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ABSTRACT. The Uncertainty Principle (UP) as understood in this lecture is the fol-
lowing informal assertion: a non-zero “object” (a function, distribution, hyperfunc-
tion) and its Fourier image cannot be too small simultaneously. “The smallness” is
understood in a very broad sense meaning fast decay (at infinity or at a point, bilateral
or unilateral), perforated (or bounded, or semibounded) support etc. The UP becomes
a theorem for many “smallnesses” and has a multitude of quite concrete quantitative
forms. It plays a fundamental role as one of the major themes of classical Fourier
analysis (and neighboring parts of analysis), but also in applications to physics and
engineering. The lecture is a review of facts and techniques related to the UP; connec-
tions with local and non-local shift invariant operators are discussed at the end of the
lecture (including some topical problems of potential theory). The lecture is intended
for the general audience acquainted with basic facts of Fourier analysis on the line and
circle, and rudiments of complex analysis.

Introduction

This lecture is devoted to the following phenomenon known as the Uncertainty Principle
(the UP):

it is impossible for a non-zero function f and its Fourier image f̂ to be too small si-
multaneously. In other words, the approximate equalities f � g; f̂ � ĝ cannot hold at the
same time and with a high degree of accuracy unless f and g are identical. Gaining some
“certainty” about f (in the form of a good approximation g) we have to pay by the uncer-
tainty about f̂ , since the error f̂ � ĝ is bound to be considerable. The term is borrowed
from quantum mechanics where it is usually understood as the Heisenberg inequality for
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the wave function, but in the present text it is interpreted in a much less definite sense; this
very vagueness makes it flexible and susceptible to a multitude of rigorous interpretations (or
refutations) depending on a concrete kind of respective “smallness” of f and f̂ mentioned in
its statement. Our UP can be patently wrong (e.g. if the sizes of f and f̂ are measured in
the L2-norm and in many other cases); this means the UP can be sometimes overcome, and
“small” non-zero pairs (f; f̂) may exist, this fact being also one of our themes. Nevertheless
the UP plays an outstanding role in harmonic analysis and its applications to physics and en-
gineering. But these applications won’t be discussed here. We treat the UP as a phenomenon
of pure mathematics, or, to be more precise, classical Fourier analysis (mainly on R and the
unit circle T). Our theme is very vast and can be looked at from many points of view; ours
will be that of pure analysis. The concrete forms of the UP to be considered here pertain
mostly to quasianalyticity, approximation theory, and, first of all, to complex analysis, an
abundant source of concrete manifestations (and disprovements) of the UP. Among the omis-
sions of this lecture are the operator theoretic approach to the UP (commutation relations)
and the modern time-frequency approach. But even after we have confined our discussion
to the purely analytic aspects of the phenomenon we are still left with a huge mass of facts,
techniques, and approaches. Thus the choice of what is to be discussed was inescapable and
difficult. It was a compromise dictated by what I know (or don’t), time and size limitations,
my personal predilections, but also by my desire to publicize impressive results obtained in
the eighties and nineties by my (partly former) colleagues from St. Petersburg, although a
good deal of the subsequent text is quite old and classical.

To describe the organization of the lecture let us first introduce some notation. Let X de-
note R or T = f� 2 C : j�j = 1g;m will stand for Lebesgue measure on X; we always nor-
malize m on T : m(T) = 1; sometimes we write jAj in place of m(A). The Fourier transform
f̂ of a function f 2 L1 = L1(X;m) is understood as f̂(�) = (2�)�1

R
X
f(t) exp(�it�)dt

where � 2 R or Z (i.e. � 2 X̂), but different normalizations of f̂ can also occur here and
there. We assume the reader is acquainted with Fourier analysis of (tempered) distributions.
In particular our most frequent symbols related to a distribution T on X will be supp T (=
the closed support of T ) and specT = supp T̂ , the spectrum of T . Now we try to bring some
order into the heap of “smallnesses” to be used below (see the statement of the UP above).
We compose a list of properties of a function (or distribution) on X:

S1(f) (“fast bilateral decay of f at infinity”): f is defined on R or Z and satisfies

f(t) = O(M(t)); jtj ! +1

where M is a given majorant, limjtj!+1M(t) = 0:
S2(f): replacing jtj ! +1 in S1(f) by t! +1 (or t! �1) we get fast decay at�1

(or +1);
S3(f) (“a deep zero of f at a point x0 2 X”): f(t) = O(M(t)); t ! x0, where

limt!x0 M(t) = 0;
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S4(T ) (“a sparse support”) : X n supp T is non-empty and more or less “rich” (say,
consists of many long intervals or arcs),
but very interesting forms of the UP arise even when X n supp T is connected, this is why
the following three properties are stated separately:

S5(T ) (“a gap in the support”): suppT omits a non-degenerate interval (or an arc) of X;
S6(T ) (“a bounded support”): supp T is bounded (this case refers to X = R);
S6(T̂ ) means that T is “band limited”.
S7(T ) (“a sembounded support”): suppT � [0;+1) (or � (�1; 0]); the spectral prop-

erty S7(T̂ ) is absolutely fundamental for our subject and deserves special attention.
To conclude this list we have to define the so-called logarithmic integral L(f) of a func-

tion f defined on X:

L(f) =
Z
T

log jf jdm; ifX = T;L(f) =
Z
R

log jf jd�; ifX = R

where � is the Poisson measure ��1(1 + x2)�1m. Our last “smallness condition” means
the geometric mean of f (w.r. to m on T or � on R) is zero; it looks less natural than its
predecessors, but in fact it is responsible for many variants of the UP, and is omnipresent in
many books on Fourier analysis, complex analysis and probability:

SL(f) : L(f) = �1:

A discrete logarithmic integral L(f) of a function defined on Zwill also play a role: this time
L(f) =

P
n2Z

log jf(n)j

1+n2
.

Now we are in a position to specify (slightly) our main question:
given j and k = 1; 2; : : : ; 7 or L, is it true that Sj(T ) and Sk(T̂ ) imply the complete

vanishing of T ?
The conditions Sj being still vague, the answer to such an “(Sj; Ŝk)-question” depends

heavily on the concrete relations between the time condition Sj(f) and the frequency condi-
tion Sk(f̂); some combinations of j and k may even not admit a satisfactory answer at all.
But a remarkable fact is the existence of good answers to many such questions, the answers
being sharp and verifiable. The list of the Sk-conditions looks dull (something like bookkeep-
ing) and formal, but the diversity, variety and beauty of the ideas and tools required to answer
at least some of our questions is quite amazing. Note that “qualitative” questions (Sk; Ŝj)
usually entail some “quantitative” problems resulting in useful and explicit estimates.

The lecture consists of three parts. Part 1 is a collection of results not requiring any
use of complex analyticity; we try to sketch (or at least allude to) some proofs (when they
are simple). This policy becomes almost impossible in Part 2 based on complex analyticity.
The “complex” proofs usually involve a good portion of hard analysis, so Part 2 is mainly
a collection of results accompanied by some comments (kind of a guided tour). Part 3 is
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devoted to some remote repercussions of the UP: description of symbols of local and non-
local shift invariant operators; some closely related topical problems stemming from potential
theory are also discussed.

Our theme is present more or less explicitly in any course on Fourier analysis ( [Z, Ba,
Katz, Kah]), quasianalyticity ( [M]), and complex analysis ( [Bo, Du, Pr, Ho, Ga, Koo1]). The
books [PW], [B], [L], [Lev], [KahS], [DeBr], [Koo2], [Koo3], [Car], [Carl], and [Nik] are
especially close to our theme and have influenced our exposition in many ways.

The present lecture is mainly based on [HJ] just reproducing some of its parts in a very
compressed form; we often refer to the bibliography therein. I also want to mention the long
article [Na] with its impressive amount of excellent results.

