
149

The UNICORE Grid infrastructure

Mathilde Romberg
Research Center Jülich, Central Institute for Applied

Mathematics, D-52425 Jülich, Germany

Tel.: +49 2461 61 3703; Fax: +49 2461 61 6656;

E-mail: m.romberg@fz-juelich.de

UNICORE (Uniform Interface to Computer Resources) is a

software infrastructure supporting seamless and secure ac-

cess to distributed resources. UNICORE allows uniform ac-

cess to different hardware and software platforms as well as

different organizational environments. Based on the abstract

job model it offers services for security, translation of ab-

stract jobs into real batch jobs for different target systems,

and a public key infrastructure. This paper describes the

UNICORE architecture and the services provided.

Keywords: Grid infrastructure, HPC portal, Abstract Job,

seamless access, Java, UNICORE

1. Introduction

The concept of Grid computing evolved during the

past decade based on distributed computing and meta-

computing. With the growing speed of network con-

nections it became feasible to think of accessing dis-

tributed compute power, applications, and data as eas-

ily as one accesses the electrical power. The term

computational grid is defined in [5] as the hardware

and software infrastructure which provides depend-

able, consistent, pervasive, and cost-effective access

to high performance computing resources. Research

fields in this area are programming models and their

support through scheduling, quality of service, secu-

rity, and user interfaces. A variety of projects are

dealing with application-specific interfaces to provide

users with seamless access to distributed computer re-

sources. Users can thus describe the job in application-

specific terms instead of dealing with the system and

site-specific idiosyncrasies. An example of a project in

this field is WebSubmit at NIST (see [9]). It develops a

common Web-based interface for applications (for ex-

ample Gaussian94) on multiple heterogeneous systems.

Other Grid computing projects deal with programming

models for distributed applications, scheduling, quality

of service and similar functions. Two of the outstand-

ing Grid projects are Legion at the University of Vir-

ginia (see [7]) and Globus at Argonne National Labora-

tory and University of Southern California Information

Sciences Institute (see [6]). Legion is developing an

object-oriented metasystem which serves as a basis for

applications. The goal is to provide a single coherent

virtual system which is scalable, easy programmable,

fault-tolerant, and secure and which supports site au-

tonomy. The Globus project is focusing on the de-

velopment of a metacomputer toolkit for Grid applica-

tions. The toolkit contains different services as for ex-

ample resource control and process scheduling, com-

munication, data access, and security. These services

are used to build up more complex metacomputing ser-

vices like job schedulers or support tools for parallel

applications. Both projects focus on metacomputing at

the application level. They combine a set of distributed

systems to process one huge single application. Users

have to adapt their application to match the supported

programming model and services.

The various concepts and solutions have motivated

researchers to set up a forum to discuss Grid computing

aspects. The Grid Forum (see [16]) and the European

Grid Forum (see [13]) were therefore founded and have

recently joined together to become the Global Grid

Forum (see [15]). These initiatives intend to work

jointly on the development and dissemination of best

practices, on guidelines for implementations, and on

standards. The goal is to establish an integrated Grid

architecture which can serve as a guideline and basis

for further research and development.

UNICORE (Uniform Interface to Computing Re-

sources), a German national research project, started in

mid 1997 to develop a software infrastructure for seam-

less access to distributed supercomputer resources. The

Motivation for the project (see [17]) was that users who

have to solve large problems in computational science

usually need resources on a variety of systems at differ-

ent locations. These users are faced with different site

policies and practices (security, user identification, data

management, . . .), different system architectures, and

system software. For the efficient use of resources the

users need to learn about these differences. UNICORE

Scientific Programming 10 (2002) 149–157

ISSN 1058-9244 / $8.00  2002, IOS Press. All rights reserved

150 M. Romberg / The UNICORE Grid infrastructure

is designed to overcome the additional effort (further

information on the project’s background is given in [2]).

The main objectives of the project are security, seam-

lessness, ease of use, portability, and minimal interfer-

ence with local site administration. The project task is

the design of a system which fulfills the objectives and

the implementation of a prototype. In contrast to the

other projects in 1997, UNICORE selected an X.509-

based security model which is now the standard within

the Grid community. Seamless access calls for an ab-

stract job model which allows a system-independent

job description. This idea is unique among the vari-

ous Grid projects. The Abstract Job Object (AJO) is

the core part of UNICORE, generated at the user client

and processed into real jobs for a target system by the

server. Within the Global Grid Forum’s classification

of Grid architectures UNICORE is a so-called stove-

pipe system covering all layers of the Grid architecture;

most of the other projects provide solutions for a small

set of layers (i.e. providing low-level services).
In the remainder of this paper Section 2 will describe

the architecture developed, the problems being inves-

tigated, and the design aspects including the lessons

learned. Section 3 examines the user functions avail-

able, how transparency is achieved, and how jobs are

mapped to resources. The experience gained by users

and administrators is described in Section 4 together

with the questions still to be answered. Finally, an

outlook on further development plans is given.

