a paradox: the
more SDM are needed, the more difficult it is to apply
them. Hence, a well-developed conceptual framework is
needed to establish solid foundations where this emerging
field of research can develop into a robust body of
knowledge.

In a former work we argued that the type of distribution
data (presence and absence) used for SDM determines the
final results, as well as the capacity to represent the potential
or the realized distribution of the species (Jiménez-Valverde
et al. 2008a). Here we further explore how the type of
absence information used influences the species’ geographi-
cal distributions that are finally inferred from SDM, as well
as the subsequent shifts from the potential to the realized
domains. To do this, we examine how the different
distributional predictions obtained by the use of different
kinds of absence data differ in their capacity to represent
the potential and/or realized distribution of a species. We
use Aphodius bonvouloiri, an Iberian endemic dung beetle
species of known distribution and present in the fossil
record (see below) as a model species. Firstly, we generate
maps of the probability of finding the three possible types of
absences (methodological, environmental and contingent,
see below). Subsequently, we use these maps in a classic
presence—absence SDM procedure using climatic variables
as predictors in order to identify the roles played by the
two main processes responsible of the distribution of
species: environmental adaptations (Brown et al. 1996)
and dispersal limitations (Svenning and Skov 2005), as
well as the effect of false absences caused by biases in the
distributional data (Hortal et al. 2008).

Three kinds of absences

If presences inform about the places that are environmen-
tally suitable for a species (with some noise due to source/
sink population dynamics and/or high dispersal capa-
city, Pulliam 2000), absences do the opposite. However,
absences provide a more diverse source of information
that the mere lack of suitability of some places. Some of
the localities from where a species is absent can in fact be
environmentally favourable places where dispersal limita-
tions (Svenning and Skov 2005), historical factors
(McGlone 1996), local extinctions (Hanski 1998), biotic
interactions or other factors such as the size of the patches
of suitable habitat (Hirzel and Le Lay 2008) have preven-
ted the presence of the species. From now on we define
contingent absences as those caused by these restrictive
forces on the pool of a priori climatically or environmen-
tally favourable areas. In contrast, we define environmental
absences as those caused solely by the lack of environmen-
tally or climatically favourable conditions in these places.
Both kinds of absences are the outcome of the processes
shaping species distributions (see Soberén and Nakamura
2009 and Soberén 2010 for a detailed framework). Apart



from these two types, there is also a third kind of absences
that derives from the very nature of distributional informa-
tion, which is frequenty (if not always) incomplete and
biased (see Gaston 1991, Gaston and Blackburn 1994,
Dennis et al. 1999, Dennis and Thomas 2000, Graham
et al. 2004, Soberdén and Peterson 2004, Hortal et al. 2007,
2008, Lobo et al. 2007 and references therein). We call
these absences methodological absences because they are
the result of the bias and scarceness in the survey infor-
mation. This type of absences might constitute the most
important source of uncertainty for the study on the
patterns and processes underlying the geographic distri-
bution of biodiversity (the so-called Wallacean shortfall;
Whittaker et al. 2005). Following the niche framework
proposed by Soberén (2007, 2010, Soberén and Nakamura
2009), contingent absences would be outside of the realized
but inside the fundamental niche, environmental absences
would be outside of both the realized and fundamental
niche, and methodological absences would be inside both
the realized and the fundamental niche.

Although knowing the location of absences and their
type (i.e. their origin) would be highly informative, it
is perhaps a naive goal. However, we argue that the
probability of occurrence of each type of absences varies
across the territory, according to the spatial and environ-
mental distance of each locality from the conditions
prevailing in the known presence points. More precisely,
environmental absences are more probable in those local-
ities showing environmental conditions far away from the
environmental universe defined by the presence localities.
Conversely, contingent absences will be more probable in
spatially distant localities with favourable environmental
conditions, while the probability of finding methodological
absences will be higher in the environmentally favourable
localities placed nearest to the known presence points.
Here we assume that is more likely that these absences
correspond to lack of knowledge than to the actual absence
of populations, although this is also scale-dependent
(Hortal 2008, Kriticos and Leriche 2010). Below a certain
grain threshold (different for each species), presence will
largely depend on micro-habitat selection, short-distance
dispersal and metapopulational processes (Wilson et al.
2010), thus increasing the number of truly contin-
gent absences that are placed spatially near the observed
presences. However, if the scale of analysis is appropriate,
by including subsets of absences selected according to
these probabilities in the calibration data (together with
the known presences), we will be able to identify their
effects on the results of SDM, as well as to study the
different aspects of the distribution of a species.

