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The Undecimated Wavelet Decomposition
and its Reconstruction
Jean-Luc Starck, Jalal Fadili, and Fionn Murtagh

Abstract—This paper describes the undecimated wavelet trans-
form and its reconstruction. In the first part, we show the relation
between two well known undecimated wavelet transforms, the
standard undecimated wavelet transform and the isotropic un-
decimated wavelet transform. Then we present new filter banks
specially designed for undecimated wavelet decompositions which
have some useful properties such as being robust to ringing arti-
facts which appear generally in wavelet-based denoising methods.
A range of examples illustrates the results.

Index Terms—Denoising, multiresolution, multiscale decompo-
sition, restoration, wavelet.

I. INTRODUCTION

M
ULTISCALE methods have become very popular in the

last couple of decades, especially with the development

of wavelets. Background texts on the wavelet transform include

[1]–[5]. The most widely used wavelet transform (WT) algo-

rithm is certainly the decimated bi-orthogonal wavelet trans-

form (DWT) which is used in JPEG2000. While the bi-orthog-

onal wavelet transform has led to successful implementation in

image compression, results were far from optimal for other ap-

plications such as filtering, deconvolution, detection, or more

generally, analysis of data. This is mainly due to the loss of the

translation-invariance property in the DWT, leading to a large

number of artifacts when an image is reconstructed after modi-

fication of its wavelet coefficients.

For this reason, some physicists and astronomers have pre-

ferred to continue working with the continuous wavelet trans-

form [6], [7], even if the price to pay is 1) a great amount of re-

dundancy in the transformation (i.e., there are many more pixels

in the transformed data than in the input image) and 2) perfect

reconstruction is not possible (i.e., an image cannot be recon-

structed from its coefficients). For some applications like fractal

analysis, these drawbacks have no impact because there is no

need to apply a reconstruction and computers can support the

redundancy.

For other applications where a reconstruction is needed, some

researchers have chosen an intermediate approach, which con-

sists of keeping the filter bank construction with fast and dyadic
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algorithms, but eliminating the decimation step in the orthog-

onal wavelet transform [8], [9]. In Starck et al. [10], it was

shown that thresholding using an undecimated transform rather

than a decimated one can improve the result by more than 2.5

dB in denoising applications. The undecimated decomposition

is computed by using the same filter bank as in the standard deci-

mated bi-orthogonal wavelet transform and it leads to a three-di-

rectional analysis (horizontal, vertical, diagonal). Each band has

the same size as the original image.

Because astronomical images contain mostly isotropic

sources (stars, galaxies, etc.), astronomers prefer generally

to use another transform, the Isotropic Undecimated Wavelet

Transform (IUWT) [11]. Such isotropic image content also

typifies many classes of images in biology. The IUWT also

uses a filter bank but its filters do not verify the dealiasing

condition, and decimation cannot be applied.

These two undecimated multiscale methods (i.e., the general

undecimated wavelet transform to be discussed in Section II-A

below as the UWT, and the IUWT) are very powerful for

image restoration but, as with any other wavelet decomposition,

present the drawback of creating ringing artifacts around sin-

gularities or edges. This has motivated the recent development

of iterative techniques combining at the same time a multiscale

method and a penalization term such as the Total Variation

(TV) [12]–[14] or the norm of coefficients in the wavelet or

curvelet decomposition [15].

Even if the wavelet frame theory and oversampled filter banks

are well understood [3], [16]–[18], relatively few studies have

been dedicated to the development of oversampled filter banks

[19], [16].

This Paper

We show that the redundancy of the decomposition can be

used for designing new filter banks. As a consequence, we are

able to build a filter bank such that the filters and used in the

reconstruction are both positive, which makes the reconstruc-

tion very robust to the ringing artifact problem. The decompo-

sition is done using wavelets and the reconstruction using only

scaling functions. This aspect can be very important in some ap-

plications such as edge detection.

