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Abstract

We consider the exploration/exploitation prob-

lem in reinforcement learning. For exploitation,

it is well known that the Bellman equation con-

nects the value at any time-step to the expected

value at subsequent time-steps. In this paper we

consider a similar uncertainty Bellman equation

(UBE), which connects the uncertainty at any

time-step to the expected uncertainties at subse-

quent time-steps, thereby extending the potential

exploratory benefit of a policy beyond individual

time-steps. We prove that the unique fixed point

of the UBE yields an upper bound on the vari-

ance of the posterior distribution of the Q-values

induced by any policy. This bound can be much

tighter than traditional count-based bonuses that

compound standard deviation rather than vari-

ance. Importantly, and unlike several existing

approaches to optimism, this method scales nat-

urally to large systems with complex generaliza-

tion. Substituting our UBE-exploration strategy

for ǫ-greedy improves DQN performance on 51

out of 57 games in the Atari suite.

1. Introduction

We consider the reinforcement learning (RL) problem of an

agent interacting with its environment to maximize cumu-

lative rewards over time (Sutton & Barto, 1998). We model

the environment as a Markov decision process (MDP), but

where the agent is initially uncertain of the true dynam-

ics and mean rewards of the MDP (Bellman, 1957; Bert-

sekas, 2005). At each time-step, the agent performs an ac-

tion, receives a reward, and moves to the next state; from

these data it can learn which actions lead to higher payoffs.

This leads to the exploration versus exploitation trade-off:

Should the agent investigate poorly understood states and

actions to improve future performance or instead take ac-
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tions that maximize rewards given its current knowledge?

Separating estimation and control in RL via ‘greedy’ algo-

rithms can lead to premature and suboptimal exploitation.

To offset this, the majority of practical implementations in-

troduce some random noise or dithering into their action

selection (such as ǫ-greedy). These algorithms will even-

tually explore every reachable state and action infinitely

often, but can take exponentially long to learn the opti-

mal policy (Kakade, 2003). By contrast, for any set of

prior beliefs the optimal exploration policy can be com-

puted directly by dynamic programming in the Bayesian

belief space. However, this approach can be computation-

ally intractable for even very small problems (Guez et al.,

2012) while direct computational approximations can fail

spectacularly badly (Munos, 2014).

For this reason, most provably-efficient approaches to re-

inforcement learning rely upon the optimism in the face of

uncertainty (OFU) principle (Lai & Robbins, 1985; Kearns

& Singh, 2002; Brafman & Tennenholtz, 2002). These al-

gorithms give a bonus to poorly-understood states and ac-

tions and subsequently follow the policy that is optimal

for this augmented optimistic MDP. This optimism incen-

tivises exploration but, as the agent learns more about the

environment, the scale of the bonus should decrease and

the agent’s performance should approach optimality. At

a high level these approaches to OFU-RL build up confi-

dence sets that contain the true MDP with high probability

(Strehl & Littman, 2004; Lattimore & Hutter, 2012; Jaksch

et al., 2010). These techniques can provide performance

guarantees that are ‘near-optimal’ in terms of the problem

parameters. However, apart from the simple ‘multi-armed

bandit’ setting with only one state, there is still a signif-

icant gap between the upper and lower bounds for these

algorithms (Lattimore, 2016; Jaksch et al., 2010; Osband

& Van Roy, 2016).

One inefficiency in these algorithms is that, although the

concentration may be tight at each state and action inde-

pendently, the combination of simultaneously optimistic

estimates may result in an extremely over-optimistic esti-

mate for the MDP as a whole (Osband & Van Roy, 2017).

Other works have suggested that a Bayesian posterior sam-

pling approach may not suffer from these inefficiencies and

can lead to performance improvements over OFU methods
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(Strens, 2000; Osband et al., 2013; Grande et al., 2014).

In this paper we explore a related approach that harnesses

the simple relationship of the uncertainty Bellman equa-

tion (UBE), where we define uncertainty to be the vari-

ance of the Bayesian posterior of the Q-values of a policy

conditioned on the data the agent has collected, in a sense

similar to the parametric variance of Mannor et al. (2007).