A case study: Aphodius bonvouloiri
Study species

Aphodius bonvouloiri is a dung beetle species (Coleoptera,
Scarabacoidea, Aphodiinae), currently endemic to the
medium to high mountain areas of the north and central
Iberian Peninsula (Fig. 2A). However, this species was one
of the most abundant beetles in the south of
Great Britain during a temperate interlude in the middle

of the last glaciation around 43000 yr BP (Coope and
Angus 1975, Coope 1990). During such interstadial period
summers were warmer than at present and A. bonvouloiri
was associated with other temperate species, hence being
a clear example of an insect species which current distribu-
tion is not in equilibrium with current climatic conditions.

Origin of presence data

We compiled all the available information on the distribu-
tion of A. bonvouloiri from natural history collections and
bibliographic sources. In total, this species has been
recorded at 47 UTM cells of 100 km? (Fig. 2) (i.e. 47
presences), being the resolution determined by the spatial
precision that we could obtain from most of the specimens
deposited in natural history collections. Apart from the
Iberian Peninsula, we considered most of France and
parts of Great Britain and the north of Africa to estimate
the potential distribution of the species. The whole extent
of the area considered is 1806 100 km?, from —14°3" to
12°15" in longitude, and from 34°45" to 52°43’ in latitude,
approximately (Fig. 2).

Selection of predictors

A necessary first step in the use of SDM is the selection
of the predictor variables that are most likely to be relevant
for the distribution of the species, especially when the
information is scarce and/or biased. When both presences
and reliable absences are available, the most important
predictors can be recognized by means of, e.g. variance
partitioning or hierarchical partitioning methods (Legendre
and Legendre 1998, MacNally 2002). However, when the
only reliable data available are presences, some exploratory
analyses are needed. The Ecological-Niche Factor Analysis
(ENFA) provides a mean of making such exploration, since
it allows identifying the major environmental requirements
of a species (Hirzel et al. 2002, Basille et al. 2008, Calenge
and Basille 2008, Calenge et al. 2008). By assuming
that the variables with a lower level of variability in the
presence locations are those having a higher likelihood of
limiting the distribution (Rotenberry et al. 2006), ENFA
allows to identify the response of the species to the main
environmental variations in the study area. ENFA trans-
forms the original ecogeographical variables into new
orthogonal axes. The first axis accounts for the marginality
of the species, i.e. differences between the conditions
inhabited by the species and the regional average condi-
tions. The other axes (specialisation axes) account for the
tolerance of the species to other secondary environmental
gradients in the study area (see Hirzel et al. 2002 for a
detailed explanation of the method).

Climatic factors are among the most important agents
limiting the demography and colonization ability of insect
species, due to their general physiological dependence
of environmental temperatures (Chown and Terblanche
2007). Hence, we used the nineteen bioclimatic variables
(Table 1) derived from monthly temperature and rainfall
values provided by the WorldClim ver. 1.4 interpolated map
database (Hijmans et al. 2005; <www.worldclim.org/>) as
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Figure 2. (A) Localities with information about the presence Aphodius bonvouloiri (red circles) and the convex-hull polygons which joint
all known observations, used to characterize the realized distribution for evaluation purposes (see text). (B) Model of the potential
distribution of the species, generated by first estimating the most relevant climatic variables through an ENFA analysis (Table 1), and
subsequently use these variables to build a simple multidimensional envelope model which includes all the 100 km* UTM cells with
climatic values within the range of climatic conditions in which the species was observed (see text).

input ecogeographical variables in ENFA. ENFA was
performed using Biomapper (Hirzel et al. 2004).