2. The UNICORE architecture

2.1. Requirements

The architecture has to satisfy a wide range of re-

quirements from areas like security, user-friendliness,

administration, and site environments. The architecture

must

1. use standards where available,

2. provide strong user authentication and autho-

rization,

3. ensure data integrity,

4. provide single sign-on,

5. cooperate with firewalls,

6. cooperate with local user administration,

7. require only minimal privileges for components

on the target systems,

8. allow for abstraction/seamlessness,

9. support users, put minimal burden (installation,

configuration, . . .) on users,

10. support various platforms,

11. provide resource information, and

12. not rely on transitive trust between sites/servers.

Standards or de-facto standards (1) give solutions

for most of the requirements. X.509 allows for user

authentication, data integrity, and single sign-on (2, 3,

4). Using standard protocols like SSL for communica-

tion over untrusted networks and socket-to-socket com-

munication between fixed, predefined ports over the

trusted intranet means that cooperation with firewalls

can easily be achieved (5). With X.509 user certificates

as the unique user identification within UNICORE co-

operation with the local user administration (6) can be

realized by mapping the user certificate to the local

user identification. The necessary information has to

be provided by the PKI (Public Key Infrastructure).

One essential quality of the target-system-related part

of the UNICORE system is that it can act on behalf of a

user. Therefore part of the server has to have the setuid

privilege; it does not need any other privileges (7).

Seamlessness, user support and flexibility with re-

spect to supported platforms (8, 9, 10) can be tackled

with Web-techniques and Java. The question which

has to be answered here is whether an applet or an ap-

plication is the appropriate solution for the user client.

How to provide the resource and service information

(11) is another question. An information service is nec-

essary which allows access to static and dynamic re-

sources and service information of the target systems.

The research here is in a language for resource and

service description (see [10]). In addition, XML and

LDAP are standards which are evaluated. Regarding

security aspects X.509 is the standard which allows for

user authentication, data integrity, and single sign-on.

The question still to be answered is how to do client –

server – server communication without relying on tran-

sitive trust between servers. How can it be ensured that

the job and all its parts prepared by a user are not mod-

ified on the way from the user to its final destination

(12)?

2.2. Design

The UNICORE architecture consists of three tiers:

user, UNICORE server, and target system tier as shown

in Fig. 1 (see also [1,11]). User and server tiers are

Java applications while the system tier is presently im-

plemented in perl as Java is not available on all super-

computer platforms. The security architecture is based

on the Secure Socket Layer (SSL) protocol (see [3]).

M. Romberg / The UNICORE Grid infrastructure 151

Fig. 1. Architecture overview.

SSL is used for communication between the compo-

nents which talk to each other over public networks

(Client – Gateway, Network Job Supervisor – Gate-

way). SSL uses public key cryptography to establish

connections between client and server. Therefore each

component has to have a public-private key pair with

the private key kept secret and the public part being

known by the others. The keys have to be certified by

a certification authority (CA) so that the components

can be sure that they are communicating with the actual

user (or program) he or she (or it) claims to be. By

default certificates signed by unknown signers are not

accepted.

2.2.1. Abstract Job Object

From the user input the user interface generates an

Abstract Job Object (AJO) which is sent via SSL to the

Gateway. The AJO is a key component in the architec-

ture. It comprises the UNICORE protocol between user

interface and the Network Job Supervisor together with

the abstract job specification generated from the user

input. The AJO is realized as a Java class library. [2]

explain the AJO and its classes in more detail.

The AJO reflects the underlying recursive job model.

A UNICORE job consists of

– job groups, which form a frame with general in-

formation for this part of the job like the target sys-

tem; they themselves contain jobs groups, tasks,

and dependencies,

– tasks, which are to be translated into batch jobs for

the target,

– dependencies between the elements to reflect the

necessary synchronization; they form a directed

acyclic dependency graph.