Intuitively speaking, if the agent has high uncertainty (as

measured by high posterior variance) in a region of the

state-space then it should explore there, in order to get a

better estimate of those Q-values. We show that, just as

the Bellman equation relates the value of a policy beyond a

single time-step, so too does the uncertainty Bellman equa-

tion propagate uncertainty values over multiple time-steps,

thereby facilitating ‘deep exploration’ (Osband et al., 2017;

Moerland et al., 2017).

The benefit of our approach (which learns the solution

to the UBE and uses this to guide exploration) is that

we can harness the existing machinery for deep reinforce-

ment learning with minimal change to existing network ar-

chitectures. The resulting algorithm shares a connection

to the existing literature of both OFU and intrinsic moti-

vation (Singh et al., 2004; Schmidhuber, 2009; White &

White, 2010). Recent work has further connected these ap-

proaches through the notion of ‘pseudo-count’ (Bellemare

et al., 2016; Ostrovski et al., 2017), a generalization of the

number of visits to a state and action. Rather than adding a

pseudo-count based bonus to the rewards, our work builds

upon the idea that the more fundamental quantity is the un-

certainty of the value function and that naively compound-

ing count-based bonuses may lead to inefficient confidence

sets (Osband & Van Roy, 2017). The key difference is that

the UBE compounds the variances at each step, rather than

standard deviation.

The observation that the higher moments of a value func-

tion also satisfy a form of Bellman equation is not new and

has been observed by some of the early papers on the sub-

ject (Sobel, 1982). Unlike most prior work, we focus upon

the epistemic uncertainty over the value function, as cap-

tured by the Bayesian posterior, i.e., the uncertainty due

to estimating a parameter using a finite amount of data,

rather than the higher moments of the reward-to-go (Lat-

timore & Hutter, 2012; Azar et al., 2012; Mannor & Tsit-

siklis, 2011; Bellemare et al., 2017). For application to rich

environments with complex generalization we will use a

deep learning architecture to learn a solution to the UBE,

in the style of (Tamar et al., 2016).

2. Problem formulation

We consider an infinite horizon, discounted, finite state and

action space MDP, with state space S , action space A and

rewards at each time period denoted by rt ∈ R. A policy

π : S × A → R+ is a mapping from state-action pair to

the probability of taking that action at that state, i.e., πsa is

the probability of taking action a at state s and
∑

a πsa =
1 for all s ∈ S . At each time-step t the agent receives

a state st and a reward rt and selects an action at from

the policy πt, and the agent moves to the next state st+1,

which is sampled with probability Pst+1stat
, where Ps′sa is

the probability of transitioning from state s to state s′ after

taking action a. The goal of the agent is to maximize the

expected total discounted return J under its policy π, where

J(π) = E [
∑∞

t=0
γtrt | π]. Here the expectation is with

respect to the initial state distribution, the state-transition

probabilities, the rewards, and the policy π. The discount

factor γ ∈ [0, 1) controls how much the agent prioritizes

long-term versus short-term rewards.

The action-value, or Q-value, of a particular state under

policy π is the expected total discounted return from tak-

ing that action at that state and following π thereafter, i.e.,

Qπ
sa = E [

∑∞
t=0

γtrt | s0 = s, a0 = a, π]. The value of

state s under policy π, V π
s = Ea∼πs

Qπ
sa is the expected to-

tal discounted return of policy π from state s. The optimal

action-value function Q⋆
sa = maxπ Q

π
sa for each (s, a).

The policy that achieves the maximum is the optimal policy

π⋆.

The Bellman operator T π for policy π, relates the value

at each time-step to the value at subsequent time-steps via

dynamic programming (Bellman, 1957),

T πQπ
sa = µsa + γ

∑

s′,a′

πs′a′Ps′saQ
π
s′a′ , (1)

for all (s, a), where µ = E r is the mean reward. For

γ ∈ [0, 1) the Bellman operator is a contraction and

therefore Qπ is the unique fixed point of equation (1),

i.e., T πQπ = Qπ . Several reinforcement learning algo-

rithms have been designed around minimizing the residual

of equation (1) to propagate knowledge of immediate re-

wards to long term value (Sutton, 1988; Watkins, 1989).

In the next section we examine a similar relationship for

propagating the uncertainties of the Q-values, we call this

relationship the uncertainty Bellman equation.

3. The uncertainty Bellman equation

In this section we derive a Bellman-style relationship that

propagates the uncertainty (variance) of the Bayesian pos-

terior distribution over Q-values across multiple time-steps.