1. The UP without Complex Variables

1.1. On functions with semibounded spectra

Let L be a linear shift invariant operator on the time line R defined on a vector space
of functions (or distributions). The generic form of L is the convolution with a function
(distribution) a:

Lf = a � f ; a = L(Æ):

We may interpret L as a device transforming inputs f into outputs Lf . We say L obeys
the causality principle (or is causal) if Lf j(�1; t0) for any given moment t0 depends only
on f j(�1; t0) (“no output without an input”), or what is the same aj(�1; 0) = 0. In the
Fourier coordinates the action of L becomes

L̂f = â � f̂
which means Lf is a frequency filter. The causality imposes severe restrictions on the spec-
tral characteristic â of L : â cannot suppress too many frequencies unless L = 0. This
phenomenon stems from the analytic continuability of â into a half-plane (due to the semi-
boundedness of supp a). This complex variable explanation will be one of the themes of Part
2. Actually one can explain many properties of â in the causal case staying on the line and
ignoring the existence of the complex plane. One of these properties is the Jensen inequality
for plus-functions (i.e. for functions with positive spectra).

It is convenient to interchange time and frequency lines and concentrate on the objects
with semibounded spectra (rather than supports). We start with the periodic case: suppose
f 2 Lp(�; m) = Lp(�); 1 6 p 6 +1, so that f̂ lives on Z : f̂(n) =

R
�zn dm; n 2 Z.

We say that f is in the Hardy class Hp(T) if its spectrum is non-negative: spec f � Z+

(sometimes we call such an f a plus-function).

For a probability measure � in a measure space X we put
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A�(f)(= A(f)) =

Z
X

jf jd�; G�(f)(= G(f)) = exp

Z
X

log jf jd�;

thus defining the arithmetic and geometric means of f . Note that the meaning of the two
“smallnesses”

A(f) = 0 and G(f) = 0(, L(f) =
Z
X

log jf jd� = �1)

is very different: the first just means f = 0 a.e. whereas the second is implied by �(ff =

0g) > 0 or (depending on �) by a fast decay of f at a point of X . By the Jensen inequality
for the means we always have

(1) G(f) 6 A(f):

Let us now go back to X = �; � = m. Clearly, jf̂(0)j = j
R
fdmj 6 A(f) for any

f 2 L1(�). But another Jensen inequality asserts that

(2) jf̂(0)j 6 G(f); if f 2 H1(T)

This crucial fact has many far-reaching implications pertaining to the UP. So, for example,

f 2 H1(T) & G(f) = 0) f = 0

(G(f) = 0 kills f̂(0), but then it kills any f̂(n)). But then

f 2 H1(T) & jff = 0gj > 0) f = 0

(total absence of negative frequencies is not compatible with vanishing on a set of positive
length). For a proof of (2) see, e.g., [HJ], p. 34; it is quite short and elementary.

By a Möbius change of variables we get the following version of (2): If f 2 L1(R) and
spec f � [0;+1), then

(3) j
Z
R

fd�j 6 G�(f)

(f is regarded here as a tempered distribution, so f̂ and spec f̂ make sense; � is the Poisson
measure, see the Introduction). In particular (3) is valid for any plus-function f 2 Lp(R)
(w.r. to m), 1 6 p 6 +1 (i.e. if f 2 Hp(R) = ff 2 Lp(R) : spec f � [0;+1)g. It is easy
to deduce from (3) that f 2 Hp(R) & G�(f) = 0 ) f = 0 so that if f 2 Hp(R); f 6= 0,
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then it cannot decay too fast at +1 or �1 or at any finite point, and it cannot vanish on a
set of positive length. This last property is stable in the following sense:

THE THEOREM ON TWO CONSTANTS. For any f 2 H1(R) and any Lebesgue measur-
able S � R

(4) j(f � �)(x)j 6 (kfk1;S)
�x(S)(kfk1;S0)

�x(S
0); x 2 R:

S 0 = RnS;�x(E) = �(E � x)):

The proof is a straightforward combination of two Jensen inequalities (1) and (3). Note
that �x(S) is the angle (divided by �) under which S is seen from x+i, and f ��x = P (f)(x)
is the Poisson integral of f (i.e. the bounded solution of the Dirichlet problem for the upper
half-plane C + with the boundary function f ) computed at x + i. Clearly, P (f) = 0 implies
f = 0; (4) shows that if a plus-function f is globally bounded (say, jf j 6 1) and very small
on S 0 (say, jf j 6 "), then P (f) is small globally: jP (f)(x)j 6 "�x(S) for any real x.

We will also need an integral version of this result: suppose 
 > 0, and �x(S) > 
 for
any x 2 R; if f 2 H2(R), then

(40 )
Z
R

jP (f)j2dm 6 2(

Z
S

jf j2dm)
kfk2(1�
)2

where k k2 denotes the L2(m)-norm ( [HJ], p. 40).

The logarithmic integral L�(f) figuring in G�(f), L�(f) =
R
X

log jf jd� = logG�(f) for

X = �; � = m or X = R; � = � plays an outstanding role in many problems concerning
the UP (not only for semibounded spectra!). The two conditions

L(f) = �1 and L(f) > �1

define two separate realms: in the first one the rule of the UP is indisputable whereas in the
second it can be sometimes resisted (see [HJ], but especially [Koo2]).

1.2. Hilbert Space methods

1.2.1. Annihilating pairs of sets. For a function f 2 L2(Rd) = L2 the set fx 2 R
d : f(x) 6=

0g is called the essential support of f and denoted by ess supp f ; it is defined up to a set of
zero Lebesgue measure. The essential spectrum of f is defined as ess supp f̂ and denoted by
ess spec f (f̂ is understood in accordance with the Plancherel theorem).

A pair (S;�) of Lebesgue measurable sets in Rd is said to be annihilating (or a-pair) if

(5) f 2 L2; ess supp f � S; ess spec f � �) f = 0:
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The following property of (S;�) is more interesting: we say that (S;�) is a strong a-pair if

(6)
Z
Rd

jf j2 6 c(S;�)(

Z
S0

jf j2 +
Z
�0

jf̂ j2)

for any f 2 L2 (A0 denotesRdnA). The annihilation property (5) of a strong a-pair is “stable”:
(5) only means that vanishing of f jS 0 and f̂ j�0 implies global vanishing of f whereas (6) says
that the smallness of f jS 0; f̂ j�0 implies the global smallness of f .

The d-dimensional Lebesgue measure of a set A � R
d will be denoted by jAj.

The following version of the UP can be proved using only the basic properties of the
Fourier transform and very general properties of projectors in a Hilbert space:

THE AMREIN-BERTHIER THEOREM.. If

jSj+ j�j < +1;

then (S;�) is a strong a-pair.

Note that the sets S;
P

are not supposed to be bounded. We are going to sketch a proof
based on two orthogonal projectors PS; P̂� of L2:

PSf = �Sf;F(P̂�f) = ��f̂

where �A denotes the characteristic function of the setA � R
d andF is the Fourier transform

in Rd (duly normalized to define a unitary operator in L2). The proof is sketched in 2.3 after
some preparation in 2.2.

1.2.2. Positive angle between two subspaces. Let us now forget the concrete nature of these
projectors and move to an abstract Hilbert space H; let (M;N) be a pair of its closed sub-
spaces. We denote by P and Q the projectors of H onto M;N (resp.). We are interested in
the following property of the pair (M;N) (or (P;Q)):

(7) khk2 6 c(M;N)(kP?hk2 + kQ?hk2) for any h 2 H;

where P? = I � P;Q? = I � Q project onto the orthogonal complements of M and N
(resp.). Clearly, (7) is an abstract form of (6). It can be given several equivalent forms:

(a) kPQk(= kQPk) < 1;

(b) supfj < m; n > j : m 2M;n 2 N; kmk 6 1; knk 6 1g < 1;

(c)M \N = f0g; and M +N is closed;

(d) kP?nk > cknk for any n 2 N (or, equivalently, kQ?nk > ckmk
for any m 2M ), c > 0.

(8)

If M;N are of finite dimension, then all these properties just mean M \ N = f0g, but in
general this last property alone does not imply (8) which is often expressed as “the positivity
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of the angle between M and N ” (look at (b)). A proof of the equivalence of (7) and all
properties in (8) is, e.g., in [HJ], p. 80.