Each UNICORE job is assigned a UNICORE job

directory (Uspace) which is the UNIX working space

for the job. It is a temporary directory existing only

during the lifetime of the job at the site. All the data

needed for the job execution has to be imported from

permanent file space into the job directory. All the data

which is needed after the job has finished has to be saved

to permanent file space. The user specifies the data to

be imported and that to be exported when constructing

the job. The transfers are done by UNICORE and are

transparent to the user.

The AJO with its recursive structure gives the clue

to solving the problem of making sure that a job and

all its parts prepared by a user are not modified on the

way from the user to the destination without relying

on transitive trust between the servers at the different

sites. The user client signs all embedded AJOs in the

main AJO as well as the main AJO with the user’s

X.509 certificate. A UNICORE server which receives

an AJO unpacks it leaving all embedded AJOs which

are destined for other sites as they are and forwards

them to the appropriate server. Each UNICORE server

can therefore test that the AJO is the original without

having to trust other UNICORE servers.

2.2.2. Client

The user tier consists of the graphical user interface.

It offers the functions to prepare and control UNICORE

jobs (for details see Section 3) and to set up and main-

tain the user’s security environment. The UNICORE

user’s X.509 certificate is his or her UNICORE user

identification. It is maintained by the user interface

application in an encrypted database. The user inter-

face also needs to know about the Certification Au-

thority which signed the user and the Gateway certifi-

152 M. Romberg / The UNICORE Grid infrastructure

cates. With this information a secure connection with

mutual authentication of client and Gateway can be es-

tablished. Figure 2 shows at the top the user tier host-

ing the main GUI components Job Preparation Agent

(JPA) and Job Monitor Controller (JMC) as well as the

user’s certificate. The JPA offers the functions for gen-

erating and submitting a UNICORE job while the JMC

allows to check job status, control a job, and retrieve

job output.

The decision to have the user client as an application

instead of an applet is based on the following: Java is a

good choice to achieve portability. However, the Java

Virtual Machines (JVM) on different systems are differ-

ent. Programmers have to be conservative in using new

features. The use of applets introduces another source

for losing portability. During the first project phase

(1997–1999) we developed the user client as a signed

applet and experienced that browsers do not necessar-

ily support all Java classes. As an example, Netscape

did not support the Java Swing classes which facilitate

the creation of the graphical user interface. In addition

different browsers handle signed applets differently, so

we had to restrict the use to the Netscape browser. The

user client applet had to be signed as it needs access to

local data on the user’s workstation or PC and because it

has to connect to different network sites (the Gateways

at the different UNICORE sites (Usites)). To reduce

this complexity in code writing and bug tracing it was

decided to create the user client as an application. The

only disadvantage of this solution is that the users have

to install and maintain the client locally.

www.unicore.de serves as the root node for resource

information. Currently it holds the addresses of the

Gateways of the available Usites. Using these ad-

dresses the client connects to the Gateways to get the

list of available Vsites and their resources. Right now

a set of static resource information is available. It in-

cludes the number of CPUs or PEs, amount of mem-

ory, CPU or connect time, and amount of file space

(see [10]).

2.2.3. Gateway

The Gateway is the first part of the UNICORE Server

tier. It ensures the user authentication, secure commu-

nication between client and server, and provides the

client with information about the resources available at

the site. It also talks to the Network Job Supervisor

(NJS) servers at the site so that jobs and data, status

requests and control commands for further processing

are sent and data is received to make it available to the

user. UNICORE uses the UNICORE Protocol Layer

(UPL) to send the AJO to the Gateway which hands it

over to the NJS controlling the specified Virtual Site

(Vsite). In case a UNICORE site uses additional au-

thentication methods like DCE (Distributed Comput-

ing Environment) or SecureID cards, the Gateway al-

lows for site-specific additional authentication as de-

picted in Fig. 2. The Gateway and NJS communicate

via sockets.

2.2.4. Network Job Supervisor

Each Network Job Supervisor (NJS) controls one

Virtual Site (Vsite) which is a single system or a cluster

of systems sharing the same userids and file space. The

NJS fulfills the following tasks:

– analyzing the AJO (representing the UNICORE

Job) and extracting parts to be executed locally;

– mapping the UNICORE userid to the local userid

for the target system (authorization);

– translating the local jobs contained in the AJO into

real batch jobs for the target system;

– sending job groups to be executed at other UNI-

CORE sites to the corresponding Gateway;

– providing local resource information to the Gate-

way;

– ensuring the necessary file transfer;

– providing job status information and job output.