After normalizing the climatic variables by a box-cox
procedure, ENFA results showed a marginality of 1.08 (i.e.
the optimum for A. bonvouloiri is relatively far from the
mean available conditions in the region). Further, specia-
lisation was 7.87 indicating that the species inhabit on a
narrow interval of climatic conditions (almost eight times
smaller than the whole range of variation available). Three
factors allow explaining 85% of total information and
69% of specialisation (Table 1). The first axis (margin-
ality) was negatively related with temperature variables
(mainly mean temperature of the wettest quarter, annual
mean temperature and minimum temperature of the
coldest month), and positively with seasonal variables
(mean diurnal range, annual temperature range and
isothermality). In other words, A. bonvouloiri occupies

localities with low temperatures during winter and
autumn, and high seasonal and/or diurnal temperature
oscillations. Temperature variables contributed the most
to the first and second specialization axes, either nega-
tively (maximum temperature of the warmest month) or
positively (temperature annual range and minimum
temperature of the coldest month), respectively. Among
the precipitation variables, only rainfall during summer
was positively related with these specialization factors.
Thus, this species seems to be restricted from areas with
high temperatures and low precipitations during the
summer, but favoured by the existence of low winter
temperatures and wide annual temperature ranges. In total,
we selected for the SDM analysis seven climatic variables
that showed ENFA factor scores higher than 0.20, but
were not highly correlated between them (absolute Pearson
correlation values lower than 0.80) (Table 1).

Table 1. WorldClim bioclimatic variables with ENFA factor scores higher than 0.20 for the marginality first axis (F1) and the two main
specialisation axis (F2 and F3). Variables in bold are those selected for the multidimensional envelope model (see text). V1 and V3 were
rejected due to their high correlation with V2 (r=0.91 and 0.98, respectively), while V4 was rejected due to its correlation with V7 (r=0.97).

F1 F2 F3
V1 Annual mean temperature —-0.39
V2 Minimum temperature coldest month —0.38 0.49 0.58
V3 Mean temperature coldest quarter —0.32
V4 Mean temperature warmest quarter —0.31
V5 Mean temperature wettest quarter —0.46
V6 Mean temperature driest quarter
v7 Maximum temperature warmest month —0.55 —0.52
V8 Annual mean precipitation
V9 Precipitation coldest quarter
V10 Precipitation driest month
V11 Precipitation driest quarter 0.31 0.23
V12 Precipitation warmest quarter
V13 Precipitation wettest month
V14 Precipitation wettest quarter
V15 Temperature annual range 0.23 0.51 0.45
V16 Mean diurnal range 0.31
V17 Isothermality 0.24
V18 Temperature seasonality
V19 Precipitation seasonality
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Creating maps of probability for each kind of
absences

The probability of each locality where the species has not
been recorded to be one of the three kinds of absences relies
on both climatic favourability and distance to the presence
localities (see above). Thus, in a first step we used
Mahalanobis Distance (MD, Farber and Kadmon 2003)
to calculate the climatic favourability (i.e. the distance
between each cell and the conditions prevailing in the
known presence cells according to the seven predictors
selected before, envdisz). This measure differs from the
Euclidean distance in that it takes into account the
dependence among the variables being also scale-invariant
(i.e. the variables have the same weight independently of
their variance). Mahalanobis distances oscillate between 0
and 660; only 1.1% of all 100 km? UTM cells (n = 18061)
showed values higher than 100, and 3.7% values higher
than 50. Thus, we decided to use the logarithm of the
Mahalanobis distance as a measure of climatic favourabil-
ity. Apart from that, we created a map of the spatial distance
to the presence localities (using Euclidean Distances), and
rescaled it to vary between 0 and 1 (spdisz).