Section II introduces the undecimated wavelet transform and

establishes the relation between the UWT and the IUWT. New

filter banks are discussed Section III. In Section IV, we show

that the reconstruction from the thresholded nonsubsampled

coefficients is not straightforward and we discuss an iterative

scheme which gives better reconstruction results than just a

simple direct synthesis. A range of experiments illustrates the

results in Section V.

1057-7149/$25.00 © 2007 IEEE
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Notation

For a real discrete-time filter whose impulse response is ,

is its time-reversed version. The hat

notation will be used for the Fourier transform of square-inte-

grable signals. For a filter , its -transform is written .

The convolution product of two signals in will be written

. For the octave band nonsubsampled wavelet representation,

analysis (respectively, synthesis) filters are denoted and (re-

spectively, and ). The scaling and wavelet functions using for

the analysis (respectively, synthesis) are denoted (

) and (

) (respectively, and ).

We also define the scaled dilated and translated version of at

scale and position as , and sim-

ilarly for , and .

II. UNDECIMATED WAVELET TRANSFORM

A. Two-Dimensional Standard Undecimated Wavelet

Transform

The undecimated wavelet transform (UWT) using

the filter bank of a 1-D signal leads to a set

where are the wavelet coeffi-

cients at scale and are the coefficients at the coarsest

resolution. The passage from one resolution to the next one is

obtained using the “à trous” algorithm [9], [20]

(1)

where if is an integer and 0, otherwise. For

example, we have

The reconstruction is obtained by

(2)

The filter bank needs only to verify the exact recon-

struction condition

(3)

This provides us with a higher degree of freedom when de-

signing the synthesis prototype filter bank.

The à trous algorithm can be extended to 2-D by

(4)

where is the convolution of by the separable filter

(i.e., convolution first along the columns by and then convolu-

tion along the rows by ). At each scale, we have three wavelet

images, , and each has the same size as the original

image. The redundancy factor is, therefore, [3].

B. Two-Dimensional Isotropic Undecimated Wavelet

Transform

The IUWT algorithm is well known in the astronomical do-

main, because it is well adapted to astronomical data where ob-

jects are more or less isotropic in most cases [11]. Requirements

for a good analysis of such data are as follows.

• Filters must be symmetric ( , and ).

• In 2-D or a higher dimension, must be nearly

isotropic.

Filters do not need to be orthogonal or bi-orthogonal and this

lack of the need for orthogonality or bi-orthogonality is bene-

ficial for design freedom. For computational reasons, we also

prefer to have the separability; . Separability

is not a required condition, but it allows us to have a fast calcu-

lation, which is important for a large data set.

This has motivated the following choice for the analysis

scaling and wavelet functions [11]:

(5)

where is the spline of order 3, and the wavelet function is

defined as the difference between two resolutions. The related

filters and are defined by

(6)

where is defined as and for all

different from (0, 0).

The following useful properties characterize any pair of even-

symmetric analysis FIR (finite impulse response) filters

such as those of (6).

1) Property 1: For any pair of even symmetric filters and

such that , the following holds.

1) This FIR filter bank implements a frame decomposition,

and perfect reconstruction using FIR filters is possible.

2) The above filters do not implement a tight frame decom-

position.

Proof: For the filter bank (6), the -transforms and

have no zeros in common. Thus, statement 1) follows

directly from [16, Theorem 1 and Proposition 3]. The second

part of 1) can be alternatively obtained by the Bezout theorem

for polynomials. Statement 2) is due to the obvious fact that
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even-symmetric and cannot be power comple-

mentary. For an analysis filter bank and to be power-com-

plementary, it must satisfy

(7)

As was set to have unit average and , is necessarily

1 for the above relation to hold at . Furthermore, for real

even-symmetric filter , its Fourier transform is also real and

even symmetric. Thus, the left hand side of the above relation

can be rewritten

(8)

Hence, for (7) to hold, is the only trivial solution. Then,

applying [16, Theorem 2], the result follows.