Propagating the potential value of exploration over many

time-steps, or deep exploration, is important for statisti-

cally efficient RL (Kearns & Singh, 2002; Osband et al.,

2017). Our main result, which we state in Theorem 1, is

based upon nothing more than the dynamic programming

recursion in equation (1) and some crude upper bounds of

several intermediate terms. We will show that even in very
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simple settings this approach can result in well-calibrated

uncertainty estimates where common count-based bonuses

are inefficient (Osband & Van Roy, 2017).

3.1. Posterior variance estimation

We consider the Bayesian case, where we have priors over

the mean reward µ and the transition probability matrix P
which we denote by φµ and φP respectively, and we as-

sume that the true mean reward and transition probabilities

were sampled from these priors. We collect some data gen-

erated by the policy π and use it to derive posterior distri-

butions over µ and P , given the data. We denote by Ft

the sigma-algebra generated by all the history up to time t
(e.g., all the rewards, actions, and state transitions), and let

the posteriors over the mean reward and transition proba-

bilities be denoted by φµ|Ft
and φP |Ft

respectively. If we

sample µ̂ ∼ φµ|Ft
and P̂ ∼ φP |Ft

, then the resulting Q-

values that satisfy

Q̂π
sa = µ̂sa + γ

∑

s′

πs′a′ P̂s′saQ̂
π
s′a′

are a sample from the implicit posterior over Q-values, con-

ditioned on the history Ft (Strens, 2000). In this section we

compute a bound on the variance (uncertainty) of the ran-

dom variable Q̂π . First though, our analysis will require a

few assumptions.

Assumption 1. The MDP is a directed acyclic graph.

This assumption means that the agent cannot revisit a state

within the same episode, and is a common assumption in

the literature (Osband et al., 2014). We require this as-

sumption because it implies conditional independence of

the sampled mean reward and transition functions and any

downstream Q-values.

Assumption 2. The mean rewards are bounded in a known

interval, i.e., µsa ∈ [−Rmax, Rmax] for all (s, a).

This assumption means we can bound the absolute value of

the Q-values as |Qsa| ≤ Qmax = Rmax/(1 − γ). We will

use this quantity in the bound we derive below.

Lemma 1. For any random variable x let

vartx = E((x−E(x|Ft))
2|Ft)

denote the variance of x conditioned on Ft. Under the as-

sumptions listed above, the variance of the Q-values under

the posterior satisfies the Bellman inequality

vartQ̂
π
sa ≤ σ2

sa + γ2
∑

s′,a′

πs′a′ E(Ps′sa|Ft)vartQ̂
π
s′a′

where we call σ2
sa the local uncertainty at (s, a), and it is

given by

σ2
sa = vartµ̂sa + γ2Q2

max

∑

s′ vartP̂s′sa.

Proof. In the appendix.

We refer to σ2 in the above lemma as the local uncertainty

since it depends only on locally available quantities, and

so can be calculated (in principle) at each state-action inde-

pendently. With this lemma we are ready to prove our main

theorem.

Theorem 1 (Solution of the uncertainty Bellman equation).

Under assumptions 1 and 2, for any policy π there exists a

unique u⋆ that satisfies the uncertainty Bellman equation

u⋆
sa = (T π

u u⋆)sa
:= σ2

sa + γ2
∑

s′,a′ πs′a′ E(Ps′sa|Ft)u
⋆
s′a′

(2)

for all (s, a), and u⋆ ≥ vartQ̂
π pointwise.

Proof. To show this we use three essential properties of

the Bellman operator for a fixed policy (Bertsekas, 2005).

First, the Bellman operator is a γ2-contraction in the ℓ∞
norm and so the fixed point u⋆ exists and is unique. Sec-

ond, value iteration converges in that (T π
u )kx → u⋆ for any

starting x. Finally, the Bellman operator is monotonically

non-decreasing in its argument, i.e., if x ≥ y pointwise

then T π
u x ≥ T π

u y pointwise. As the variance satisfies the

Bellman inequality from lemma 1, we have

vartQ̂
π ≤ T π

u vartQ̂
π ≤ lim

k→∞
(T π

u )kvartQ̂
π = u⋆.