We calculated the probability of occurrence of environ-
mental absences (pga) by rescaling climatic favourability
to vary between 0 and 1. Similarly, we estimated the
probability of occurrence of methodological absences (pyia)
as the complementary probability (i.e. 1 —p) of the product

of the rescaled spatial distances (spdisz) by the probability
of environmental absences: pya =1 — (spdist X pea). This
ensures that, climatically favourable cells placed near the
presences possess a higher likelihood of being false absences
by methodological reasons. Given that absences resulting
from contingent effects are more probable in geographically
distant but environmentally favourable cells, we calculated
the probability of occurrence of contingent absences (pca)
as the product of the complementary probability of
environmental absences by the rescaled spatial distances:
pca =(1 —pra) X spdist. The probability of occurrence of
environmental absences increases constantly with distance
untl 500 km (the approximate limit of the Iberian
Peninsula), while those of methodological or contingent
absences either diminish or increase almost regularly with
the distance to the presence cells (Fig. 3).

Hypothesizing the potential and realized distribution
of the species

To estimate the role of selecting absences with different
probabilities of being caused by environmental, contingent
or methodological processes in the variation of SDM results
we first need maps of the realized and the potential
distributions of the considered species to evaluate the
models. The knowledge on the distribution of A. bonvou-
loiri in Europe is reasonably complete; this species is
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unknown from the most exhaustively surveyed countries in
central and northern Europe (L6bl and Smetana 20006).
Thus, the realized distribution of the species was assumed
to be represented by a minimum convex polygon (i.e.
the smallest polygon in which no internal angle exceeds
180 degrees and contains all presence sites). In order to
reduce the frequent overprediction error of this method
(Burgman and Fox 2003), we excluded discontinuities
within the species range by performing separate convex-
hulls for regionally aggregated data and also maintain-
ing unconnected the two most distant presence localities
(Fig. 2A).

The potential distribution of the species was estimated
by selecting a multidimensional envelope on the seven
climatic variables previously selected by the ENFA explora-
tory analysis. The limits of such envelop correspond to the
maximum and minimum values of each climatic variable in
the known presence localities. All the localities within such
range of conditions in the studied region were considered to
represent the potential distribution of the species (i.e.
BIOCLIM, Busby 1986; Fig. 2B). Due to its simplicity,
this procedure probably allows generating the most reliable
hypotheses on the potential distribution of species when
only few and biased presence data are available, provided
that a set of variables known to be relevant are used. If the
data available is biased, new-found presences will likely be
located outside the observed environmental domain. Such
lack of completeness is quite common in distributional data
(Lobo et al. 2007, Hortal et al. 2008), so the reliability of
the estimate of the potential distribution for a species
that has not been exhaustively surveyed will increase
when the predicted distribution is the widest possible
according to the environmental conditions of presence
localities. Hence, a simple technique not prone to generate
restricted distributions through a tight fit to the data would
be the most appropriate to describe the potential distribu-
tion of the species.