From the structure of , it is easily seen that the wavelet co-

efficients are obtained just by taking the difference between two

resolutions

(9)

where . At each scale , we

obtain one set (and not three as in the undecimated WT,

denoted UWT above) which has the same number of pixels as

the input image.

The reconstruction is obtained by a simple co-addition of all

wavelet scales and the final smoothed array, namely

(10)

That is, the synthesis filters are and , which are

indeed FIR as expected from Property 1(i). This wavelet trans-

formation is very well adapted to the analysis of images which

contain isotropic objects such as in astronomy [11] or in biology

[21]. This construction has a close relation to the Laplacian

pyramidal construction introduced by Burt and Adelson [22] or

the FFT-based pyramidal wavelet transform [4]

C. Relation Between the UWT and the IUWT

Equivalence between the UWT and Mallat’s “à trous” algo-

rithm has been previously reported by Shensa [20]. However, to

the best of our knowledge, there is no work that has yet shed

light on the relation between the UWT and the IUWT.

Since the dealiasing filter bank condition is not required any-

more in the UWT decomposition, we can build the standard

three-directional undecimated filter bank using the non-(bi-)or-

thogonal “Astro” filter bank ( ,

and ). In two

dimensions, this filter bank leads to a wavelet decomposition

with three orientations at each scale , but with the

same property as for the IUWT, i.e., the sum of all scales repro-

duces the original image

(11)

Indeed, a straightforward calculation immediately shows that

(12)

Therefore, the sum of the three directions reproduces the IUWT

detail band at scale . Fig. 1 shows the UWT of the galaxy

NGC2997. When we add the three directional wavelet bands

at a given scale, we recover exactly the isotropic undecimated

scale. When we add all bands, we recover exactly the original

image. The relation between the two undecimated decomposi-

tions is clear.

III. DESIGNING NEW FILTER BANKS

A. A Surprising Result

Because the decomposition is nonsubsampled, there are many

ways to reconstruct the original image from its wavelet trans-

form. For a given filter bank , any filter bank which

satisfies the reconstruction condition of (3) leads to exact recon-

struction. For instance, for isotropic , if we choose (the

synthesis scaling function ) we obtain a filter defined by

Again, as expected from Property 1, the analysis filter bank

implements a (nontight) frame decomposi-

tion for FIR symmetric , where and are

also FIR filters. For instance, if , then

. is positive. This means that is no

longer related to a wavelet function. The synthesis scaling func-

tion related to is defined by

(13)

Finally, note that choosing , any synthesis function

which satisfies

(14)

leads to an exact reconstruction [3] and can take any value.

The synthesis function does not need to verify the admissi-

bility condition (i.e., to have a zero mean).

Fig. 2 shows the two scaling functions ( ) and

used in the reconstruction in 1-D, corresponding to the synthesis

filters and . Fig. 3 shows the backprojection

of a wavelet coefficient in 2-D (all wavelet coefficients are set

to zero, except one), when the nonzero coefficient belongs to

different bands. We can see that the reconstruction functions are

positive.

Finally, we have an expansion of a 1-D signal

(15)

where and are not wavelet functions (both of them have a

nonzero mean and are positive), but the are wavelet coeffi-

cients.
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Fig. 1. UWT of the galaxy NGC2997 using the Astro filter bank. The addition of three bands at a given scale is exactly the band related to the isotropic wavelet
transform. Addition of all bands reproduces exactly the original image.

Fig. 2. Left: ~� synthesis scaling function. Right: ~ detail synthesis function.

B. Reconstruction From the Haar Undecimated Coefficients

The Haar filters ( , )

are not considered good filters because of their lack of regu-

larity. They are, however, very useful in many situations such

as denoising where their simplicity allows us to derive analyt-

ical or semi-analytical detection levels even when the noise does

not follow a Gaussian distribution. To our knowledge, there is no

real alternative to the Haar filters for Poisson noise, even if they

are known to produce block artifacts in the reconstruction after

thresholding. Recent papers using the Haar filters for Poisson

noise are [23]–[29]. The Haar transform has also close relations

with the Total Variation norm (TV) [30], and it has been shown

that, for 1-D denoising, the undecimated Haar soft thresholding

produces similar results to the TV norm regularization [30].