We conclude with a brief discussion on why the variance

of the posterior is useful for exploration. If we had ac-

cess to the true posterior distribution over the Q-values then

we could take actions that lead to states with higher uncer-

tainty by, for example, using Thompson sampling (Thomp-

son, 1933; Strens, 2000), or constructing Q-values that are

high probability upper bounds on the true Q-values and

using the OFU principle (Kaufmann et al., 2012). How-

ever, calculating the true posterior is intractable for all but

very small problems. Due to this difficulty prior work has

sought to approximate the posterior distribution (Osband

et al., 2017), and use that to drive exploration. In that spirit

we develop another approximation of the posterior moti-

vated by the Bayesian central limit theorem which states

that, under some mild conditions, the posterior distribution

converges to a Gaussian as the amount of data increases

(Berger, 2013). With that in mind, rather than comput-

ing the full posterior we approximate it as N (Q̄,diag(u))
where u is the solution to the uncertainty Bellman equation

(2) and as such is a guaranteed upper bound on the true

variance of the posterior, and Q̄ denotes the mean Q-values

under the posterior at time t, i.e., the unique solution to

Q̄sa = E(µ̂sa|Ft) + γ
∑

s′,a′

πs′a′ E(P̂s′sa|Ft)Q̄s′a′ .
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With this approximate posterior we can perform Thompson

sampling as an exploration heuristic. Specifically, at state

s we select the action using

a = argmax
b

(Q̄sb + ζbu
1/2
sb ) (3)

where ζb is sampled from N (0, 1). Our goal is for the agent

to explore states and actions where it has higher uncer-

tainty. This is in contrast to the commonly used ǫ-greedy

(Mnih et al., 2013) and Boltzmann exploration strategies

(Mnih et al., 2016; O’Donoghue et al., 2017; Haarnoja

et al., 2017) which simply inject noise into the agents ac-

tions. We shall see in the experiments that our strategy can

dramatically outperform these naive heuristics.

3.2. Comparison to traditional exploration bonus

Consider a simple decision problem with known determin-

istic transitions, unknown rewards, and two actions at a root

node, as depicted in Figure 1. The first action leads to a

single reward r1 sampled from N (µ1, σ
2) at which point

the episode terminates, and the second action leads to an

infinite chain of states each having random reward r2 inde-

pendently sampled from N (µ2, σ
2(1− γ2)).

Consider the case where each action at the root has been

taken n times and where the uncertainty over the rewards at

each state concentrates like 1/n (e.g., when the prior is an

improper Gaussian). In this case the true uncertainty about

the value of each action is identical and given by σ2/n.

This is also the answer we get from the uncertainty Bellman

equation, since for action 1 we obtain u1 = σ2/n (since

vart P = 0) and for action 2 the uncertainty about the

reward at each state along the chain is given by σ2(1 −
γ2)/n and so we have u2 = σ2(1 − γ2)/n + γ2u+

2 =
σ2/n where u+

2 denotes the uncertainty values at the next

state after taking action 2 and since the chain is infinite and

identical we have that u2 = u+

2 , from which we get the

final relationship.

Rather than considering the variance of the value as a

whole, the majority of existing approaches to OFU provide

exploration bonuses at each state and action independently

and then combine these estimates via union bound. In this

context, even a state of the art algorithm such as UCRL2

(Jaksch et al., 2010) would augment the rewards at each

state with a bonus proportional to the standard deviation of

the reward estimate at each state (Bellemare et al., 2016).

For the first action this would be ExplorationBonus1 =
σ/

√
n, but for the second action this would be accumulated

along the chain to be

ExplorationBonus2 =

∞
∑

t=0

γtσ

√

1− γ2

√
n

=
σ√
n

√

1 + γ

1− γ
.

In other words, the bonus afforded to the second action is

Figure 1: Simple tabular MDP.

a factor of
√

(1 + γ)/(1− γ) larger than the true uncer-

tainty. The agent would have to take the second action a

factor of (1+γ)/(1−γ) more times than the first action in

order to have the same effective bonus given to each one,

and this factor can be very large for γ ≈ 1. If the first action

was actually superior in terms of expected reward, it would

take the agent far longer to discover that than an agent us-

ing the correct uncertainties to select actions. The essential

issue is that, unlike the variance, the standard deviations do

not obey a Bellman-style relationship.

In Figure 2 we show the results of an experiment showing

this phenomenon. Action 1 had expected reward µ1 = 1,

and action 2 had expected reward µ2 = 0. We set σ = 1
and γ = 0.9, and the results are averaged over 500 seeds.