The following general observation is crucial for the Amrein-Berthier theorem: IfM\N =
f0g, and PQ is compact, then (7) holds. Indeed, PQ being compact there is a unit vector
v 2 H such that kPQvk = kPQk; if kPQk = 1, then 1 = kPQvk 6 kQvk 6 kvk = 1
whence kQvk = kvk and Qv = v, so that v 2 N and kPvk = kvk; v 2 M whereas the only
element of M \N is zero.

1.2.3. Let us now return to L2 = L2(Rd) and put P = PS; Q = P̂�;M = ff 2 L2 :
ess supp f � Sg; N = ff 2 L2 : ess spec f � �g. If jSj; j�j are finite, then PQ becomes an
integral operator in L2 with the kernel H(x; y) = c�S(x)�̂�(y�x) which is Hilbert-Schmidt:
by Plancherel ZZ

jH(x; y)j2dxdy = c2
Z

�2
S �
Z

�2
� = c2jSjj�j < +1:

If f 2 M \N then f is an eigenvector of PQ corresponding to the eigenvalue 1, so M \N
is finite dimensional. Moreover, its dimension can be estimated by jSjj�j :

(9) dim(M \N) 6

ZZ
jH(x; y)j2dxdy = c2jSjj�j:

Using this estimate it is not hard to prove that M \ N = f0g (i.e. that (S;�) is an a-
pair), and thus complete the proof of the theorem. Suppose ' 2 M \ N;' 6= 0, so that
S0 � S; 0 < jS0j where S0 = ess supp'. For a vector v 2 R

d put 'v(x) = '(x � v). For a
v1 2 R

d the essential support S1 of 'v1 (i.e. S0 + v1) sticks out of S0 (slightly):

0 < jS1 n S0j < "1

where "1 > 0 is arbitrary (we are using the finiteness of jS0j); functions '; 'v1 are linearly
independent. Then we find v2 2 R

d so as to make S2 = S1 + v1 = ess supp'v1v2 stick out of
S1 [ S0 (slightly):

0 < jS2 n (S1 [ S0)j < "2;

'; 'v1; 'v1v2 are linearly independent. Continuing this process we arrive at an infinite linearly
independent sequence of shifts of ':

(10) '; 'v1; 'v1v2 ; : : :

and the sequence of sets S0; S0 + v1; S0 + v1 + v2; : : : whose union S� is of finite measure
if only

P
"j < +1. The essential spectrum being shift invariant the sequence (10) is in

M� \N;M� = PS�(L
2); N = P̂�(L

2) which is impossible (dim(M � \N) 6 c2jS�jj�j).
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1.2.4. Some remarks on strong annihilation. Using the equivalence of (7) and (8) and staying
in an abstract Hilbert space H we may solve a series of problems pertaining to the UP . For
example, if (8) holds, then the operator v ! (Pv;Qv) maps H onto M �N . This means that
whenever (S;�) is a strong a-pair the following system of equations (with “the unknown”
r 2 L2) is solvable:

rjS = pjS; r̂j� = qj�
for any p; q 2 L2. Another example is the following problem: describe the image of the unit
ball of H under the mapping h! (kPhk; kQhk) 2 R

2 . This problem can be solved quite ex-
plicitly for many pairs (P;Q) such that PQ is compact; the result is a quantitative refinement
of the Amrein-Berthier theorem (the Slepian-Pollack inequality): roughly speaking the point
(kPhk; kQhk) of the square [0; 1]� [0; 1] cannot get too close to the vertex (1; 1). For a pair
of sets S;� of finite measure the Slepian-Pollack inequality answers the following question:
suppose h 2 L2; khk = 1, and

R
S

jhj2 = � with a given � 2 (0; 1); how large can
R
P
jf̂ j2

be ? It turns out that the least upper bound of this “spectral energy carried by �” is one if
� 6 c(S;�) < 1, but it does depend on � 2 (c(S;�); 1) remaining strictly less than one.

1.2.5. The Paneah Theorem. The definition of a strong a-pair suggests the following general
question: given a class s of measurable sets S � R

d find the class

ŝ = f� � R
d : (S;�)is a strong a-pair for any S 2 sg:

Denoting by s�n the class of all sets in R
d of finite Lebesgue measure we may restate the

Amrein-Berthier theorem:

(11) ŝ�n � s�n :

It is known that this inclusion is strict; I do not know any satisfactory and complete description
of ŝ�n . Let us turn instead to an important example of swhen ŝ admits a complete and explicit
description: s = sb = the class of all bounded measurable sets in Rd . We say that a Lebesgue
measurable setE � R

d is relatively dense (at infinity) (or belongs to srd) if there exists a cube
K � R

d and a number 
 > 0 such that j(K+x)\Ej > 
 for any x 2 R
d . A typical example

(for d = 1) is the union of all intervals of a given positive length centered at equidistant
points nh where h > 0 is fixed and n 2 Z. The rd-sets E � R can be characterized by the
following property: the observer moving along the line y = 1 sees E all the time under an
angle exceeding a positive number

P
; in other words

(12) �x(E) =
1

�

Z
E

dt

1 + (x� t)2
> � for any x 2 R.

Denote by S 0rd the set of all complements of the rd-sets. The following theorem refers to
d = 1 (i.e. to R).

THE PANEAH THEOREM. ŝb = s0rd.
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(Paneah proved ŝb � s0rd for any dimension; the inverse inclusion in any dimension was
proved by Logvinenko and Sereda later.) Here we sketch a short proof of a part of the Paneah
theorem ( [JH, Gor, HJ]), namely s0rd � ŝb.

First note that the Poisson integral P (') = 1
�
' � 1

1+x2
of ' 2 L2 is again in L2, since

(13) (P̂')(�) � e�j�j'̂(�)

(where '̂(�) = (2�)�1
R
R

'(x) exp(�is�)dx) whence

kP (')k2 6 k'k2:
If spec' � [0; l], then an inverse estimate can be obtained:j�j in (13) becomes � so that

j'̂(�)j = e�j ^P (')(�)j 6 elj ^P (')(�)j;
and

(14) k'k2 6 elkP (')k2
by Plancherel. Suppose now f 2 L2(R); spec f � [a; b]; but then (14) is applicable to
' = e�iaxf (with l = b � a). Applying the integral form of the two constants theorem to an
rd-set E (see (40 ) and (12)) we get

kfk22 = k'k22 6 e2l � 2

0
@Z

E

j'j2
1
A
P

k'k2(1�5)2 = 2e2l

0
@Z

E

jf j2
1
A
P

kfk2(1�5)2

whence kfk22 6 2e2l=
P R

E
jf j2. We have thus proved (8d) for P = PS; S = E 0, and Q =

P̂[a;b] which means that (S; [a; b]) is a strong a-pair.

1.2.6. Periodic case: strong annihilation of supports omitting a set of positive length and
sparse spectra. The problem setting of 1.2.1 has obvious L2(T)-parallels, the corresponding
definitions of a-pairs and strong a-pairs (S;�); S � T;� � Z being essentially the same.
E.g., (S;�) is a strong a-pair ifZ

T

jf j2dm 6 c

0
@Z

S0

jf j2dm+
X
n2�0

jf̂(n)j2
1
A for anyf 2 L2(T):

This case can be also included into the general scheme of 1.2.2.
Let sT be the class of all sets S � T satisfying m(S) < 1; denote ŝT by SPARSE. A deep

and difficult result on SPARSE is due to Mikheev who proved that

��(2) � SPARSE � �(2)

where ��(2);�(2) are certain classes of rarefied sets of integers (�(2) is very familiar to the
specialists; see [HJ], p. 102-110 for definitions). Here we only mention that it is unknown
whether ��(2) = �(2). It is known however that the finite unions of lacunary sets are in
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��(2) (a set A of positive integers is called lacunary if supfm=n : m;n 2 A;m < ng < 1;
a set A of integers is called lacunary if A \ (0;+1) and fjnj : n 2 A; n < 0g are lacunary).
The strong annihilation of pairs (S;�) with m(S) < 1 and lacunary � (but not a finite union
of lacunary sets) was proved by Zygmund.