Adopting the same design approach as before, we can re-

construct a signal from its Haar wavelet coefficients choosing a

smooth scaling function. For instance, if ,

it is easy to see that the transforms of these three filters are,

respectively

(16)

From the exact reconstruction condition in (3), we obtain

(17)
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Fig. 3. Back projection: Each image corresponds to the backprojection of one wavelet coefficient. All of these reconstructed images are positive (no negative
values). From left to right, the coefficient belongs to the vertical, horizontal, and diagonal direction. From top to bottom, the scale index increases.

In the case of the spline filter bank, this yields after some re-ar-

rangement (where we used simple convolution properties of

splines)

(18)

which is the -transform of the corresponding filter

.

The Haar analysis filters fulfill the following property.

1) Property 2: Haar analysis filters implement a tight frame

expansion. Perfect reconstruction with FIR synthesis filters is

possible.

Proof: Proof of the second statement is obviously the same

as in Property 1.

Haar analysis filters have no zeros in common and are power

complementary. Therefore, the first statement is a consequence

of [16, Theorem 2]. An alternative way to prove this result is to

show the existence of the tight frame bounds in the same way

as in [31].

Fig. 4, upper left and right, shows the coarsest scale and a

wavelet scale of the Haar transform when the input signal con-

tains only zero values except one sample (Dirac). Fig. 4, bottom

left, shows the backprojection of a Dirac at the coarsest scale (all

coefficients are set to zero) and Fig. 4, bottom right, shows the

backprojection of a Haar wavelet coefficient. Since the synthesis

filters are regular, the backprojection of a Dirac does not produce

any block artifact. Finally, we would like to point out that other

alternatives exist. For example the filter bank ,

, and

leads also to an interesting solution where the synthesis filters

are both positive.

C. Another Interesting Filter Bank

A particular case is obtained when and

, which leads to a filter equal to

. In this case, the synthesis function is defined by

and the filter is the solution to

(3). We end up with a synthesis scheme where only the smooth

part is convolved during the reconstruction. Furthermore, for

a symmetric FIR filter , it can be easily shown that this filter

bank fulfills the statements of Property 1.

Deriving from a spline scaling function, for instance

( ) or ( )

(note that ), since is even-symmetric (i.e.,
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Fig. 4. Haar Undecimated Transform. Upper left: Coarsest scale when the signal contains only one sample (a Dirac). Upper right: One wavelet scale of the Dirac
decomposition. Bottom left: Backprojection of a Dirac at the coarsest scale. Bottom right: Backprojection of a Haar wavelet coefficient.

Fig. 5. Left: � analysis scaling function. Right:  analysis wavelet function. The synthesis functions ~� and ~ are the same as those in Fig. 2.

), the -transform of is (19), shown at

the bottom of the page, which is the -transform of the filter

. We get

the following filter bank:

(20)

(21)

With this filter bank, there is a no convolution with the filter

during the reconstruction. Only the low-pass synthesis filter

is used. The reconstruction formula is

(22)

and denoting and , we have

(23)

Each wavelet scale is convolved with a low-pass filter.

Fig. 5 shows the analysis scaling and wavelet functions. The

synthesis functions and are the same as those in Fig. 2. We

will see in the experimental section that such filters are much

more robust to the ringing artifact than classical filters.