Assessing the effect of the different kinds of absences

The values of each one of the three probability of absence
maps were divided in five categories: below the 10%
percentile, between 10% percentile and 25% quartile,
between 25 and 75% quartiles, between 75% quartile and
90% percentile, and above 90% percentile. Calibration
datasets of prevalence equal to 0.1 (Jiménez-Valverde et al.
2009a) were obtained for the 15 combinations of kind of
absence (3 kinds) and percentile category (5 categories), by
selecting at random ten times more absences than the
observed number of presences. The random selection of
absences was repeated 50 times for each one of these
combinations. Presence/absence data from these calibration
datasets were modelled using Generalized Additive Models
(GAMs; Hastie and Tibshirani 1990) with a logit link
function. This technique was chosen because is traditionally
considered to show very good model performance (see
Segurado and Aratjo 2004 and references therein). Here,
the seven variables previously selected by the ENFA
exploratory analysis with three degrees of freedom were
submitted to a backward stepwise selection procedure
(Harrell 2001). In total, 750 models were run (50 x 3 x
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5). For each combination of kind and percentile of absence,
the probabilities of occurrence obtained with the 50 models
were averaged in each pixel, to obtain a probability map for
each one of these 15 percentile-kinds of absence combina-
tions (5 x 3). The prevalence of the training data (0.1) was
used as the threshold to convert these continuous maps into
Boolean presence/absence maps (Jiménez-Valverde and
Lobo 2006, 2007a). These maps were compared with the
potential and real distribution maps by means of their
sensitivity (proportion of presences correctly predicted as
presences) and specificity (proportion of absences correctly
predicted as absences). The AUC (Area under the Receiver
Characteristic Curve) was also computed as a measure
independent of a threshold value (but see Lobo et al. 2008)
and because, at present, it is the most widely used statistic
for model evaluation. In addition, we conducted the same
analyses using other two widely applied SDM techniques:
General Linear Models (GLMs; McCullagh and Nelder
1989) and Artificial Neural Networks (ANNs; Ozesmi et al.
2006). GLMs were allowed for cubic terms, using a logit
link function and a backward stepwise selection of variables.
In the case of ANNSs, the hidden layer was set to contain 15
neurons, initial weights of connections were set to 0.1 and
the maximum number of iterations was 2000. Given that
the results are consistent regardless of the SDM technique
used (compare Fig. 4 with Fig. SI in the Supplementary
material), for clarity we will base the Results section on the
GAM results, unless noted otherwise. All analyses were
made using the gam (Hastie 2008), nnet (Venables and
Ripley 2002) and PresenceAbsence (Freeman 2008)
packages for R (ver. 2.7.2; R Development Core Team
2008).

Results

When the aim is to predict the potential distribution,
species presences are well predicted when absences are
selected among the areas far away from the known pre-
sences, both geographically and environmentally (Fig. 4). In
these cases, GAM models show high percentages of
explained deviance (Fig. 5B). These results show that to
improve the estimates of the potential distribution it is
advisable to avoid using absence data from localities that are
cither environmentally suitable or placed geographically
near to the presence data used. The models carried out with
these absences show important rates of omission and
commission errors, predicting potentially suitable places
in areas that are not suitable. The high rate of false absences
results in bad-performance models, with low percentages of
explained deviance (Fig. 5B). Interestingly, high sensitivity
also implies a high commission error rate (i.e. overpredic-
tion, low specificity) and absences placed too far away
from the presences in both the environmental and
geographical spaces decrease model performance. Thus,
the best specificity values (x290%) are obtained when the
absences are selected within the regions with probability
values between the lower (25%) and upper quartiles (75%),
independently of the type of absences considered. The
best model (AUC =0.938) was obtained with contin-
gent absences in the >90% percentile. However, it is
worth noting that this model overpredicts the potential
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(circles), contingent (squares) or methodological absences (triangles) were randomly selected among those present in five probability
categories (Fig. 3): below 10% percentile, between 10% percentile and 25% quartile, between 25 and 75% quartile, between 75% quartile
and 90% percentile, and above 90% percentile. The maps provided are those in which the sum sensitivity and specificity values are higher
and the absolute difference between the two accuracy measures are lower [maximization of: (sensitivity + specificity) — [sensitivity —

specificity|], for both the potential and realized distributions.

distribution of the species in 118500 km? (Fig. 4),
increasing the original potential area in about a third
(36%, Fig. 2), and also fails to correctly predict around a
fourth of the potential area of presence (23%, 75 100 km?).

In the case of the realized distribution, the accurate
prediction of presences also requires avoiding the absences

E

from nearest localities which are contaminated with
methodological absences. Similar to the former, including
absences from those environmentally suitable and geo-
graphically close localities to the presences results in
poorly-performing models. However, as the realized dis-
tribution is smaller than the potential one, high sensitivity

R?
1.0 1

0.9 1
0.8 1
0.7

0.6

0.5

0-10%  10-25% 25-75% 75-90% >90%

CI 0O e e .