We compare two agents, one using the uncertainty Bell-

man equation to drive exploration and the other agent us-

ing a count-based reward bonus. Both agents take actions

and use the results to update their beliefs about the value

of each action. The agent using the UBE takes the ac-

tion yielded by Thompson sampling as in equation (3).

The exploration-bonus agent takes the action that maxi-

mizes (Q̂i +β log(t)ExplorationBonusi) (the log(t) term

is required to achieve a regret bound (Jaksch et al., 2010),

but doesn’t materially affect the previous argument) where

β > 0 is a hyper-parameter chosen by a sweep and where

Q̂i is the estimate of the value of action i. Figure 2 shows

the regret of each agent vs number of episodes. Regret

measures how sub-optimal the rewards the agent has re-

ceived so far are, relative to the (unknown) optimal policy,

and lower regret is better (Cesa-Bianchi & Lugosi, 2006).

The agent using the uncertainty Bellman equation has well

calibrated uncertainty estimates and consequently quickly

figures out that the first action is better. By contrast, the

exploration bonus agent takes significantly longer to deter-

mine that the first action is better due to the fact that the

bonus afforded to the second action is too large, and conse-

quently it suffers significantly higher regret.
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Figure 2: Regret over time for the simple tabular MDP.

4. Estimating the local uncertainty

Section 3 outlined how the uncertainty Bellman equation

can be used to propagate local estimates of the variance of

Q̂π to global estimates for the uncertainty. In this section

we present some pragmatic approaches to estimating the lo-

cal uncertainty σ2 that we can then use for practical learn-

ing algorithms inspired by Theorem 1. We do not claim that

these approaches are the only approaches to estimating the

local uncertainty, or even that these simple approximations

are in any sense the ‘best’. Investigating these choices is an

important area of future research, but outside the scope of

this short paper. We present a simple progression from tab-

ular representations, to linear function approximation and

then to non-linear neural network architectures.

Tabular value estimate. Consider the case where the

posterior over the mean rewards concentrates at least as fast

the reciprocal of the visit count, i.e.,

vartµ̂sa ≤ σ2
r/nsa

where σr is the variance of the reward process and nsa is

the visit count of the agent to state s and action a up to

time t. This is the case when, for example, the rewards

and the prior over the mean reward are both Gaussian. Fur-

thermore, if we assume that the prior over the transition

function is Dirichlet then it is straightforward to show that

∑

s′

vartP̂s′sa ≤ 1/nsa

since the likelihood of the transition function is a categor-

ical distribution and the Dirichlet and categorical distribu-

tions are conjugate. Under these assumptions we can bound

the local uncertainty as

σ2
sa ≤ (σ2

r + γ2Q2
max)/nsa.

In other words, the local uncertainty can be modeled under

these assumptions as a constant divided by the visit count.

Linear value estimate. In the non-tabular case we need

some way to estimate the inverse counts in order to approx-

imate the local uncertainty. Consider a linear value func-

tion estimator Q̂π
sa = φ(s)Twa for each state and action

with fixed basis functions φ(s) : S → R
D and learned

weights wa ∈ R
D, one for each action. This setting allows

for some generalization between states and actions through

the basis functions. For any fixed dataset we can find the

least squares solution for each action a (Boyan, 1999),

minimizewa

∑N
i=1

(φ(si)
Twa − yi)

2
2,

where each yi ∈ R is a regression target (e.g., a Monte

Carlo return from that state-action). The solution to this

problem is w⋆
a = (ΦT

aΦa)
−1ΦT

a y, where Φa is the ma-

trix consisting of the φ(si) vectors stacked row-wise (we

use the subscript a to denote the fact that action a was

taken at these states). We can compute the variance of

this estimator, which will provide a proxy for the inverse

counts (Bellemare et al., 2016). If we model the targets

yi as IID with unit variance, then varw⋆
a = Ew⋆

aw
⋆
a
T =

(ΦT
aΦa)

−1. Given a new state vector φs, the variance

of the Q-value estimate at (s, a) is then varφT
s w

⋆
a =

φT
s (Φ

T
aΦa)

−1φs, which we can take to be our estimate of

the inverse counts, i.e., set n̂−1
sa = φT

s (Φ
T
aΦa)

−1φs. Now

we can estimate the local uncertainty as

σ̂2
sa = β2n̂−1

sa = β2φT
s (Φ

T
aΦa)

−1φs (4)

for some β, which in the tabular case (i.e., where φ(s) = es
and D = |S|) is equal to β2/nsa, as expected.