IV. ITERATIVE RECONSTRUCTION

Denoting the undecimated wavelet transform operator and

the reconstruction operator, and thanks to the exact recon-

struction formulae, we have the relation: , where

is an image and its wavelet coefficients (i.e., ),

but we lose one fundamental property of the (bi-)orthogonal

(19)
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WT. Indeed, the relation is not true for all sets. For

example, if we set all wavelet coefficients to zero except one at

a coarse scale, there is no image such that its UWT would pro-

duce a Dirac at a coarse scale. Another way to understand this

point is to consider the Fourier domain of a given undecimated

scale. Indeed, wavelet coefficients at scale obtained using

the wavelet transform operator will contain information only lo-

calised at a given frequency band, but any modification of the

coefficients at this scale, such as a thresholding ( ,

where is the thresholding operator with threshold and

are the thresholded coefficients), will introduce some frequency

components which should not exist at this scale , and we have

.

A. Reconstruction From a Subset of Coefficients

If only a subset of coefficients (for instance after thresh-

olding) is different from zero, we would like to reconstruct

an image such that its wavelet transform reproduces the

nonzero wavelet coefficients. This can be seen as an inverse

problem. We want to solve the following optimization problem

where is the multiresolution

support of , i.e., if the wavelet coefficient at

scale and at position is different from zero, and

otherwise. A solution can be obtained using the Landweber

iterative scheme [4], [32]

(24)

If the solution is known to be positive, the positivity constraint

can be introduced using the following equation:

(25)

where is the projection on the cone of nonnegative images.

For denoising applications, additive constraints such as the

TV or the norm can be added as well.

B. Equivalence With Alternating Projection

The alternating projection method [33] is a known technique

for consistent reconstruction with frames, frame design and

more generally for inverse eigenvalue problems (see survey

in [34]). As stated above, in our setting, we are seeking a

consistent reconstruction, that is the reconstructed image must

satisfy some structural constraints (multiresolution support and

positivity). The closure of the reconstruction set of can be

represented as the intersection of the following sets.

• is the range of the wavelet transform:

.

• is determined by the requirement that the elements of

must reproduce the coefficients of interest (i.e.,

or ).

• is the set of all such that the corresponding recon-

structed image is positive valued.

The alternating projection algorithm starts from an initial esti-

mate , and then alternately projects onto the sets , and

, and it repeats the process ad infinitum. is a subspace of

, the sets and are obviously nonempty closed convex

sets. The alternating projections in this case is equivalent to the

method of projection onto convex sets (POCS) [35]. By stan-

dard convergence results about cyclic projections, the algorithm

is supposed to converge (here in a strong sense) to a point in the

intersection of the above sets.

The projector onto the range of the wavelet transform is

. The projection of some onto is obtained by

if

otherwise.
(26)

The projection of some in a Hilbert space onto is given by

(27)

One can easily verify that these two operators are idempotent

(projectors). Applying one iteration of alternating projections

to some at iteration yields a solution at

(28)

where is the identity matrix of the same size as . Finally,

applying the synthesis operator to both sides, rearranging the

terms inside the brackets and recalling that by definition of the

(weak generalized) left inverse , one can easily see

that this equation is exactly the same as the one of the iterative

scheme in (25).

It is worth pointing out that convergence properties of this

iterative reconstruction scheme are influenced by the choice

of the analysis/reconstruction filter bank. Therefore, they

should be designed cautiously. Authors in [19] have also

observed this problem. However, this does not mean that the

iterative algorithm will not converge with left inverses other

than the Moore–Penrose pseudo-inverse (i.e., synthesis frame

minimal dual of the analysis frame). The design of general

synthesis filters which would guarantee convergence of the

POCS-based reconstruction algorithm in the case where is

not the Moore-Penrose inverse of is still an open question.

Actually, with our experiments, we observed that the algorithm

always converged and gave very good results.

V. EXPERIMENTS

A. Nonlinear Approximation With an Undecimated Transform

In order to compare how well an UWT is able to represent an

image, we can plot the nonlinear approximation curve. Since we

are considering here undecimated decompositions, we plot the

error as a function of the threshold level rather than the number

of coefficients.