Absence categories

Figure 5. (A) Location of absence zones (from light grey to black) according to the five categories of the contingent probability map
(Fig. 3). (B) Variation in the values of the coefficient of determination (4 SD) of the models according to the five categories from which
absences were selected. The shades of grey below these categories correspond to the greyscale in the map.
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values are reached sooner than in the case of the potential
distribution (Fig. 4 and Fig. S1 of the Supplementary
material). As before, including the most geographic or
climatically distant places in the training data increases the
rate of commission errors, because they generate too-wide
distribution simulations with a high overprediction rate.
Both sensitivity and AUC values are significantly higher in
the case of real distribution simulations than for potential
distribution representations (Mann-Whitney U test, Z =
1.94, n1 =n2 =15, p=0.05 and Z=1.97, nl =n2 =15,
p =0.05, respectively). However, specificity values are not
significantly different among potential and realized models
(Z=0.19, nl =n2 =15, p=0.85) showing that the gain
in predictive power is mainly due to the higher success in
predicting correctly the smaller-sized realized distribution.
However, as in the case of the potental distribution
and despite the higher values of discrimination capacity,
model results are far from being accurate. The best model
(AUC =0.969, sensitivity =0.930, specificity =0.886) was
obtained with absences from the 25-75 percentile (Fig. 5A),
and overpredicts the distribution range of the species
nearly 5 times (119900 km® from a realized distribution
of 20600 km?, a 482% more), incorrectly predicting
as absences only 8% of the original area of presence
(1700 km?) (compare Fig. 2 and Fig. 4).

Our results clearly suggest that the change in model
reliability among geographical estimates of both realized
and potential distributions is basically due to the success
in predicting species presences. However, obtaining a
high rate of success in predicting presences is negatively
correlated with the success in absences (Pearson correla-
tion coefficient between sensitivity and speciality values
r=—0.57, n=30, p<0.01). This evidences that there
is a trade-off between maximizing the rate of predicting
presences or absences (Fielding and Bell 1997), so when a
high percentage of presences are correctly predicted it is
unavoidable to commit overpredictions (Fig. 4 and Fig. S1
in the Supplementary material). This trade-off is also
evident when the predictions for potential and realized
distributions are compared. Maximizing the success in
predicting the potential distribution inevitably generates a
high rate of overprediction in the realized one; hence, there
is also a negative correlation between the sensitivity of the
potential distribution and the specificity of the realized one
(Pearson r = —0.80, n =15, p =0.0003).

Discussion

A few studies have stressed the negative effects of false
absences for the results of species distribution models
(Tyre et al. 2003, Gu and Swihart 2004, Pearce and Boyce
2006), and it is also well known that a proper selection
of absences within the calibration dataset enhances such
results (Zaniewski et al. 2002, Brotons et al. 2004, Engler
et al. 2004, Elith and Leathwick 2007). In spite of this,
species distributions are often modelled using either
pseudoabsences extracted at random from the sites where
the species has not been recorded, or methods based solely
on presence data. Is such common practice correct?

Our results show that the kind of absences included in
the calibration dataset conditions SDM results, as suggested
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before (Jiménez-Valverde et al. 2008a). The best hypotheses
about the potential distribution are obtained using absences
placed farther apart than the ones needed for the best
hypotheses on the realized distribution (Chefaoui and Lobo
2008, Fig. 5A). Thus, it is of outmost importance that
modellers decide the type of distributional hypothesis they
are interested in modelling while designing their analyses,
and use one or another type of data accordingly (Jiménez-
Valverde et al. 2009b). However, the distributional hypo-
theses generated here are far from being accurate, in spite
of the use of an adequate selection of absence data and
the high evaluation scores obtained by the models (which
would be considered very reliable according to SDM
literature). Specially striking is the fact that, being the
hypotheses on the realized distribution the ones that show
the highest discrimination values, they are less accurate
than the potential ones, yielding much higher overpredic-
tion rates (see also Jiménez-Valverde et al. 2008a). This
phenomenon is a matter of the relative occurrence area
(ROA, the ratio between the species extent of occurrence
and the whole extent of the region of study; Lobo et al.
2008), and casts for some caution when comparing results
between species that differ in the proportion of the total
extent of the region they occupy (Jiménez-Valverde et al.
2008a, Lobo et al. 2008) or, like in this case, distributions
that vary in size such as the potential and realized ones (see
also Soberén and Nakamura 2009). Besides, obtaining
reliable estimations of the realized distribution would
require also taking into account variables that constrain
the potential distribution and/or techniques able to fit
interactions and more complex relationships between
dependent and independent wvariables (Soberén 2007,
2010, Jiménez-Valverde et al. 2008a).