The NJS first checks whether the AJO is a correct

AJO from the user who signed it. It unpacks the AJO

with the user’s public key and analyzes it for parts to

be sent to other target systems. These are sent either to

another local NJS or to a Gateway at another UNICORE

site at the point in time the dependency graph defines.

Each NJS has its own X.509 certificate which it uses to

communicate to a Gateway at another site via SSL. The

Gateway then knows that the AJO is part of another

AJO and that it has to use the user’s public key to

unpack the AJO instead of the one from the sending

NJS.

For tasks to be processed locally the NJS performs

the userid mapping which means that it maps the user’s

certificate to his or her user identification at the local

system. The information about which certificate be-

longs to which local userid is kept in the UNICORE

user database (UDB). The UDB has to be maintained

at each Usite for each NJS. This mechanism is nec-

essary to provide a single sign-on environment. The

user authenticates his or herself once in the client and

the uidmapping at the different Vsites takes care of the

authorization without the user having to reauthenticate.

The NJS translates the abstract job definition into batch

M. Romberg / The UNICORE Grid infrastructure 153

Fig. 2. Detailed architecture.

jobs for the destination system and sends them to the

Target System Interface (TSI) according to the depen-
dency graph. The translation of the AJO into a real

batch job is table-driven. Each NJS holds an incarna-

tion database (IDB) which contains the abstract terms

and their translation for the target system. It is there-
fore possible to let the user specify the job in an ab-

stract way without being concerned about system and

site specific details.

2.2.5. Target System Interface

Each of the systems in a Vsite is governed by a Target

System Interface (TSI). The TSI talks to the local batch

system to maintain the job directory, submit jobs on

behalf of the user, and to control the job status. Besides
the incarnation database it is the second instance for

realizing transparency. The TSI knows about the com-

mands and their syntax for submitting jobs, copying

data, asking for job status, and controlling jobs.

3. The user functions

Within the UNICORE environment the user has
a convenient way of using distributed computing re-

sources without having to learn site or system specifics.

It is all done in a seamless way. The user specifies

the job requirements (e.g. application, resources, com-

mand options, input and output files, etc.) indepen-

dently of the target system and site the user has se-

lected. As described above, the NJS at the destination

site translates them into the real batch job for the target.

A key point is that a user has a single UNICORE userid,

his or her UNICORE X.509 certificate, to obtain access

to the resources at the various UNICORE sites. At the

top level the graphical user interface offers the func-

tions for maintaining the security settings, preparing

UNICORE jobs, and monitoring them.

A UNICORE job can be composed of multiple parts

which can be executed asynchronously or in depen-

dence on different systems at different UNICORE sites.

Currently the following elements are offered by the Job

Preparation Agent (JPA):

– script task, to submit existing job scripts via UNI-

CORE;

– CPMD task, to prepare Car-Parrinello Molecular

Dynamics applications;

– transfer tasks, to specify necessary file transfers

between two parts of a job to be run at different

Vsites;

– job groups, to build sub-jobs for other target sys-

tems.

154 M. Romberg / The UNICORE Grid infrastructure

Fig. 3. Job preparation agent.

Each UNICORE job and each job group contains
general information for the job:

– the job name;

– the target system, which can be selected from all
available Usites/Vsites;

– the user’s e-mail address, where the system should
send messages to.

Figure 3 shows an example of the JPA with a job

displayed at top level. On the left side all job elements
are listed while on the right side the elements of the
selected job group are shown together with their depen-
dencies. The selected job group icon with the job name
is highlighted. The center part of the display shows the
general information for the job group.

The UNICORE job consists of four different job
steps to be executed on two different target systems (two
job groups: calculate and sub group). square root,
step 2, and compare are script tasks as can be seen from
the icon. The other two are transfer tasks. The icons

are marked by colors representing their preparation sta-
tus (red – not yet ready for submission; green – ready
for submission). In case all steps of a job are marked
ready for submission the Submit button is activated for
usage. The icons on the right are arranged according to

the specified dependencies which reflect the necessary
synchronization between the job steps. The dependen-

cies are already defined via the Add Dependency button
at the bottom.

Seamlessness for the user is achieved by abstraction.
The interface offers selection menus with predefined
values for e.g. the kind of shell or job priority. The
selected values are transferred to and translated by the
NJS to the appropriate value for the target system.

