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THE UNDECID ABILITY OF THE WORD PROBLEMS FOR PROJECT!VE

GEOMETRIES AND MODULAR LATTICES*1)

BY

L. LIPSHITZ

ABSTRACT. We show that the restricted word problems for finite-dimen-

sional projective geometries and finite modular lattices and the word problem

for modular lattices are undecidable.

1.   Introduction.   In this paper we shall show the undecidability of the re-

stricted word problem (see definitions below) for (i)  modular lattices, (ii)  finite-

dimensional projective geometries (over any field), and (iii)  finite modular lat-

tices.   From (i) it then follows that there is a finitely presented modular lattice

with undecidable word problem.   I would like to thank my adviser, Simon Kochen,

who suggested these problems to me.

These results should be compared with the following results.   In [9] Whitman

gave a decision procedure for the restricted word problem for lattices and in [6]

McKinsey showed that the open theory of lattices is the same as the open theory of

finite lattices, which immediately gives a decision procedure for this open theory.

Er^ov u] has shown that the elementary theory of relatively complemented dis-

tributive lattices is decidable.

The main tool which we shall use to establish these results is the von Neu-

mann coordinatization theorem, which we shall describe briefly in the next section.

For the definitions of terms used but not defined in this paper the reader is

referred to any standard texts, such as [5] and [8],

1.1.   Definitions,   (i)  Let A be a finitely generated algebraic structure, with

generators x,, • • • , x .   The word problem for A is the decision problem for for-

mulas of the form w j = w 2  in A, where w y w 2 vary over words in X.» ••• » x .

(ii)  Let T be an algebraic theory.   We shall say that the restricted word

problem for T is undecidable if there are words r{, s., i = 1, • • • , k. in the vari-

ables x,, • • • , x    such that the decision problem for formulas of the form
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172 L. LIPSHITZ

is undecidable in T, where r and s vary over words in x j, « • • , x .

(iii)  If jR is a class of algebraic structures then by the restricted word prob-

lem for  3!   we mean the restricted word problem for Th 010 , the theory of 31Î.

Notice that if the class of models of T is closed under substructures and

the formation of products then the undecidability of the restricted word problem

for T implies that there is a finitely presented model of T with undecidable word

problem.

2. In this section we describe the von Neumann coordinatization theorem.

A good reference for the proof of this theorem is [10, pp. 93—209]. We shall use

U  and H to denote the lattice operations of join and meet.

2.1. Definitions, (a) A lattice L is (i) modular if it satisfies the partial

distributive law

c C\ia u b) = a u (c D b)    whenever a C c,

and (ii) complemented if it contains a least element 0, a greatest element 1 and

for all x there exists a y such that x n y = 0 and x u y = 1.

(b) If L is a lattice and a, b £ L (a C b) then Lia, b) denotes the sublat-

tice of all x £ L with a C x C b.   Notice that Lia, b) has least element a and

greatest element b.

(c) A set of nonzero elements \a.: i = 1, • • • , n\ C L is independent if, for

any subset /C ¡1, • •• , tz!, U¿e, a. n \J ¿t a . = 0.

(d) A normalized frame of order n in a complemented modular lattice L is

a set a¿, i = 1, • • • , n; c.., i, j «• 1, ••• , s, i >í / such that:

(i)  the a. are independent and U"_j a. = 1;

(ii) c.. = Cji;

(iii) a. U a. = a . U cfy = a. U cy. Vz, /,  i 4 j;

(iv)  (c.. U c.j) H (af U a¡) = c..  tot any distinct triple i, j, k.

If L has a normalized frame of order n, L is said to have homogeneous

order n.  It L has a normalized frame a., c.. we define L.. = {xeL:xOa.= 0

and x U a . = a . U a .}.

(e) If b £ L.., d £ L..  we define b ® d = (è u a") O (a . U a. ).

ii) If L has a normalized frame a., c. then an L-number B = ib..) is an

array b.., i, j - 1, • • • , n,  i 4= j such that:

(i)  b{. £ L..;

(")  ^bk~^i'^b ft    iot any 2 distinct pairs   i, j    and h, k, where Pi'h ^)

is a projective isomorphism of («¿ U a.) —» (a¿ U afe) defined via the axes of
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PROJECTIVE GEOMETRIES AND MODULAR LATTICES 173

perspectivity c .,  and c...   For the definition and properties of the P('h J,) see

[10, pp. 117—129].  Since we shall give a different definition of L-numbers we

shall not describe the  P(lh k).