Another point that arises from our results is that the
most distant absences (the “naughty noughts” sensu Austin
and Meyers 1996) provide litdle information, yielding
considerable overpredictions of both potential and realized
distributions. Although there are contrasted opinions on the
use of absence data outside the environmental domain
known to be used by the species (Austin and Myers 1996,
Thuiller et al. 2004), these works do not consider the key
distinction between potential and realized distributions
made here. Austin (2006) states that “the response curve
of species can only be unambiguously determined if the
sampled environmental gradient clearly exceeds the upper
and lower limits of the species occurrence”. Due to this,
several authors have suggested to include in the calibration
datasets absences from outside the climatic envelope
determined by the presences, in order to either avoid
including false absences (Zaniewski et al. 2002, Engler et al.
2004), or build estimates of the potential distribution
(Lobo et al. 2006, Jiménez-Valverde et al. 2007). However,
according to our results the inclusion of absences of the
extreme type “‘there are no elephants in Antarctica” must
be avoided. Although SDM calibrated using such kind of
absences will often show high percentages of explained
variance (Jiménez-Valverde and Lobo 2007a), they may
lead to overestimated predictions because of an exaggerated
distortion of the response functions (Austin and Meyers
1996, VanDerWal et al. 2009).

Perhaps the most striking of our results is the inadequacy
of including the less distant absences within the calibration



dataset. These are more likely to include several false
absences, in the places where unknown populations the
species will be discovered as the survey process continues
(Lobo et al. 2007, Hortal et al. 2008). In addition, the
environmental closeness to the domain occupied by
presences might also hamper the parameterization of the
models, as shown by their low percentages of explained
deviance and low sensitivity and specificity values.

All the problems identified above point out to the
adequacy of including absences well distributed along
the spatial gradient under consideration, but well outside
the environmental domain where the presences lay. As
commented before, the amount and the actual probability
of a point with no information being an absence of any
kind will depend on the ROA. Due to this, indiscriminate
use of background or pseudo-absence data, randomly
selected from the whole territory regardless on the environ-
mental location of the presences and with an unknown level
of error in their assignment (Ferrier and Watson 1997,
Stockwell and Peters 1999, Zaniewski et al. 2002, Engler
et al. 2004, Elith et al. 2006, Lobo et al. 2006, Liitolf
et al. 2006, Pearce and Boyce 2006), remains a potentially
unreliable and difficult-to-evaluate procedure. This will be
especially true when the results of the models for several
species that differ in their ROA are directly compared, given
that the location of the estimated distribution within the
potential-realized gradient defined by Jiménez-Valverde
et al. (2008a) will vary from one species to another. Here,
it is important to take into account that 1) the probability
of selecting each one of the three types of absences depends
on the considered extent (Fig. 3), and also that 2) the
proportion of these types of absences used conditions the
obtained geographic representation. Based on these facts,
SDMs developed from calibration data where pseudoab-
sences are selected at random will render predictions that
approximate either potential or realized distributions only
as a consequence of differences in species’ ROAs. Due to
this, we argue that the widely used practice of selecting
pseudoabsences merely at random should be seriously
questioned.

In contrast, we suggest that the best way to obtain a
reliable representation of the potential distribution of a
species should be using absences located relatively near the
external boundary of the environmental domain occupied
by the presences. To model the realized distribution of the
species, these absences should be located also relatively near
to the known presences in the geographical space as well.
However, more research is needed on this point (Soberén
2010). Nevertheless, the selection of the most appropriate
absences is context dependent; the actual probability that
a locality with no presence data pertains to any one of
the three kinds of absences defined here will depend on the
spatial extent under consideration and the size of the
distribution range of the species being studied. Thus,
applying the same procedure to obtain absences may have
different effects depending on the species and the spatial
scale of the study.