As a reference Fig. 4 shows a picture of the AJO cor-
responding to the example of a job given above. Each
box represents an AJO. The outermost box contains the
whole UNICORE job while the other bold framed box
contains the sub job group. The small boxes contain
the AJOs for the tasks which are the job steps generated
from the user input. The first task in every job group is
the generation of a job directory (the Uspace). Import
of data, execution of the user application, and transfer
follow. The internal dependencies between the tasks
are represented by the arrows. Each job group has a
clean-up section with the tasks ‘spool output’ to make
the output available to the user and ‘remove job di-
rectory’. The tasks are incarnated into shell scripts exe-
cuted on the target system either directly (i.e. ‘generate
job directory’) or as a batch job.

The Job Monitor Controller (JMC) offers functions
for displaying the job status, listing and saving job
output, and for killing jobs. Figure 5 shows the JMC
interface with a list of Vsites and the job submitted

M. Romberg / The UNICORE Grid infrastructure 155

calculate

generate job directory

import data

square_root

transfer

generate job directory

import data

import data
transfer

step2

spool output

remove job directory

compare

spool output

remove job directory

Usite t3e1200

sub_group

Usite t90

Fig. 4. AJO for job example.

in the example above. The status display lists jobs

sorted by target sites. The job icons on the left can

be expanded to show the complete job tree. Selecting

an icon on the left results in displaying the standard

output and error files of that component. The icons

are marked with colors to represent the current status

within UNICORE: blue – queued, yellow – running,

red – abnormally ended, green – finished successfully.

The user has access to the job status and the output files

until he or she explicitly removes them from the status

display.

4. Experiences

The UNICORE system as it exists today already pro-

vides seamless and secure access to remote resources,

supports data transfer between the connected sites, and

has established a public key infrastructure. The soft-

ware written in Java allows for portability, so it can

run on a variety of client and server platforms. The

database for the translation of the abstract job speci-

fication into a real batch job for the target system is

easily adaptable to new platforms: The contents of

the translation table (incarnation database) have to be

filled with the new target values and the TSI has to be

adapted (command names and options for job submis-

sion, status request, move, copy, . . .). Currently CRAY

T3E, CRAY T90 and J90, NEC SX-4, Fujitsu VPP 700,

Siemens hpcLine, Hitachi SR2201, and IBM SP3 are

integrated and the batch subsystems NQS, PBS, CCS,

and LoadLeveler. It is deployed at the project partners’

centers. Up to now (August 2001) a few test users have

been “playing” the system. They use it for submit-

ting existing job scripts and for preparing CPMD jobs.

The general feedback is that the system is easy to use

and that especially the application-specific support for

CPMD helps a lot (see [8]). The possibility of submit-

ting jobs to different targets is appreciated but not yet

used to any great extend. The client performance is

rated as good.

As mentioned in Section 2.2.2 during the first project

phase the user interface had been implemented as a

signed applet which led to problems with portability

and down-load performance. Also in the first phase a

full-blown Web server had been used to host the Gate-

way (as a servlet) and an existing batch system had been

modified to play the role of the NJS. The advantage was

to have a running prototype with good functionality

within a short time frame. However, there were quite a

few reasons to redesign this and implement all compo-

nents ourselves and in Java. The design presented here

offers all the necessary functions. The system is now

lean and easy to control. The table-driven mechanism

156 M. Romberg / The UNICORE Grid infrastructure

Fig. 5. Job monitor controller.

for incarnation provides the flexibility to easily adapt it

to other target systems.

The current version of the UNICORE system (V3.0)

is also used as the basis for the EU-funded project EU-

ROGRID (see [14]) which started in November 2000.

It will establish a European GRID network of leading

High Performance Computing centers from different

European countries.

5. Outlook

Within the UNICORE Plus project (see [18]) the

UNICORE system is going to be extended and put into

production at the partner sites. Areas of development in

the project frame are: administration, resource and ser-

vice description, application-specific interfaces, data

transfer, extended job control, and metacomputing. For

the application-specific interfaces MSC-NASTRAN,

FLUENT, and STAR-CD have been selected as candi-

dates. It is also planned to build a generic interface to

allow for easy integration of other applications.

The current resource model includes a small set of

static resource information. The project will extend

the set and will include dynamic information as well
so that, for example, a user gets hold of current system
load as a decision criterion for target system selection.

One of the most important issues is data manage-
ment. How to efficiently transfer data between UNI-
CORE sites, especially if large amounts of data need
to be staged to a site for job processing. In addition,
access to data archives will be integrated. It is also
planned to add a file transfer feature for data transfer in-
dependent of UNICORE jobs but using the UNICORE
security mechanisms.