1.3. Review of some “non-complex” results

The main source of concrete forms of the UP is, of course, Complex Analysis. This was
avoided (or carefully masked) in the preceding parts of the lecture. Before turning to the
powerful complex machinery I just want to mention some more forms of the UP susceptible
to other methods.

1.3.1. The Annrein-Berthier Theorem revisited. To describe a new approach to this the-
orem we start with a proof (due to Benedicks) of an L1-analog of annihilation of pairs
(S;�); S;� � R; jSj + j�j < +1: if f 2 L1(R)(= L1); f jS 0 = 0; f̂ j�0 = 0, then f = 0.
The proof is based on two facts:

(i) If � � R; j�j < +1, then for m-almost all h 2 (0;+1) almost all points of the
lattice (kh)k2Z (i.e. all but a finite number) avoid � ( [HJ], p. 456)

(ii) For f 2 L1(R) put

p(t) =
X
k2Z

f(t+ k)

the series converges in L1((�A;A)) for any A > 0 thus defining a 1-periodic function
p summable on (0; 1), the periodization of f . Put S = ess supp f , ~S = ess supp\(0; 1)

it is easy to see that

(15) m( ~S) 6 m(S):

The "-compression f" of f is defined by f"(x) = f(x="); by p(") we denote the periodization
of f". The k-th Fourier coefficient p(")k of p(") (w.r. to the system (exp(2�ikx)) is "f̂("k).
Hence, by (i), p(") is a trigonometric polynomial of period 1=" for almost all " provided
f j
P

0

= 0; j
P
j <1. So for any f 2 L1(R) and "! 0

(p("))1=" ! f in L1((�A;A))

( [HJ], p. 458). Now we are ready to complete the proof: a sequence (p("k)) 1

"
k

of trigono-

metric polynomials (with "k ! 0) tends to f in L1
loc; but if "k is small, then p("k) vanishes on

(0; 1) n ~S"k , a set of positive length, since j ~S"k j 6 "kjSj (by (15)) whence p("k) � 0.
In the same spirit, but in a much more quantitative way Nazarov found an explicit estimate

of the constant c in the Amrein-Berthier inequality (6). The abstract proof discussed in 1.2.2-
1.2.3 did not yield any information on c; it was not even clear whether c depends on jSj; j�j
rather than on S;�.
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THE NAZAROV THEOREM. The Amrein-Berthier inequality (6) (for d = 1) holds with
c = A expAjSjj�j where A is an absolute constant.

Writing (6) for the Gauss function f(x) = exp(�x2=2); S = � = [�N;N ] we find
c > expA0jSjj�j for an absolute A0. Note that in fact c tends to one as jSjj�j ! 0 which fact
can be easily deduced from the abstract geometric considerations of 1.2.2 and the estimate
kPSP̂Pk2 6 constjSjj�j; for jSjj�j bounded off zero the first factor A in Nazaror’s estimate
can be dropped.

An elementary probabilistic analysis of “random lattices” in the spirit of Benedicks argu-
ment led Nazarov to a “finite” version of the UP which is interesting in itself. In a particular
case it was discovered by Turan in the fifties.

THE TURAN LEMMA. Let P be a trigonometric polynomial

(P (�) =
X

P̂ (n)�n; � 2 T);

specP being a finite set of integers. Put ord P = card specP . There exists an absolute
constant C such that

(16) max
T

jP j 6 (C=m(
))ordP max


jP j

for an arbitrary arc 
 � T.

Note that ordP 6 degP = maxfjnj : n 2 specPg, and (16) is an essentially non-linear
result, since the set of all P ’s with a given ordP is not a linear space. Turan’s original proof
was based on some explicit interpolation formulas. Nazarov needed (16) not for arcs 
, but
for arbitrary compact subsets of T, and he succeeded in proving (16) for this more general
situation which required a new approach involving the Kolmogorov weak type estimate of the
Hilbert transform. He proved along the way that if specP � [�M;M ], then for any t > 0

jf� 2 T : jP 0(�)j > tM jP (�)jgj 6 Cabs=t;

so that the Bernstein norm estimate of the derivative of a trigonomtric polynomial P of degree
M (max

T

jP 0j 6 M max
T

jP j) holds pointwise off a set of small measure (6 Cabs=t) with tM

in place of M .

1.3.2. The F. and M. Riesz Theorem. originally appeared and was perceived as a fact of
Complex Analysis, but later it was given several proofs not using analytic functions. The
theorem states that a charge (= a complex valued Borel measure) on R or T with positive
spectrum (a plus-charge) ism-absolutely continuous. Of those non-complex proofs I mention
here only one due to A:B. Aleksandrov and J. Shapiro and based on peculiarities of the Lp-
metric with p 2 (0; 1) restricted to trigonometrical polynomials

P
n>0

cnz
n with non-negative

spectrum. This approach is applicable to the charges on a multidimensioinal torus ( [HJ], p.
41-50). An interesting quantitative version of the F. and M. Riesz theorem is due to Pigno,
Smith ( [HJ], p. 23-28).



V.P. Havin / On the Uncertainty Principle in Harmonic Analysis 15

1.3.3. The De Leeuw-Katznelson Theorem. The Fourier coefficients �̂(n) of a plus-charge
on T tend to zero as jnj ! +1 (an immediate corollary of the F. and M. Riesz theorem).
This property is stable: the De Leeuw-Katznelson theorem states that for any " > 0 there is a
Æ > 0 such that for any plus-charge � on T with var� 6 1

lim sup
n!�1

j�̂(n)j < Æ ) lim sup
n!+1

j�̂(n)j < ":

The proof is quite “real” ( [HJ], p. 29-31).

1.3.4. Spectral decay of singular charges. An m-singular charge � (on T) is highly concen-
trated; the UP suggests its Fourier image �̂ should be “spread”, but to what extent? E.g., is it
possible for �̂ to tend to zero (in which case we call it an r-charge in honour of Rajchman)?
The answer is “Yes.” In this connection I mention a beautiful result due to Salem (preceded
by a more elementary partial result due to Bari) characterizing the Cantor subsets of T whose
Cantor measure is an r-measure ( [HJ], p. 63, 86). Another device to produce singular r-
measures are infinite Riesz products ( [Z, HJ]; a very nice treatment of the Riesz products is
in [Pey]).

An obvious spectral obstacle for a charge � on T to be singular is the inclusion �̂ 2 l2(Z).
The Ivashev-Musatov Theorem asserts that this fact is sharp: for any “nice” non-negative

function � defined on [0;+1) with
1P
1

�2(n) = +1 there exists a non-zero m-singular

positive measure � on T with compact support such that j~�(n)j 6 �(jnj) for any n 2 Z (we
are not in a position to discuss here “the nicety” of �; dropping the compactness of supp �
from the statement above we may just assume � to be decreasing ( [Kor]). The proof is based
on ingenious asymptotic estimates of oscillating integrals in the spirit of the Van-der-Corput
lemmas.

1.3.5. Deep zero & sparse spectrum. Suppose f 2 C(T); " > 0; f(t) = O(exp(�jt �
1j�(1+"))) as t ! 1 (“a deep zero at 1”) and

P
n2Z

jnj"�1=2 < +1 (“a sparse spectrum”); then

f = 0. This is a very particular case of the Mandelbrojt theorem. It was given a purely “real”
proof by Belov ( [HJ], p. 80-85). This proof is interesting in itself providing some useful
quantitative relations. But the complex approach to the Mandelbrojt theorem results in its
much stronger forms and seems to be the only way to prove its sharpness.