An agent using this notion of uncertainty must maintain

and update the matrix Σa = (ΦT
aΦa)

−1 as it receives new

data. Given new sample φ, the updated matrix Σ+
a is given

by

Σ+
a =

(

[

Φa

φT

]T [
Φa

φT

]

)−1

= (ΦT
aΦa + φφT )−1

= Σa − (Σaφφ
TΣa)/(1 + φTΣaφ)

(5)

by the Sherman-Morrison-Woodbury formula (Golub &

Van Loan, 2012), the cost of this update is one matrix mul-

tiply and one matrix-matrix subtraction per step.

Neural networks value estimate. If we are approximat-

ing our Q-value function using a neural network then the

above analysis does not hold. However if the last layer of

the network is linear, then the Q-values are approximated as

Qπ
sa = φ(s)Twa, where wa are the weights of the last layer

associated with action a and φ(s) is the output of the net-

work up to the last layer for state s. In other words we can

think of a neural network as learning a useful set of basis

functions such that a linear combination of them approxi-

mates the Q-values. Then, if we ignore the uncertainty in
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the φ mapping, we can reuse the analysis for the purely

linear case to derive an approximate measure of local un-

certainty that might be useful in practice.

This scheme has some advantages. As the agent progresses

it is learning a state representation that helps it achieve the

goal of maximizing the return. The agent will learn to

pay attention to small but important details (e.g., the ball

in Atari ‘breakout’) and learn to ignore large but irrelevant

changes (e.g., if the background suddenly changes). This is

a desirable property from the point of view of using these

features to drive exploration, because the states that differ

only in irrelevant ways will be aliased to (roughly) the same

state representation, and states that differ is small but im-

portant ways will be mapped to quite different state vectors,

permitting a more task-relevant measure of uncertainty.

5. Deep Reinforcement Learning

Previously we proved that under certain conditions we can

bound the variance of the posterior distribution of the Q-

values, and we used the resulting uncertainty values to de-

rive an exploration strategy. Here we discuss the appli-

cation of that strategy to deep-RL. In this case several of

the assumptions we have made to derive theorem 1 are

violated. This puts us firmly in the territory of heuristic.

Specifically, the MDPs we apply this to will not be directed

acyclic graphs, the policy that we are estimating the uncer-

tainty over will not be fixed, we cannot exactly compute

the local uncertainty, and we won’t be solving the UBE

exactly. However, empirically, we demonstrate that this

heuristic can perform well in practice, despite the under-

lying assumptions being violated.

Our strategy involves learning the uncertainty estimates,

and then using them to sample Q-values from the approx-

imate posterior, as in equation (3). The technique is de-

scribed in pseudo-code in Algorithm 1. We refer to the

technique as ‘one-step’ since the uncertainty values are up-

dated using a one-step SARSA Bellman backup, but it is

easily extendable to the n-step case. The algorithm takes

as input a neural network which has two output ‘heads’,

one which is attempting to learn the optimal Q-values as

normal, the other is attempting to learn the uncertainty val-

ues of the current policy (which is constantly changing).

We do not allow the gradients from the uncertainty output

head to flow into the trunk of the network; this ensures the

Q-value estimates are not perturbed by the changing uncer-

tainty signal. For the local uncertainty measure we use the

linear basis approximation described in section 4.

5.1. Experimental results

Here we present results of Algorithm (1) on the Atari suite

of games (Bellemare et al., 2012), where the network is

Algorithm 1 One-step UBE exploration with linear uncer-

tainty estimates.

// Input: Neural network outputting Q and u estimates

// Input: Q-value learning subroutine qlearn

// Input: Thompson sampling hyper-parameter β > 0
Initialize Σa = µI for each a, where µ > 0
Get initial state s, take initial action a
repeat

Retrieve feature φ(s) from input to last network layer

Receive new state s′ and reward r
Calculate Q̂s′b and us′b for each action b
Sample ζb ∼ N (0, 1) for each b and calculate

a′ = argmaxb(Qs′b + βζbu
1/2
s′b )

Calculate y =

{

φ(s)TΣaφ(s), for terminal s′

φ(s)TΣaφ(s) + γ2us′a′ , o.w.