(g)  Multiplication of L-numbers B = (b.) and D = (d..) is defined as follows.

BD" (f..) where /.. = 6¿, ® a"fe..   This definition is independent of k 4 i, j, and

BD is an L-number.  We shall verify this later after we have given an alternative

definition of L-numbers (see Lemma 2.6).   Addition of L-numbers B = (b.) and

D = (d.) is defined by B + D = ig.) where
l] ' ^ZJ

g.. = [\ib.. u c.k) n (a. u ak)\ u \id.. u ak) n (a. u c.Jll n (a. u a.).

This also is independent of k and is an L-number; see [10, pp. 136—147].  We

shall not use this definition in the following.

(h) A ring R is called regular (in the sense of von Neumann) if it satisfies

the condition Vx3y(xyx = x).

(i)   If S is a ring then M (S) is the ring of ti x' tí matrices over S.

Let L be a complemented modular lattice of homogeneous order n> A

with a normalized frame a., c...   Let S be the set of L-numbers with respect to

this frame, with addition and multiplication defined as above, and with 0 the L-

number (0..) = (a .) and  1 the L-number 1.. = c ...   Then
22 2 2J IJ

2.2. Theorem (von Neumann [10, p. 157]).   The set S with + , x, 0, 1 de-

fined as above is a regular ring.   M ÍS) is also a regular ring.

2.3. Theorem (von Neumann [10, pp. 104, 108, 208]).   L is isomorphic with

the lattice of principal right ideals of M  (s), and this correspondence between

the lattice L and the ring M iS) is unique.

Notice that the statement "a., c.. is a normalized frame" is an open lattice

relation amone the a., c.. (0 = D" . a. and 1 = U" , a.).  If B, D, E ate L-
° 2 2/ Z = l       2 w2 =1       2

numbers then the statement B . D= E is an open lattice relation among the b..,

a\j, e.. and the a. and c...   Our first aim is to give a different definition of L-

numbers from (f ) above, so that the statement that B = ib..) is an L-number is an

open relation among the b ... a. and c ...

2.A.  Lemma.   Let b.. £ L.. for i, / = 1, • • •, n, i 4 f.  Then B = ib..) is an

L-number if and only if B • 1 = B = 1 • B; i.e.

(1) hij-hik®ckj    and   bij=cik®bkj

for all distinct triples i, j, k.
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174 L. LIPSHITZ

Proof.   If B is an L-number then, by Theorem 2.2, B • 1 = 1 • B = B.   Con-

versely suppose that B • 1 = 1 • B = B.   Then

b..=ib..{jc..)n{a.\jaí)=b..P{ )

by the definition of P(\ >).  (See [10, p. 117].) Similarly,

bh. = b..PC    J\*'       "   U    j)

If follows now that bbk = b..Pi}h £) since Pi[ [) = Pi\ £)P(£ *).   (See [10, p.

1171) Hence B is an L-number.

We can now make the new

2.5. Definition.   Let L have normalized frame a, c..; then B = ib.) is an

L-number if   (i)  b .. £ L .., and (ii)  formulas (1) above hold for all distinct triples

», /', k.

Notice that the statement that B is an L-number is an open relation among

the a, c.. and the b...
r    ij z;

In order that our results should extend to (not necessarily complemented)

modular lattices we need the following:

2.6. Lemma.   Ler L be a modular lattice with least element 0, greatest ele-

ment  1  and normalized frame a., c-
' i     if

(a) (i)  // b.. £ L.., d., £ L.,   ii, j, k distinct) then  b.. ®a\, £ L...   (ii) ®
ZJ ZJ JK J rZ ZJ Jk Z/Z

is associative.

(b) // B = ib.), D = id.) are L-numbers according to Definition 2.5 and if

i, j, h, k are distinct then b., ® a*. . = b., ® d, ., i.e. multiplication of L-numbers

is well defined in any modular lattice with a normalized frame.

(c) // B, D, E are L-numbers then B - D = E holds if and only if b.. ® d.,
IJ Jit

— e.,   holds for some distinct triple  it j, k.