2. Complex Methods

2.1. Introductory Remarks

2.1.1. Partial sums of the Fourier series on T are rational functions, and partial Fourier
integrals on R are entire functions; both live not only on T or R, but in the whole ambient
plane C . Leaving R and T for C we get a vast new perspective making many manifestations
of the UP just some uniqueness theorems of Complex Analysis. A (very primitive) example
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is this: if the support of a non-zero charge � on R is bounded, then spec � is not, since �̂ is an
entire function. We can of course, strengthen this trivial remark replacing the boundedness
of supp � by fast decay of � at infinity (say, by the convergence of

R
R

(exp cjtj)dj�j(t) for a

c > 0 entailing the analyticity of �̂ in the strip fjImzj < cg. The wealth of subtle uniqueness
theorems of Complex Analysis yields far more precise and profound forms of the UP .

The complex approach gives a new explanation of the UP phenomena for plus-charges on
R and T. Suppose a function f summable on the time axis R has no past, that is f j(�1; 0) =
0. Then its Fourier integral

f̂(�) = (2�)�1
Z
R

f(t) exp(�it�)dt

makes sense not only for real �, but also for any � 2 C � , the open lower-half-plane, and f
is analytic there ( the condition f 2 L1(R) is not essential, we might speak of a charge, an
Lp-function, or a distribution living in the future, i.e. supported by (0;+1)). Reversing the
order of time and frequency and changing sign in the exponent we conclude that any plus-
function (distribution) f (i.e. when spec f � [0;+1)) is in a way extendable to the upper
half-plane C + and this is (heuristically) a complete characterization of the plus-functions: if
f is extendable from R to a function analytic in C + satisfying some growth conditions, then
f is a plus-function (this is not a theorem, but rather a useful heuristic principle).

An analogous description of the plus-functions on T is even more obvious. A Fourier
series

P
n>0

f̂(n)zn lacking negative harmonics becomes a power series converging in the open

unit disc D , and the interpretation of a plus-function f on T as a boundary trace of its sum
looks very plausible (and, similarly

P
n<0

f̂(n)zn becomes a Laurent series in C n (D [ T)).

These remarks are meaningful and rich in consequences for arbitrary functions (not just
for plus- or minus-functions): a more or less arbitrary function f on R can be written as
+1R
�1

f̂(�)eit�d� (in a sense) whence

(17) f = f+ � f�wheref+(t) =

+1Z
0

f̂(�)eit�d�; f�(t) = �
0Z

�1

f̂(�)eit�d�;

so that f� are plus- and minus-functions extendable to the respective half-planes. An analo-
gous decomposition is valid for functions (and distributions) on T: if, say, f 2 L1(T), then
putting f+ =

P
n>0

f̂(n)zn; f� = �
P
n<0

f̂(n)zn we get f = f+ � f�, a formal equality to be

duly interpreted which is quite possible in many cases.
Let us remember the following form of the UP: a continuous non-zero plus-function on

T cannot vanish on a set of positive length (see section 1.1 of Part 1). This fact becomes
now a boundary uniqueness theorem for functions analytic in D and continuous up to T,
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and a conformal mapping of C + onto D immediately yields an analogous result for the plus-
functions on the line.

2.1.2. The complex point of view gives a new insight into the notions of support and spec-
trum. The support of a (say, summable) function f on R can be characterized as the set of
singularities of its Cauchy potential �,

�(�) =
1

2�i

Z
R

f(t)dt

t� �
; (� 2 C n R)

since f(t) = lim
"#0

(�(t + i") � �(t � i")) a.e. on R. But spec f = supp f̂ , and (if f̂ is

summable and in many other cases) spec f is the set of singularities of the function �, an-
alytic in C n R defined as �(�) = (2�i)�1

R
R

(f̂(�)=(� � �))d� which is readily seen to be

�(2�)�1
+1R
0

f(t) exp(�it�)dt for Im� < 0 and (2�)�1
+1R
0

f(t) exp(�it�)dt for Im� > 0.

A similar description of supp f for f 2 L1(T) is obvious: it coincides with the set of sin-
gularities of �: � ! (2�i)�1

R
T
f(t)(t � �)�1dt(j�j 6= 1), or the complement of the largest

open set O � T such that � is analytic in D [O [ fj�j > 1g.

2.1.3. Versions of the UP obtained by the complex tools are very often based on the fol-
lowing fact: suppose F 6= 0 is analytic in a domain O � C ; then log jF j is subharmonic in
O:

(18) log jF (a)j 6
Z
T

log jF (a+ rz)jdm(z)

provided the disc fjz � aj 6 rg is in O (this is Jensen inequality (2)). The subharmonicity is
akin to convexity, and (18) implies a certain rigidity of jF j: the smallness of jF j on a small
(but solid) part P of O makes jF j small on O nP as well. A rigorous statement of this kind is
the two constants inequality (4). The subharmonicity of log jF j for an analytic F entails the
following extremely useful heuristic principle: if a non-zero analytic function is not too big
(globally), then it cannot be too small (even locally). If for example supp f � [��; �]; f 2
L1([��; �]), then jf̂(�)j 6 const exp(�j�j); � 2 C , which is a global growth restriction
imposed onto entire function f̂ ; an appropriate form of the Jensen inequality forbids f̂ to
decay too fast along R or to have too many zeros.

To conclude these introductory remarks let me mention the very special plasticity of the
formulas of Complex Analysis. So, for example, a band limited function has at least four

faces: it is a trigonometric integral
�R

��

f̂(�) exp(i�t)d�, but also a power series, or a contour

integral, the Borel transform of the entire function f̂ (with a freedom to deform the contour),
or an infinite canonical product.
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Now we start our guided tour around (some) applications of the complex tools to the UP.

2.2. Fast decay of f and f̂ at infinity

A pair (M;N) of positive functions on (0;1) is called sufficient if

(19) jf(t)j 6 M(jtj)&jf̂(�)j 6 N(j�j)(t; � 2 R) ) f = 0:

A complete description of sufficient pairs (e�At
p

; e�B�
r

) is due to Morgan who proved in 1934
that such a pair is sufficient if 1=p + 1=r < 1 (not depending on A;B > 0) and found the
conditions to be imposed on (A;B) to make the pair sufficient for given p; r satisfying 1=p+
1=r = 1. His main tool was the Phragmen-Lindelöf theorem (a far reaching generalization of
the maximum modulus principle). Using another complex tool (the Carleman formula for a
contour integral involving the logarithm of a function analytic in C +) Dzhrbashyan obtained
some sufficiency criteria (replacing the pointwise majorization (19) by integral estimates);
he also got a description of some “unilaterally sufficient” pairs (that is those (M;N) for
which f = 0 follows from the inequalities in (19) if both (or one) of them are fulfilled only
on the ray (0;+1)). The following elegant result is due to Beurling: if f 2 L1(R), andRR
R�R

jf(t)jjf̂(�)jejtjj�jdtd� < +1, then f = 0 ( [B]). The results of this section (with
their proofs and references) can be found in [HJ], p.128-137; we also recommend Nazarov’s
article [Na] containing a new approach to sufficient pairs.

2.3. Deep zero & fast decay at infinity

Let H be a non-negative function on [0;+1). In this section we call it sufficient if

f(t) � tn = O(1) (jtj ! 1; n 2 Z+) & jf̂(t)j 6 H(jtj) (t 2 R) ) f = 0:

If H(t)tn = O(1) (t ! +1) for any n > 0, then “the depth of zero” of f at the origin just
means f (n)(0) = 0; n 2 Z+. This is actually a classical quasianalyticity problem related to
the moment problem and weighted polynomial approximation.

A necessary condition for H to be sufficient is L(H) = �1 (L(H) =
R +1
0

logHd�,
see Part 1 section 1.1); this “quantitative” condition is sufficient if H satisfies a “qualitative”
regularity condition (which cannot be dropped), e.g., if H is logarithmically convex (H(x) =
exp(�x= log(x + 1)) or exp(�x= log(x + 1) log log(x + 1) : : :) are sufficient (see [Koo2],
[HJ]). This combination of a quantitative condition (19) and a qualitative one (the regularity
of the majorant) is very typical for many forms of the UP.