Take gradient step with respect to error (y − usa)
2

Update Q-values using qlearn(s, a, r, s′, a′)
Update Σa′ according to eq. (5)

Take action a′

until T > Tmax

attempting to learn the Q-values as in DQN (Mnih et al.,

2013; 2015) and the uncertainties simultaneously. The only

change to vanilla DQN we made was to replace the ǫ-
greedy policy with Thompson sampling over the learned

uncertainty values, where the β constant in (3) was cho-

sen to be 0.01 for all games, by a parameter sweep. We

used the exact same network architecture, learning rate, op-

timizer, pre-processing and replay scheme as described in

Mnih et al. (2015). For the uncertainty sub-network we

used a single fully connected hidden layer with 512 hidden

units followed by the output layer. We trained the uncer-

tainty head using a separate RMSProp optimizer (Tieleman

& Hinton, 2012) with learning rate 10−3. The addition of

the uncertainty head and the computation associated with

it, only reduced the frame-rate compared to vanilla DQN

by about 10% on a GPU, so the additional computational

cost of the approach is negligible.

We compare two versions of our approach: a 1-step method

and an n-step method where we set n to 150. The n-step

method accumulates the uncertainty signal over n time-

steps before performing an update which should lead to

the uncertainty signal propagating to earlier encountered

states faster, at the expense of increased variance of the sig-

nal. Note that in all cases the Q-learning update is always

1-step; our n-step implementation only affects the uncer-

tainty update.

We compare our approaches to vanilla DQN, and also to an

exploration bonus intrinsic motivation approach, where the

agent receives an augmented reward consisting of the ex-

trinsic reward and the square root of the linear uncertainty
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in equation (4), which was scaled by a hyper-parameter

chosen to be 0.1 by a sweep. In this case a stochastic pol-

icy was still required for good performance and so we used

ǫ-greedy with the DQN annealing schedule.

We trained all strategies for 200M frames (about 8 days

on a GPU). Each game and strategy was tested three times

per method with the same hyper-parameters but with dif-

ferent random seeds, and all plots and scores correspond

to an average over the seeds. All scores were normal-

ized by subtracting the average score achieved by an agent

that takes actions uniformly at random. Every 1M frames

the agents were saved and evaluated (without learning) on

0.5M frames, where each episode is started from the ran-

dom start condition described in (Mnih et al., 2015). The

final scores presented correspond to first averaging the eva-

lution score in each period across seeds, then taking the

max average episodic score observed during any evalution

period. Of the tested strategies the n-step UBE approach

was the highest performer in 32 out of 57 games, the 1-step

UBE approach in 14 games, DQN in 1 game, the explo-

ration bonus strategy in 7 games, and there were 3 ties. In

Table 1 we give the mean and median normalized scores

as percentage of an expert human normalized score across

all games, and the number of games where the agent is

‘super-human’, for each tested algorithm. Note that the

mean scores are significantly affected by a single outlier

with very high score (‘Atlantis’), and therefore the median

score is a better indicator of agent performance. In Figure 3

we plot the number of games at super-human performance

against frames for each method, and in Figure 4 we plot

the median performance across all games versus frames,

where a score of 1.0 denotes human performance. The re-

sults across all 57 games, as well as the learning curves for

all 57 games, are given in the appendix.

Of particular interest is the game ‘Montezuma’s Revenge’,

a notoriously difficult exploration game where no one-step

algorithm has managed to learn anything useful. Our 1-

step strategy learns in 200M frames a policy that is able

to consistently get about 500 points, which is the score the

agent gets for picking up the first key and moving into the

second room. In Figure 5 we show the learning progress

of the agents for 500M frames where we set the Thompson

sampling parameter slightly higher; 0.016 instead of 0.01
(since this game is a challenging exploration task it stands

to reason that a higher exploration parameter is required).

By the end of 500M frames the n-step agent is consis-

tently getting around 3000 points, which is several rooms

of progress. These scores are close to state-of-the-art, and

are state-of-the-art for one-step methods (like DQN) to the

best of our knowledge.