Proof,   (a) (i) We must show that {b.. ® d.,) O a. = 0 and that (b .. ® d.,)
zj jk k zj jk,

U a* = a. U a,,
rt i k

ib.. ® d.,) n a, = ib.. U d.,) D (a. U a,) n a,
IJ Jfc R IJ jk l k k

= ibij.vd.k)nakCak

C ib.. u d.k) O (a. u afe)

= [b,. C\ia.(j a,)] Dd.,    since d., C a. u a,.
7J J « J« jk ] k

Since iz\,r>a,=0 it is sufficient to show that b .. O (a .U a J = 0.
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PROJ ECTIVE GEOMETRI ES AND MODULAR LATTICES 175

b.. n(a. Uafc)C (b.. U a.) n(a. u a^)

= (a. u a.) n(a. u a.) = a..
2/ 2*7

Since a. n i».. = 0, we have è .. O (a. u a, ) = 0.  Next consider
7        '7 27 7        *

(èi;. ® rf/fc) U«t= [(*,, U d.k) O (a. u aA)] U a¿

= (6..ua"..   ua)n(a.ua)
ljJK.fi Ik.

= (br U «• U «fc) O (a¿ u afe)

= (flj. u «. U afc) n (af U afc)

= («¿ U aA).

This completes the proof of (i).

(ii) We must show that if b.. £ L{., d.k £ L.k and ek¡ £ Lk¡ then (b{. ® d.k)

(*.. ® a^) ® ek¡ = }[(è.. u rf/Jk) n («. U «,)] U e,,} n (a. U «,)

= {[(&.. U ¿fc) n (a. U a¿ u api U e?AZ} n(a; U a;)

= (b.. U a".. u<?, .) n(a. u«. Us.) n(a. Ua.)
27 JK ZC7 2 ft 2 2 2

= (bijöd.kuekl)n(a. u«;).

By symmetry we also have è.. ® (¿.^ ® ek¡) = (b .. U a" „ U efe/) D (a; U a;) and

this completes the proof of (ii).

= [èl7®(c.,®cj]®z/é.

= bih®dh,

(c) Suppose that b.. ® a"., = e.,.  Then

¿. .®a\, = (l..®¿..)«(*".L® 1 ,)
*7 ;« 02 2; j* fe/

= 1,. «(*..«</..) 01.
hi i] jk kl

= 1. . ® c      ®1      =f?
OZ 2« */ ¿/

We have already seen in (a) that this is independent of /.
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176 L. LIPSHITZ

3.  The undecidability results.   In order to apply the above to get the undecid-

ability of the restricted word problem for modular lattices we need to know that

any countable semigroup can be obtained as a subsemigroup of the multiplicative

semigroup S, of L-numbers of a suitable modular lattice L with fixed homogen-

eous order n > 4.

Let V be an infinite dimensional vector space (over Q say) with algebraic

basis \e.: i £ Ni = E.   Let L be the lattice of all subspaces of V.  It is well

known that L is a complemented modular lattice.   Let R be the ring of all linear

transformations of V.   Then

3.1.   Lemma,  (i)  R is a regular ring and any countable semigroup is a sub-

semigroup of R.   (ii)  There is a normalized frame of order 4 in L.   (¡ii)  // S is

the ring of L-numbers relative to this frame then the multiplicative semigroup of

R is a subsemigroup of S.

Proof,   (i)  Let M £ R.  Let N £ R such that for all x £ Range (M), Nix) £

M     (x).  It is clear that such N exist.   Then MNM = M, so R is regular.

Let C be a countable semigroup.  Without loss of generality we may assume

C has an identity, since if not C can be extended to a semigroup with identity.

Then the right regular representation faithfully represents C as a semigroup of

endomorphisms of the set C, by C 3 x —» right multiplication by x.  We can now

take any 1-1 mapping of C onto E, and represent C in the ring of endomorphisms

of V.

(ii) Let Aa, a = 1, ..., 4, be the subspace of V generated by Ea = \ea :

i £ N j. Let Ra be the ring of endomorphisms of Aa. Then since Va ~ V, Ra ~

R. Also V =©a=i ^o- Let Caß (a jí ß) be the subspace of V generated by

^aß = ^efi+4 • - ea+4 -: z' e N|. Then the Aa, Caß form a normalized frame of order

4 in L. This is obvious, except perhaps for the equation Caß ® Ca = Ca ,

which is easily verified as follows, where [p] denotes the subspace of V gener-

ated by F C V.