2.4. Deep zero & sparse spectrum

Here we return to the Mandelbrojt theorem (see 1.3.5 of Part 1) and briefly discuss its
proof due to Levin (this proof results actually in a much stronger theorem which we won’t
state here, see [L], [HJ]). The strategy of the proof is this: suppose f 2 L1(T) has a deep

zero at 1 (say,
"R
0

jf(eit)jdt = O(e�"
��

) as " # 0; � is positive); look at the Laplace transform



V.P. Havin / On the Uncertainty Principle in Harmonic Analysis 19

� of the periodic function '; '(t) = f(eit)(t 2 R); �(p) =
+1R
0

'(t)e�ptdt coincides in

fRep > 0g with the meromorphic function
P

n2Z f̂(n)(p� in)�1 of a very tempered growth
off the union of the discs fjz � inj < 1=4g ; the deep zero of f at 1 (that is the deep zero of
' at the origin) can be translated as the fast decay of j�(�+ i�)j as � " +1 (uniformly in �).
The Poisson-Jensen formula

RZ
0

(N(t)=t)dt =

Z
T

log j�(R�)jdm(�)� log j�(0)j

where N(t) = n(t) � p(t); n(t); p(t) being, resp., the numbers of zeros and poles in tD ,
implies the estimate

RZ
0

(p(t)=t)dt > �
�Z

T\fRe�>0g

+

Z
T\fRe�<0g

�
log j�(R�)jdm(�) + log j�(0)j;

the first integral tends to�1 and so does the whole bracket, since the modulus of the second
integral grows too slowly; if � is regular at the origin and �(0) 6= 0 (which we may assume if
' 6= 0), then p(t)=t has to be big for arbitrarily large values of t, and an excessive sparseness
of spec f (= the set of poles of �) is impossible. We can now go back: given a sufficiently
sparse set � of integers we construct a meromorphic function � = 1=B where B is a suitable
infinite product (an entire function) vanishing exactly at the points in, n 2 �, and growing
fast enough off the discs fjz � inj < ag for a positive a; applying the Riemann-Mellin
inversion formula for the Laplace transform to � we obtain a periodic ' and then f 2 C(T)
with spec f = � and a deep zero at 1; this is how the sharpness of the Mandelbrojt theorem
is proved.

2.5. Semibounded spectra

The complex point of view sheds a new light upon the functions with semibounded spec-
tra. Here we can only mention the highly developed theory of the Hardy classes H p whose
main objects are Lp-functions with non-negative frequencies.

Let f be an Lp-function (1 6 p 6 +1) on X = T or R with a non-negative spectrum:
spec f � [0;+1) ( if p > 2; X = R, then spec f is the support of the distribution f̂ ); then
we say f 2 Hp(X), the Hardy space on X . Another object related to Hp(X) is a Banach
space Hp(O) of functions analytic in O(= D for X = T; C + for X = R) satisfying a certain
Lp-growth restriction. It turns out that any F 2 HP (O) has finite boundary values along the
normals m -a.e. on X thus defining a function F � 2 Hp(X),

F �(t) = lim
r"1

F (rt) (t 2 T); F �(t) = lim
"#0

F (t+ i") (t 2 R):
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The mapping F ! F � takes HP (O) isometrically onto Hp(X), so that the Lp(X)-
functions with no negative frequencies can be identified with the analytic functions inH p(O).
This close connection makes it possible to understand completely many forms of the UP for
the plus-functions (including continuous and smooth plus-functions, see [Du], [Pr], [Ho],
[Ga], [Koo1], [HJ]; these forms are usually sharp in contrast with other spectral “smallnesses”
(e.g., for the band limited functions, see section 2.6 below). As an example we consider here
a complete and quite satisfactory description of the moduli of the H p(X)-functions.

THEOREM. Let h > 0 be a non-zero function on X . The following are equivalent: (i)
h = jf j where f 2 Hp(X); (ii) h 2 Lp(X;m) and L(h) >1 (see section 1.1 in Part 1).

Thus the convergence of the logarithmic integral L(h) is the only smallness restriction for
the equation jf j = h; f 2 Hp(X) to be solvable. Its necessity follows immediately from the
Jensen inequality; its sufficiency can be proved by an explicit construction: if h 2 Lp(T; m)

and L(h) > �1, then Ext h : z 7! exp
R
T

log h(�) �+z
��z

dm(�) is in Hp(D ) and j(Ext h)�j = h

a.e. on T; Ext h is the so-called outer (or exterior) function corresponding to h. An analogous
formula can be written for X = R as well.

The conditions of the solvability of the equation jf j = h with an unknown band limited
function f (i.e. with a bounded and not just semibounded spectrum) can hardly be expressed
in palpable terms (see however [Dy] for some useful results in this direction). In the next
section in place of the equation jf j = h we turn to non-trivial band limited solutions of the
inequality jf j 6 h.

2.6. Fast decay at infinity and bounded spectrum

Let h be a non-negative function defined on R. We call it a Beurling-Malliavin majorant
(BM-majorant) if there exists a non-zero function f with a bounded spectrum such that

(20) jf j 6 h:

A bounded set being semibounded we immediately conclude that any BM-majorant h satis-
fies L(h) > �1. But in contrast with section 2.5 this condition is far from being sufficient:
to guarantee the solvability of (20) with a band limited f 6= 0 we have to impose some reg-
ularity conditions on h to moderate its oscillations at infinity. The reason is simple: a band
limited function is entire and of finite degree (i.e. f(t) = O(exp �jtj); t 2 C ; jtj ! +1):
the Poisson-Jensen formula shows that the zeros of f tend to run away with a certain speed
from any (big) disc (so that the number of zeros of f in rD is O(r) as r " +1). And if,
say, h(

p
n) = 0; n = 1; 2; : : : ; or even if h(

p
n) tends to zero fast enough, then (20) im-

plies f = 0; but this behavior of h is very well compatible with L(h) > �1 if only the
slopes of the pits on the graph of h over

p
n are steep, i.e. if h oscillates intensely. (There

are, of course, even much more obvious obstacles for an h with L(h) > �1 to be a BM-
majorant: for example h(t) = exp(�1=

p
jtj) is not a BM-majorant. But we concentrate now

on BM-majorants bounded off zero on any bounded interval.)
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Assume L(h) > �1; the characterization of the oscillations of h at infinity compatible
with h being a BM-majorant is a very hard problem. A remarkable breakthrough is due to
Beurling and Malliavin. Their work [BM1] describing a large class of BM-majorants is deep
and difficult involving a good deal of potential theory and complex analysis. Here I state only
one corollary: Suppose h is bounded and strictly positive; if L(h) > �1 and logh satisfies
a Lipschitz condition, then h is a BM-majorant.

Another (and even more famous) corollary is the so-called Beurling-Malliavin multiplier
theorem which I won’t state here. Subsequent proofs, simplifications, and approaches to
these corollaries are due to Koosis, Kargaev, and Nazarov see [Koo2, Koo3]; one more proof
is in [DeBr]. But the original result still seems to remain the most general ( it is also exposed
in [HJ], p. 306-369).

Note that if h is even and decreasing on [0;+1) (no oscillations at all), then L(h) > �1
is sufficient for h to be a BM-majorant. This fact is relatively simple and known actually for
a long time before the Beurling-Malliavin theorem had been proved (see the references and a
proof in [HJ], p. 276).

Another “whale”, the second Beurling-Malliavin theorem, can be only named here. It is
devoted to the following form of the UP: bounded support & missing frequencies (character-
ization of the discrete sets � � R such that f̂ j� = 0 for a function f 6= 0 concentrated on
[��; �]; � > 0; see [BM2, Koo2, HJ]). Denoting by �A the characteristic function of a set A
we may rephrase the problem: describe the BM-majorants of the form �Rn�.

2.7. Four theorems on the unilateral decay

This series of theorems starts historically with the following result due to Levinson and
Cartwright:

(I) Suppose f 2 L1(T) satisfies

(21) jf̂(n)j 6 h(jnj) for all negative integers n,

h : [1;+1)! (0;+1) being a decreasing function (“unilateral decay of f̂”). If

(22)
1X
n=1

log h(n)

n2
= �1;

then f cannot vanish identically on a non-degenerate arc unless f = 0.