1) Lena Image: Fig. 6 shows such curves for a threshold

varying from 0 to 30 and with different filter banks on the Lena

image. From top to bottom, we see:

1) the undecimated WT using the nonorthogonal filter banks

of (21), with direct reconstruction;

2) the standard decimated bi-orthogonal wavelet transform

with the 7/9 filters [36];

3) the UWT (7/9 filters) with direct reconstruction;

4) the UWT using the nonorthogonal filter banks and an iter-

ative reconstruction;

5) the UWT (7/9 filters) with an iterative reconstruction.
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Fig. 6. Nonlinear approximation: Mean Square Error versus the threshold level with a bi-orthogonal DWT, the UWT (7/9 filters), the UWT using the nonorthog-
onal filter banks and an iterative reconstruction, and the UWT (7/9 filters) with an iterative reconstruction.

Fig. 7. Left: Truncated Gaussian. Right: One row of the left image.

From these curves, we conclude the following.

• Without iterative reconstruction, the nonorthogonal filter

bank produces very poor results, even worse than the dec-

imated bi-orthogonal WT.

• Using an iterative reconstruction, the nonorthogonal WT

works much better, and the results are now better than the

UWT.

• The UWT with the 7/9 filters can also be improved using

an iterative reconstruction. This method yields the lowest

approximation error among its competitors.

Therefore, these experiments confirm that when a redundant

transform is used, there is real interest in using an iterative re-

construction technique when we want to reconstruct an image

from a subset of its coefficients. This is also in agreement with

recent findings in [37].

2) Truncated Gaussian Image: Fig. 7 left shows the trun-

cated Gaussian image (a piecewise smooth function with a sharp

transition). The Gaussian standard deviation is 25, and it is nor-

malized to have a maximum intensity equal to 1. Fig. 7 right

shows one row of the image. The nonlinear approximation curve

is plotted in Fig. 8.

We see that this time the best results are not obtained using the

7/9 filter bank, but by using the nonorthogonal filter bank. This

means that the best filter bank is data-dependent, but whatever
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Fig. 8. Nonlinear approximation for the truncated Gaussian image.

the filter bank chosen, and especially if it is not (bi-)orthogonal,

iterating improves clearly the nonlinear approximation curve.

B. Ringing Artifact

Fig. 9 shows one row of the reconstructed truncated Gaussian

image after thresholding in the wavelet domain with a threshold

equal to 2.5. Plots on the right correspond to reconstructions

using a positivity constraint. We show from top to bottom, the

undecimated decomposition with direct reconstruction (7/9

filters), the undecimated decomposition with iterative recon-

struction (7/9 filters), the undecimated decomposition with

iterative reconstruction (with third order polynomial spline

Battle–Lemarié filters [38], [3]) and the nonorthogonal filter

bank. Here, a FIR version of Battle-Lemarié filters was imple-

mented. From this experiment, we conclude the following.

• If the positivity constraint can be used in a given applica-

tion, it will help a lot for the reduction of the ringing effect

along discontinuities.

• Iterating without positivity reduces the oscillations which

are not close to the discontinuity, but amplify those very

close to it.

• The nonorthogonal filter bank with positivity and an itera-

tive reconstruction produces impressively good results for

the reconstruction of the truncated Gaussian. This is cer-

tainly related to the fact that the scaling function is very

close to a Gaussian, and explains why such a scaling func-

tion is so popular in the astronomical domain.

C. Edge Detection

Fig. 10, top, shows a simulated image containing a

square ( ) and some Gaussian noise

( ) and the detected edges using a

Canny detector (the standard deviation of the Gaussian kernel

is 3). The noisy image has been filtered using the iterative

denoising procedure described previously, using the UWT

with both the 7/9 filters and the nonorthogonal filters de-

scribed in Section III-A (i.e., ,

, ). A simple pixel-difference

edge detector has been applied on both denoised images. We

can see that the latter leads to less spurious detected edges than

the 7/9-filter wavelet denoising.