Caß®Cßy = icaßucßy)niAauAy)

= ^/3+4,--ea+4I-:¿eN^ler+4i->4i:¿eN1]n(/laU'4y)

= B*y+4< - ea+4,: ' £ N! «J K+4i + ey+4i " 2e/3+4/: ¿ £ NI] n (4aU V

<Cy« U [i<?a+4, + ey+4i " 2°ß«fl ° (\U V

= c   = c   .
■ya        ay

Let (f>aß- Aa —» Aß be defined by <p(ea+4¿) = <?«+4i-   Let r e Ry and let [r] be

the substace of V generated by Er12 = }«?j   .. - <p12 ° r(ex   ..): i £ NI.   Then
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PROJECTIVE GEOMETRIES AND MODULAR LATTICES 177

certainly [r] £ Ll2.   Extend [r] to the L-number (r) by defining (r)„ = Cn ® [r]

® C- . etc.  We claim that the mapping r —» (r) is an embedding of the multiplica-

tive semigroup of RcaR^ into S.  Clearly if r 4 s then [r] 4 [s] and so (r) 4 (s).

We must show that (r)(s) = (rs).   Notice that it is sufficient to show that (r)12  ®

(s)2, = Crs)      in the light of part (c) of Lemma 2.6.   First we show that for any

t eRj

(2)  (t)ar\iea^.-<f>lß0t(el+J:iem].

= B*l+4,- - ea+42' ei+42 - ¿12 ° Kei+4P' e/3+4¿ " e2+4¿: '" £ M ° <<*aU V

(as in the proof of (a)(ii) of Lemma 2.6)

20^+4,-¿12°í(ei+4,)'^+4z-e2+4z:¿eN!]n('4aUV

2ßea+4,--^12o/(el+4,)'

<plßoto<Pßl(eß+ii) - <plao t o <P2l(e2+4): i e N¡] n(AaU Aß)

^•^tW^n^iJ' ieN|ln04auÂ/s)

2 £K+42 - ¿1/3 ° <K+4P : ¿ e Nüe V

(2) now follows from the easy  observation that if b, b   £ L .. and b C b' then b

= b'. So

W12 ®U)23 = De1+4f-^12 o Aeu4), e2^.-<pn o-U^I 2 £ NJ] n(Aj U A?)

¿120r0¿21(e2+4,)-¿130r0¿31°¿130s(el+42):i'eN|]n('4lU/l3)

= B*l+4/-¿l2orK+4<)'¿l20r(el+4p-¿13o(w)K+4P! ¿ e Nil n(A, U A})

2[K+42-¿13°(-)(el+42):¿eN»

-ir*),,.

Hence (r)12 ® (sL^ = («),3 by the above observation and this completes the

proof.

Now let S   be a finitely presented semigroup with unsolvable word problem

(see Davis [l]).  Let S' have generators x., « • •, x   and relations rv = sv, u =

1, •.., k.   Let iff be the conjunction of the following open formulas in the lan-

guage of lattices
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178 L. LIPSHITZ

(i)   a., c, z, 7 = 1, • • •, 4, i ¿ j, form a normalized frame in L(í l.^j a¿, U¿a¡1 a¿)

= L', '

(ii) x'¿, i, j = 1, • • • , 4, » i" /, a = 1, • • • , n, are L -numbers relative to this

frame,

(iii) rw(4)-sy0rg), »/-I, ...,*.
Notice that each equation in (iii) is actually a set of 12 equations, but in the

light of Lemma 2.6(c), the truth of all of these equations follow from any one of

them, so we may regard each of these equations to be just one equation.  Similarly

for any words r and s we shall let rix'¿)= six'¿) denote any one of the possible

(equivalent) equations.

If (p is the open formula Av=l rv= sv —»r= s in the language of semigroups,

let cS* be the open formula t/f —* rix'¿) = six'¿) in the language of lattices.  It

follows immediately from Lemma 3.1 that (p is true in the theory of semigroups if

and only if (p* is true in the theory of (complemented) modular lattices.  Hence

we have

3.2. Theorem.   The restricted word problem for the theory of icomplemented)

modular lattices is undecidable.

3.3. Corollary.   There exists a finitely presented modular lattice with unde-

cidable word problem.

3.4. Remark. It follows that the restricted word problem for modular lattices

is different from the restricted word problem for finite modular lattices and hence

that there is a finitely presented modular lattice which is not residually finite.

Next we shall prove that the restricted word problems for finite-dimensional

projective geometries and for finite modular lattices are undecidable.  To do this

we shall use the result of Gurevic [3l that the restricted word problem for finite

semigroups is undecidable, instead of the Post result on the word problem for

semigroups.