In the area of metacomputing on the application level
three topics are under research: scheduling of mpp-
applications to be run in parallel at different sites (most
of the batch subsystems do not support features like
advance reservation), techniques for distributed execu-
tion of applications including a fault-tolerant, batch-
oriented startup procedure, and mechanisms for visu-
alization of the performance of such metacomputer ap-
plications.

Other efforts to enhance UNICORE are being under-
taken in the EUROGRID project (e.g. resource broker)
and in a joint project of Research Center Juelich and
Argonne National Laboratory which deals with Grid
interoperability.

M. Romberg / The UNICORE Grid infrastructure 157

Acknowledgments

The UNICORE project ([17]) was funded by the

German Federal Ministry of Education and Research

(BMBF) during the grant period August 1, 1997 to De-

cember 31, 1999 under grant id 01 IR 703. The UNI-

CORE Plus project ([18]) is being funded by BMBF

for three years (2000–2002) under grant id 01 IR 001.

The results presented in this paper have been ob-

tained by the collaboration of all UNICORE partners:

German Weather Service (DWD), Research Center

Jülich, Computer Center of the University of Stuttgart

(RUS), Pallas GmbH, Brühl, Leibniz Computer Cen-

ter, Munich (LRZ), Computer Center of the University

of Karlsruhe (RUKA), Paderborn Center for Parallel

Computing (PC2), Konrad Zuse Center for Information

Technology Berlin (ZIB), Center for High Performance

Computing at TU Dresden (ZHR),1 Fujitsu European

Center for Information Technology (fecit), 2 and Genias

Software GmbH, Regensburg.3

References

[1] J. Almond and D. Snelling, UNICORE: Uniform Access to

Supercomputing as an Element of Electronic Commerce, Fu-

ture Generation Computer Systems 613 (1999), 1–10.

[2] D.W. Erwin and D.F. Snelling, UNICORE: A Grid Computing

Environment, Proccedings of Euro-Par 2001, Springer LNCS

2150, August 2001, pp. 825–834.

[3] J. Feghhi, J. Feghhi and P. Williams, Digital Certificates –

1during the second project phase 2000-2002 only
2as a sub-contractor of Pallas
3during the first project phase 1997-1999 only

Applied Internet Security, Addison-Wesley, 1998.

[4] I. Foster and C. Kesselman, The Grid: Blueprint for a

New Computing Infrastructure, Morgan Kaufman Publishers,

1998.

[5] I. Foster and C. Kesselman, Computational Grids, in: The

Grid: Blueprint for a New Computing Infrastructure, I. Foster

and C. Kesselman, eds, Morgan Kaufman Publishers, 1998.
[6] I. Foster and C. Kesselman, Globus: A Metacomputing In-

frastructure Toolkit, Intl. J. Supercomputer Applications 11(2)

(1997), 115–128.

[7] A. Grimshaw, W.A. Wulf and the Legion team, The Legion

Vision of a Worldwide Virtual Computer, Communications of

the ACM 40(1) (January 1997), 39–45.

[8] V. Huber, Supporting Car-Parrinello Molecular Dynamics Ap-

plication with UNICORE, Proceedings of the Computational

Science – ICCS 2001 International Conference, (Part I), San

Francisco, May 2001, pp. 560–566.

[9] R. McCormack, J. Koontz and J. Devaney, WebSubmit: Web-

based Applications with Tcl, NISTIR 6165, June 1998.

[10] A. Reinefeld, H. St́’uben, T. Steinke and W. Baumann, Mod-

els for Specifying Distributed Computer Resources in UNI-

CORE, First European Grid Forum Meeting, Proceedings of

the ISThmus 2000 / EUNIS 2000 Conference, Poznan, April
2000.

[11] M. Romberg, The UNICORE Architecture: Seamless Access

to Distributed Resources, Proceedings of the Eighth IEEE

International Symposium on High Performance Distributed

Computing, August 1999, pp. 287–293.

[12] http://www.cert.dfn.de/dfnpca.

[13] http://www.egrid.org.

[14] http://www.eurogrid.org.
[15] http://www.globalgridforum.org.

[16] http://www.gridforum.org.

[17] http://www.fz-juelich.de/unicore.

[18] http://www.fz-juelich.de/unicoreplus.

[19] http://www.unicore.org.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