In 1960 Beurling proved the following result which is in fact much stronger than (I): for
a finite charge � on R and A > 0 put ��(A) = (var�)([A;+1));

(II) if

(23)

+1Z
1

log ��(A)

A2
dA = �1;
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then �̂ cannot vanish identically on a set of positive length unless � = 0.

This time “the unilateral decay” refers to “the object” � and the spectral smallness means
vanishing on a large set. The remarkable feature of this result is the total absence of the
regularity conditions (cf. section 2.3 and 2.6). The strategy of the proof is killing the Cauchy
potential C(�)(�) =

R
R

(t � �)�1d�(t)(� =2 R) for any � satisfying (23) with �̂ vanishing on

a set of positive length. The Levinson-Carwright theorem (I) follows from (II) very easily.

(III) (The Volberg Theorem) Suppose the conditions of (I) are fulfilled and h satisfies some
supplementary regularity conditions (not to be stated here); then L(f) > �1 unless f = 0.

The conclusion of this theorem is much stronger than in (I), but it does not imply (I)
because of those unnamed regularity conditions (their sharp form is due to J. Brennan, see
[Koo2, HJ]); the regularity of h in (I) is its mere decrease. Theorem (III) was conjectured by
Dyn’kin in 1975; its proof is based on Dyn’kin’s theory of pseudoanalytic continuation and
delicate estimates of pseudoanalytic functions in the so-called boundary layers.

(IV) (The Borichev Theorem) The last result of this series is due to Borichev and looks
(at first glance) even stronger than (III). It is applicable not only to functions on T, but
to distributions and even to hyperfunctions. Any two-sided sequence (an)n2Z of complex
numbers such that lim sup

jnj!1

janj1=jnj 6 1 generates two analytic functions g+; g�:

g+(�) =
X
n>0

an�
n(j�j < 1); g�(�) = �

X
n<0

an�
n(j�j > 1):

If janj = O(jnjm) for a positive m, then
P
n2Z

an�
n is the Fourier series of a distribution

T on T and suppT is the complement of the largest open part of T across which g+ is
analytically extendable to �g� . The Borichev theorem asserts in particular that if

lim
n!�1

log janj=h(jnj) = �1; lim sup
n!+1

log janj=h(n) < +1;

and h satisfies (22) and some regularity conditions (again !) then it is impossible for the non-
tangential limits of g+ and g� to coincide on a subset of T of positive length unless an � 0.
In fact, [Bor, BorV] contain much stronger results involving the divergence of a logarithmic
integral (to be defined properly, since

P
an�

n is not a function on T, and g� are not bound to
possess boundary values on T).

For the most popular classical majorants

h(n) = exp(�cn= logn � log logn � : : :)
each of these four theorems is a step forward compared with the preceding one. But in general
none of them implies the rest (because of the discrepancies in the regularity conditions). Their
proofs are different,and it is unclear whether they can be encompassed by a single statement
and proof.
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2.8. Spectral gap & sparse support

We say a tempered distribution T on R has a spectral gap if R n specT contains a non-
degenerate interval. The Beurling theorem ((II) in section 2.7 above) forbids the fast unilateral
decay of a function (or a charge) with a spectral gap. But now we are going to discuss the
sparseness of the support of a charge with a spectral gap. One more Beurling theorem gives
an answer: Suppose S � R is a closed set such thatZ

R

dist(x; S)

1 + x2
dx = +1:

Then any non-zero charge � supported by S has no spectral gap ( [B, Koo2, HJ]).
A proof due to Koosis is based on the Pollard approach to weighted approximation and

the Bernstein band limited function cos �
p
(z � x0)2 � R2 peaking at x0 2 R and bounded

by one off (x0 � R; x0 + R). This result is only an illustration. The problem to characterize
the support carrying a charge with a spectral gap has impressive connections with poten-
tial theory,weighted approximation by polynomials and entire functions of finite degree (see
the results by Levin, Akhiezer & Levin, Kargayev, Benedicks, Koosis,De Branges, Levin &
Logvinenko & Sodin quoted in [HJ], p.375). Here we only mention that the Beurling the-
orem of this section is sharp in the following sense: the spectral gap cannot be replaced in
its statement by a set of positive length; this was predicted by Koosis and proved by Kar-
gaev’s counterexample (his original construction was simplified by Kislyakov and Nazarov,
see [HJ], p.520).

We conclude this section by the following problem posed by Sapogov: is there a set
A � R of finite length whose characteristic function �A has a spectral gap? The answer is
yes, it is due to Kargayev who constructed such an A as the union of disjoint intervals In
gravitating to n as jnj ! +1 ; their endpoints can be computed by the Newton-Kantorovich
method in l2(Z) which yields alot of information on In (see [HJ], p.376-392 and the paper by
Kargaev & Volberg quoted there).

2.9. Sparse support & unilateral decay

A compact set K � T is called spacious if it carries a non-zero charge � such that

(24) j�̂(n)j = O(jnj�m) (n! �1)

for any m > 0. The characterization of “bilaterally spacious” sets K (i.e. carrying a charge
� 6= 0 satisfying (24) with jnj ! 1) is easy: they are just the sets with interior points.
The unilateral character of (24) makes the description of spacious sets a much more delicate
task. It is obvious that the length of a spacious K is positive, since any � satisfying (24) is
m-absolutely continuous by the F. and M. Riesz theorem. But this condition is not sufficient.
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Denote by L(K) the set of all components of T nK and callX
l2L(K)

jlj log jlj

the entropy of K.

THE HRUŠČEV THEOREM. K is spacious iff it contains a compact subset of positive
length and finite entropy (see [Hru, HJ]).

This is a difficult result. It uses among other things some variants of the Khinchin-
Ostrowski theorem on normal families of functions analytic in a disc, delicate estimates of
outer functions and a clever construction of a special measure on T (its simplified version due
to N. Makarov is in [HJ]). The Hruščev theorem stated above is just a representative of a long
series of his results on “sparse supports & unilateral decay” including many concrete sorts of
“decay” and various “objects” (not necessarily charges); only a part of the results of [Hru] is
in [HJ].

3. Local and Antilocal Convolutions

This part is devoted to a form of the UP for shift invariant linear operators; we call it
antilocality. The most interesting examples and problems come from potential theory and
are discussed in section 3.3. A class of antilocal operators is the theme of section 3.2, in
section 3.1 we discuss local (“almost differential”) operators as opposed to the antilocality of
sections 3.2 and 3.3. In this part everything is closely related to the UP of Parts 1 and 2.

3.1. Local and completely local convolutions

We denote byD0(Rd) the set of all distributions in Rd . LetK be a linear operator mapping
a linear set domK � D0(Rd) intoD0(Rd) . We call it local if it does not increase the support:

T 2 domK ) suppKT � supp T;

or what is the same K(T )jO depends only on T jO for any open O � R
d and T 2 domK. A

typical example is any linear differential operator with C1-coefficients; this is in a sense the
only possible example: it can be proved under some mild conditions to be imposed on domK
(but not in general !) that local operators are differential (the Peetre theorem).

A local operator K reproduces any open zero set E of a distribution:

(25) T 2 domK; T jE = 0) KT jE = 0:

Suppose domK and imK = K(domK) consist of locally summable functions so that T jE
and KT jE make sense for T 2 domK and any Lebesque measurable set E � R

d . Then we
call K completely local if (25) holds for any such E (not only open). Any linear differential
operator whose domain consists of sufficiently smooth functions is completely local.
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Now we turn to the shift invariant operators K on R: Let K be a Lebesque measurable
function on R. Consider the convolution operator K

(26) domK = ff 2 L2 : Kf̂ 2 L2g; K̂f =dKf (f 2 domK):
De Branges found a complete characterization of the symbols of local operators.

THE DE BRANGES THEOREM. (a) Suppose K is a restriction to R of an entire function
k of the Cartwright class and degree zero (that is k(�) = O(exp "j�j); j�j ! +1, for any
" > 0, and L(k) < +1 ); then K is local;

(b) suppose domK contains a non-zero function vanishing on a non-degenerate interval;
if K is local,then K = kjR for an entire function k of the Cartwright class and degree zero.