A projective geometry is an irreducible, complemented modular lattice.   The

dimension of a projective geometry is the cardinality of a maximal set of indepen-

dent (nonzero) elements.   (Often the dimension is taken to be 1 less than this

number.) It is well known that corresponding to any «-dimensional projective

geometry P, with n > 3, is a division ring -ß such that P is isomorphic with the

lattice of subspaces of V (J))—the 72-dimensional right vector space over D.   For

a modern treatment of this and other elementary results about projective geome-

tries see Hartshorne [4].  We shall denote this geometry by P CD).   It is also well

known that P CD) is isomorphic with the lattice of (principal) right ideals of the

regular ring M CD).   (See [10, p. 90].)
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The proof of Lemma 3.1 shows that P4 CD) has homogeneous order 4.   Con-

sequently if we fix a normalized frame of order 4 in  P4„CD), and if S is the cor-

responding ring of P4nCD)-numbers then M^iS) ^ M4nCD).  From this it follows

that S at M CD).
77

We also remark that if H is a semigroup of cardinality n then the right

regular representation, as in the proof of Lemma 3-1, shows that H is a subsemi-

group of the multiplicative semigroup of M     j(F), for any field F.

Let T be the open theory of finite semigroups and let Tp denote the open

theory of the multiplicative semigroups M (F), n £ N.

3.5. Lemma.   For any field F,  T m Tp.

Proof.  We have just remarked that T C_ Tp.  Now if F is finite then cer-

tainly Tp Ç T, and thus  T m Tp.   Let Fp denote the prime field of character-

istic p, and let F    denote the algebraic closure of Fp.   Then F    is the union

of finite fields so each M  (F. ) is the union of finite semigroups.  Hence if an

open formula çS is refutable in MniF.) then it is refutable in MniF) lot some

finite F.  Hence T ■ Tp .   From the completeness of the theory of algebraically

closed fields of characteristic p   we have that if F is an algebraically closed

field of characteristic p then M (p) m M (F. ).   The lemma then follows for fields
1 7i n     p

of characteristic p from the observations that if FyC F2 then Tp   C Tp    and

that any field is contained in an algebraically closed field.   To extend this proof

to fields of characteristic zero we need only observe that if çS is refutable in

M^iQ) then by the compactness theorem (f> is refutable in M (F ) for large

enough p.

We can repeat the above construction of <f>* using the result of Gurevic in-

stead of Post.   Observe that 4>* is true in P (p) if and only if çS is true in

MkÍF) tot all k < [b/4], and hence that <p* is true in the class of finite-dimen-

sional projective geometries over F if and only if <p is true in the class of fi-

nite semigroups.   Hence we have

3.6. Theorem.   The restricted word problem for finite-dimensional projec-

tive geometries over any class of fields is undecidable.

3.7. Corollary.   The restricted word problem for finite projective geometries

is undecidable,

3.8. Remarks.   Notice that if T is a decidable theory of fields then the

theory of the rings [M^iF): F 1= T\ fot fixed n is decidable and hence the theory

of the geometries i P„iF): F F= T| is decidable.   It follows easily from the meth-

ods of Scott [7] that for a decidable theory of fields,  T, the theory of the
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geometries \Pn(F): n e N, F Is T\ with variables constrained to vary over sub-

objects of dimension < N fot fixed N, is decidable.

3.9. Theorem.   The restricted word problem for finite (complemented) modular

lattices is undecidable.

Proof.   We know that relative to a normalized frame in any modular lattice L,

L-number multiplication is a well-defined semigroup operation.   If L is finite

this semigroup is certainly  finite and, conversely, we have seen that any finite semi-

group is a subsemigroup of M (F2) tot large enough 72 and that P (F2) is cer-

tainly a finite modular lattice.

3.10. Corollary.   The theory of finite commutative idempotent semigroups is

undecidable.

Proof.   Any finite lattice becomes such a semigroup under the operation a • b

= a O b.   The lattice structure can be recovered from the semigroup structure

since a C b if and only if a • b = (a n b) = a.

Added in proof.   It has been brought to my attention (July 1973) that a proof

of the undecidability of the word problem for modular lattices has also been

given by George Hutchinson, Recursively unsolvable word problems of modular

lattices and diagram-chasing, J. Algebra (to appear).
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