The inclusion of absences on a reliable way within model
evaluation processes remains as an open issue. A proper
evaluation of model results is basic to estimate the degree
of confidence of the distributional hypotheses generated
through SDM (Vaughan and Ormerod 2003, 2005).

However, the most used evaluation measures, such as
AUC or kappa, can yield high discrimination values (i.e.
attributed to good-performing models) in cases when
model predictions show high rates of commission and/or
omission errors (Jiménez-Valverde et al. 2008a and Lobo
et al. 2008, but also Raes and Ter Steege 2007). Moreover,
similar AUC scores can be obtained with predictions of
the distribution in the geographical space very different
one from another. Hence, these measures do not provide
reliable estimates of SDM performance. Rather, it is
advisable to conduct separate analyses for commission
and omission errors, in order to obtain a more accurate
picture of the predictive behaviour of the models. Here, the
most appropriate evaluation procedure will depend on the
pursued purpose. In the case of the potential distribution,
validation is only partially possible by examining the success
in the prediction of presences in other spatial or time
scenarios (as provided by e.g. biological invasions or fossil
data, Sax et al. 2007 and Nogués-Bravo et al. 2008,
respectively), and by examining the agreement among
physiological and distributional data (Dormann 2007,
Kearney et al. 2008). For the realized distribution, reliable
absences are essential both for training and evaluation
processes, being also highly recommendable to always
estimate the degree of overprediction.

Concluding remarks

While presences are usually free of doubt about their
reliability, absence data always have an associated degree of
uncertainty. Confirmed absences are very difficult to obtain,
and require higher levels of sampling effort to ensure their
reliability than those required for the presences (Mackenzie
and Royle 2005). The absences coming from lack of
adequate survey effort (as is often the case) should be
handled with caution, avoiding the indiscriminate inclusion
of zeros from badly surveyed localities within the dataset
used for SDM. Instead, in these cases absences should be
selected by means of expert opinion and/or conceptual
designs such as the one developed here. The compilation of
exhaustive databases and the study of survey completeness
can also help to identify the location of these methodo-
logical absences to some extent (Hortal and Lobo 2005).
However, when the goal is to obtain a highly accurate
description of the distribution of a particular species,
additional fieldwork is quite likely to be needed, either
for the empirical validation of SDM results or to confirm
the absence of the species from some key localities. This
is of particular importance for invasive species, where
some of the absences of contingent origin can in turn
become presences within short periods of time.

Apart from the need to identify methodological
absences in order to avoid using false absences, we have
shown that environmental and contingent absences can
be of outmost importance for the study of species
distributions. Environmental absences are required if the
goal is to produce a hypothesis of the potential distribu-
tion of the species, (see above), and a few methods have
been already proposed for such task (Engler et al. 2004,
Lobo et al. 2006, Jiménez-Valverde and Lobo 2007b).
However, as pointed out before, extremely distant and
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uninformative absences should be discarded, and per-
haps the way of deciding when to start discarding
deserves further investigation. On the other hand, non-
environmental or contingent absences are mandatory for
the study of the realized distribution of the species. How-
ever, they are much more difficult to obtain, because their
identification would require a previous knowledge on the
areas with environmentally suitable conditions that are not
inhabited by the species of interest (Jiménez-Valverde
et al. 2008b). Hence, we suggest that a previous recogni-
tion of well-surveyed territories and a delimitation of the
potential distribution can partially help in the recogni-
tion of these absences. These steps should be part of a
continuous process, where the information obtained from
previous steps (either through SDM, sampling effort
assessment or additional field work) is used to inform
the forthcoming ones, thus emphasizing the preliminary
nature of the distributional hypotheses developed from
species distribution modelling.
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