D. MCA

The Morphological Component Analysis method (MCA)

[10], [39], [40] is a method which allows us to decompose a

single signal into two or more layers, each layer containing

only one kind of feature in the input signal. The separation

can be achieved when each kind of feature is well represented

by a given transformation. For instance, line and Gaussian in

a image can be separated using the ridgelet transform (which

represents lines well) and the wavelet transform [10] (for the

Gaussians), or the texture can be separated from the piecewise

smooth content using the local DCT and the curvelet transform

[10]. A full description of MCA is given in [10].

We have applied MCA on a 1-D signal containing a sine, three

bumps and some Gaussian noise. The sine are well represented

by the DCT and the bumps by the wavelet transform. Denoting

respectively by and the matrices related to the wavelet

and the DCT transforms, the MCA algorithm finds the solution

of the following minimization problem:

subject to (29)
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Fig. 9. One row of the reconstructed truncated Gaussian image after thresholding in the wavelet domain with a threshold equal to 2.5. From top to bottom, panels
correspond respectively to the undecimated decomposition with direct reconstruction (7/9 filters), the undecimated decomposition with iterative reconstruction
(7/9 filters), the undecimated decomposition with iterative reconstruction (Battle-Lemarié filters), and the nonorthogonal filter bank. Plots on the right correspond
to reconstructions with the same decomposition but using a positivity constraint.

where is the noisy data, is the noise standard deviation and

and are the two components to recover, one (i.e., bumps)

being sparse in the wavelet representation ( matrix) and the

second (i.e., sine) in the DCT domain ( matrix).

The MCA algorithm relies on an iterative alternate projection

and thresholding scheme. At the th iteration, we have two es-

timates , of and ( , ), and

(resp., ) is obtained by applying a thresholding

of the residual using (resp., )

(30)

where consists in decomposing using the transform

( ), threshold the obtained coefficients with the

threshold ( ), and reconstruct from . The thresh-

olding operaror can be either a hard or a soft thresholding. In

practice, hard thresholding leads generally to better results. The

threshold decreases linearly toward zero, starting from a first

threshold set to a large enough value. A each iteration the pos-

itivity of can be enforced by replacing negative values with

zero. More details can be found in [10], [39]. Fig. 11 shows the

result. With or without positivity, we can see that the nonorthog-

onal filters produce a solution with less ringing.

VI. CONCLUSION

We have shown in this paper that reconstruction from undeci-

mated wavelet transform coefficients can be addressed in a very

different way compared to the usual one. The nondecimation

gives us additional freedom for designing filters. As a result, we

have seen that nonnegative reconstruction filters can be used or

that regular reconstruction can be obtained from Haar wavelet

coefficients. Finally, we have shown that the concept of recon-

struction from partial information in the case of undecimated

decompositions is different from (bi)orthogonal decomposition.

Therefore, we confirm the results presented in recent papers that

the multiscale denoising can be improved when an iterative ap-

proach is performed. Furthermore, an additional constraint such

as the TV or norm of the wavelet coefficients can easily be

incorporated within the iterative scheme.
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Fig. 10. Top: Noisy image containing a square and some noise and the detected edges using the Canny detector. Bottom left: Pixel-difference detected edges on
the UWT denoising image using the 7/9 filters. Bottom right: The same processing but using the nonorthogonal filters.

Fig. 11. Top: From left to right, input signal contains three bumps, a sine and Gaussian noise; the three bumps; and the bumps recovered by MCA without
positivity constraint using the DCT and UWT (Battle-Lemarié filters). Bottom left: Bumps recovered by MCA without positivity constraint using the DCT and
the nonorthogonal filters. Bottom middle: MCA recovered bumps using the DCT and UWT Battle-Lemarié transform plus the positivity constraint. Bottom right:
MCA recovered bumps using the DCT and the nonorthogonal filters plus positivity constraint.

Our work opens up also new questions: Which properties

should the analyzing filters and the synthesis filters verify for

good image restoration, for a given application?

The iterative methods for the inversion can certainly also be

improved by using an additional constraint similar to what is

used in inverse problem methods. This will be investigated in

future work.
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