In other words local shift invariant operators with a sufficiently rich domain are precisely
“the almost differential linear operators with constant coefficients”; they can be written for-

mally as t!
1P
k=0

akt
k where

1P
k=0

ak�
k represents a slowly growing entire function, not too far

from a polynomial.This result is only a particular case of a much more precise theorem due to
De Branges and describing the symbols of the so-called �-local convolutions ( [DeBr, HJ]).

In the extreme case of a polynomial symbol K our operator K becomes a usual linear
differential operator with constant coefficients defined on the Sobolev space W n

2 = ff 2
L2 : f 2 C(n�1); f (n�1) absolutely continuous, f (n) 2 L2; n = degKg. In this case K is
not just local, but completely local. De Branges posed the following question: suppose K is
almost differential (as in his theorem above); is it completely local ? A counterexample was

constructed by Kargayev. He actually showed that f !
1P
k=0

akf
(k) can be not completely

local even for an entire symbol k(�) =
1P
k=0

ak�
k of order zero (i.e. k(�) = O(exp j�j") for

any " > 0), see [HJ],p.482-484.

3.2. Complete antilocality

The results of section 3.1 are in fact closely related to the themes of Part 2, but only
with respect to the tools. We turn now to an opposite property of certain convolutions (the
antilocality) which is itself a form of the UP for a shift invariant operator forbidding us to
know too much on the operator. Our theme here is the compulsory increase of the support of
a non-zero function under certain convolution operators.

A linear operator K defined on domK � D0(Rd) with values inD0(Rd) is called antilocal
if

T 2 domK; T 6= 0) suppK(T ) � R
d n supp T

which means that the following UP holds: for any non-empty open E � R
d and T 2 domK

(27) T jE = K(T )jE = 0) T = 0;
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forbidding the simultaneous vanishing of T and K(T ) on a solid (=open) set. This UP is
valid for some interesting convolution operators and is akin to its “harmonic” prototype. The
simplest example is the Hilbert transform (in R) taking f 2 L2 to ~f; ~f(x) = p:v:

R
R

f(t)=(t�

x)dt; in spectral terms this means ~̂f(�) = c�sgn��f̂(�). If f , ~f both vanish on an openE � R,
then the function ' : � 7!

R
R

f(t)=(t � �)dt analytic in the domain C + [ E [ C � vanishes

on E and is thus identically zero; being the jump of ' as its argument crosses R; f = 0 a.e.
on R. It is not hard to see that the logarithmic potential f 7! f � log jxj and the M.Riesz
potentials f 7! f � jxj�� (0 < � < 1) are antilocal. But the Hilbert transform and the
logarithmic potential enjoy in fact a much stronger uniqueness property: they are completely
antilocal. We say that K is completely antilocal if (27) holds not only for any open E, but
for any set E of positive Lebesgue measure in R

d (we assume that domK and imK consist
of locally summable functions). It is sometimes quite hard to prove (or disprove) that an
antilocal operator is completely antilocal; for the Hilbert transform this property coincides
with the UP for H2(R), see section 1.1 of Part 1.

The symbols of local operators described by the De Branges theorem of section 3.1 con-
sist of a single analytic block being polynomials or entire functions. It turns out that many
symbols consisting of two different “analytic blocks” define an antilocal (or even a completely
antilocal) operator.

Let K be a Lebesgue measurable function on R; b; c 2 R; b < c. Suppose K coincides
on (c;+1) with a rational function r, and jf� : � 6 b; r(�) = K(�)gj = 0. Then we call K
a semirational symbol and r its rational part. A typical example is K(�) = sgn� � r(�) where
r is rational ( if r � 1,then we get the Hilbert transform).

Define K by (26). This operator is completely antilocal for many semirational symbols,
e.g., for any K(�) of the form sgn�=q(�) where q is a polynomial. But for general semi-
rational symbols (27) is only proved under a supplementary smoothness conditions to be
imposed on T ; (27) can be restored for all T 2 domK provided E satisfies an extra “en-
tropy condition” as in the Hruščev theorem (section 2.9 of Part 2), and it is unknown whether
these supplementary conditions can be dropped ( [HJ], p.484-488 and the references therein
including papers by Havin, Joericke, Makarov,and Ch.Bishop). For example it is unknown
whether (27) is true for K(�) = sgn� � (� � i)=(� � 2i) (it is true if we assume T 2 W 1

2 ).
Another interesting antilocal convolution is the M. Riesz potential

(K(f) = f � jxj��; � 2 R; � 6= �2;�4; : : :)

whose symbol cj�j��1 also consists of two different analytic pieces. As to the complete
antilocality, it is only known that for � 2 (0; 1) the following property holds: if

(28)
Z

jtj>1

jf(t)jjtj��dt < +1;
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(29) E � R; jEj > 0; f jE = (f � jxj��)jE = 0;

and f satisfies a Hölder condition (depending on �) near E,then f = 0 (see [HJ], p.499-508
where all real values of � are also considered). Thus an extra smoothness condition emerges
here once again although the proof is quite different from the proof of the UP for semirational
symbols. But in this case these conditions cannot be dispensed with.Using a method due to
Bourgain & Wolff a non-zero continuous function f on R has been constructed in [BH] which
satisfies (28) and (29).

3.3. A uniqueness problem for the Newton potentials

An extremely interesting example of the antilocal behaviour can be observed on the New-
ton convolution in R2 , i.e. on the operator

f ! Uf ; Uf (x) =

Z
R2

f(y)dy

jx� yj ; x 2 R
2

(or, more generally, on the M.Riesz potentials

Uf
�(x) =

Z
Rd

f(y)dy

jx� yjd�� ; � 6= 2; 4; : : : ; x 2 R
d):

The antilocality of the Newton potential U can be interpreted as a uniqueness property
of the solutions of the Cauchy problem for the Laplace equation in the upper half-space R3

+ ,
and it is very close to a boundary uniqueness property of harmonic (=divergence- and curl-
free) vector fields in R3

+ , a three dimensional analog of the boundary uniqueness theorem for
functions analytic in the upper half-plane C + (= a UP for plus-functions, see section 1.1 of
Part 1 and section 2.5 of Part 2 ).

A remarkable construction due to Bourgain and Wolff [BW] (preceded by a breakthrough
in [W] and some simplifications due to Aleksandrov and Kargayev [AK] ) has disproved
the complete antilocality of the Newton potential in R

2 : there exists a continuous non-zero
function f in R2 such that U f = f = 0 on a set of positive area in R2 . It is, however, unknown
whether such an example is possible with a smooth (say C 1, not to mention C1 ) function
f . The one-dimensional construction of [BH] related to the M.Riesz potentials suggests that
the answer may be negative. The antilocality properties of the Newton potentials are one of
the themes of [HJ] (see p.488-508, and the references to the papers of Mergelyan, Landis,
M.M.Lavrentjev, N.Rao, and Maz’ya & Havin).
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[Carl] Carleman T., L’intégrale de Fourier et quelques questions qui s’y rattachent. Almkvist und Wiksels

boktr., Uppsala, 1944.
[DeBr] De Branges L. Hilbert spaces of entire functions. Prentice Hall, Englewood Cliffs (N.J.), 1968.
[Du] Duren P.L. Theory ofH p spaces. Academic Press, NY, 1970.
[Dy] Dyakonov K.M., Moduli and arguments of analytic functions from the subspaces invariant for the back-

ward shift operator. Sibirsk. mat. zhurn., 31, N6, 1990, p. 64–79 (Russian).
[Ga] Garnett J., Bounded analytic functions. Academic Press, NY, 1981.
[Gor] Gorin E.A., Some remarks in connection with a problem of B.P.Paneah on equivalent norms in spaces of

analytic functions. Teoriya funktsii, funkt. analiz i ih prilozhenia, 44, 1985, p. 23–32 (Russian).
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