In the recent work by Bellemare et al. (2016), and the

follow-up work by Ostrovski et al. (2017), the authors add

Figure 3: Number of games at super-human performance.

an intrinsic motivation signal to a DQN-style agent that has

been modified to use the full Monte Carlo return of the

episode when learning the Q-values. Using Monte Carlo

returns dramatically improves the performance of DQN in

a way unrelated to exploration, and due to that change we

cannot compare the numerical results directly. In order to

have a point of comparison we implemented our own in-

trinisic motivation exploration signal, as discussed above.

Similarly, we cannot compare directly to the numerical re-

sults obtained by Bootstrap DQN (Osband et al., 2016)

since that agent is using Double-DQN, a variant of DQN

that achieves a higher performance in a way unrelated to

exploration. However, we note that our approach achieves

a higher evaluation score in 27 out of the 48 games tested

in the Bootstrap DQN paper despite using an inferior base

DQN implementation, and it runs at a significantly lower

computational and memory cost.

mean median > human

DQN 688.60 79.41 21
DQN Intrinsic Motivation 472.93 76.73 24

DQN UBE 1-step 776.40 94.54 26
DQN UBE n-step 439.88 126.41 35

Table 1: Scores for the Atari suite, as a percentage of hu-

man score.

6. Conclusion

In this paper we derived a Bellman equation for the uncer-

tainty over the Q-values of a policy. This allows an agent to

propagate uncertainty across many time-steps in the same

way that value propagates through time in the standard dy-

namic programming recursion. This uncertainty can be

used by the agent to make decisions about which states and

actions to explore, in order to gather more data about the
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Figure 4: Normalized median performance across all

games, a score of 1.0 is human-level performance.

Figure 5: Montezuma’s Revenge performance.

environment and learn a better policy. Since the uncertainty

satisfies a Bellman recursion, the agent can learn it using

the same reinforcement learning machinery that has been

developed for value functions. We showed that a heuristic

algorithm based on this learned uncertainty can boost the

performance of standard deep-RL techniques. Our tech-

nique was able to significantly improve the performance

of DQN across the Atari suite of games, when compared

against naive strategies like ǫ-greedy.

7. Acknowledgments

We thank Marc Bellemare, David Silver, Koray

Kavukcuoglu, and Mohammad Gheshlaghi Azar for

useful discussion and suggestions on the paper.

References

Azar, M. G., Munos, R., and Kappen, B. On the sample

complexity of reinforcement learning with a generative

model. In Proceedings of the 29th International Confer-

ence on Machine Learning (ICML), 2012.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,

Saxton, D., and Munos, R. Unifying count-based explo-

ration and intrinsic motivation. In Advances in Neural

Information Processing Systems, pp. 1471–1479, 2016.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

The arcade learning environment: An evaluation plat-

form for general agents. Journal of Artificial Intelligence

Research, 2012.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-

tional perspective on reinforcement learning. In Interna-

tional Conference on Machine Learning, pp. 449–458,

2017.

Bellman, R. Dynamic programming. Princeton University

Press, 1957.

Berger, J. O. Statistical decision theory and Bayesian anal-

ysis. Springer Science & Business Media, 2013.

Bertsekas, D. P. Dynamic programming and optimal con-

trol, volume 1. Athena Scientific, 2005.

Boyan, J. A. Least-squares temporal difference learning.

In ICML, pp. 49–56, 1999.

Brafman, R. I. and Tennenholtz, M. R-max: A general

polynomial time algorithm for near-optimal reinforce-

ment learning. Journal of Machine Learning Research,

3(Oct):213–231, 2002.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and

games. Cambridge university press, 2006.



The Uncertainty Bellman Equation and Exploration

Golub, G. H. and Van Loan, C. F. Matrix computations,

volume 3. JHU Press, 2012.

Grande, R., Walsh, T., and How, J. Sample efficient rein-

forcement learning with Gaussian processes. In Interna-

tional Conference on Machine Learning, pp. 1332–1340,

2014.

Guez, A., Silver, D., and Dayan, P. Efficient Bayes-

adaptive reinforcement learning using sample-based

search. In Advances in Neural Information Processing

Systems, pp. 1025–1033, 2012.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Re-

inforcement learning with deep energy-based policies.

In Proceedings of the 34th International Conference on

Machine Learning (ICML), 2017.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret

bounds for reinforcement learning. Journal of Machine

Learning Research, 11(Apr):1563–1600, 2010.

Kakade, S. M. On the sample complexity of reinforcement

learning. PhD thesis, University of London London,

England, 2003.
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