
1

1

The Unified Modeling Language

2

The Unified Modeling Language

The Unified Modeling Language (UML) is a
standard language for writing software
blueprints. The UML may be used to
visualize, specify, construct, and document
the artifacts of a software-intensive system.

Grady Booch
James Rumbaugh (OMT)
Ivar Jacobson (OOSE)

3

Building Blocks of UML

Things

Relationships

Diagrams

4

Things

Structural things
classes, interfaces, collaborations, use
cases, active classes, components, nodes.

Behavioral things
interactions, state machines.

Grouping things
packages.

Annotational things
notes.

2

5

Relationships

Dependency

Association

Generalization

Realization

6

Diagrams

1. Class diagram
2. Object diagram
3. Use case diagram
4. Sequence diagram
5. Collaboration diagram
6. Statechart diagram
7. Activity diagram
8. Component diagram
9. Deployment diagram

7

Structural Things

Structural things are the nouns of UML
models. These are the mostly static parts of
a model, representing elements that are
either conceptual or physical.

8

Class

Class
A class is a description of a set of objects that share
the same attributes, operations, relationships, and
semantics.

Attribute
An attribute is a named property of a class that
describes a range of values that instances of the
property may hold.

Operation
An operation is the implementation of a service that
can be requested from any object of the class to
affect behavior.

3

9

Use Case

Use case
A use case specifies the behavior of a system or a

part of a system and is a description of a set of
sequences of actions, including variants, that a
system performs to yield an observable result of value
to an actor.

Actor
An actor represents a coherent set of roles that users
of use cases play when interacting with these use
cases.

10

Use Case Diagram

Use case diagram

A use case diagram
shows a set of use cases
and actors and their
relationships.

11

Interface

Interface
An interface is a collection of operations that specify a
service of a class or component.

Register.exeBilling.exe

Billing
System

12

Collaboration

Collaboration
Cross between an symbol diagram and a sequence
diagram (interaction).
Describes a specific scenario
Numbered arrows show the movement of messages
during the course of a scenario

When to use a Collaboration Diagram
When you prefer to show a spatial organization of
symbols and interaction rather than concentrating on the
sequence of the interaction

4

13

Collaboration Diagram

14

Node
A node is a physical element that exists at run time
and represents a computational resource.

emCity

tornado

Student DB

Course
Scheduling

Enrollment

15

Behavioral Things

Behavioral things are the dynamic parts of
UML models. These are the verbs of a
model, representing behavior over time and
space.

16

Behavioral Things (cont’d)

Interaction
An interaction is a behavior that comprises a set of
messages exchanged among a set of objects within a
particular context to accomplish a specific purpose.

State machine
A state machine is a behavior that specifies the
sequences of states an object or an interaction goes
through during its lifetime in response to events,
together with its response to those events.

5

17

Grouping and Annotational Things

Grouping things are the organizational parts of
UML models.
Package

A package is a general purpose mechanism for organizing
elements into groups.

Annotational things are the explanatory parts of
UML models.
Note

A note is simply a symbol for rendering constraints and
comments attached to an element or a collection of elements.

18

Dependency

Dependency
A dependency is a using relationship that states that a
change in specification of one thing may affect
another thing that uses it, but not necessarily the
reverse.

RegistrationManager

ScheduleAlgorithm

19

Association

Association
An association is a structural relationship that
specifies that objects of one thing are connected to
objects of another.

Bank Teller Customerserves

20

Aggregation
Aggregation

An aggregation is a special form of association that
specifies a whole-part relationship between the
aggregate (the whole) and a component (the part).

Course

CourseOffering

6

21

Generalization

Generalization
A generalization is a relationship between a general
thing and a more specific kind of that thing.
Sometimes it is called an ''is-a-kind-of'' relationship.

Employment

Teller Manager

22

Realization

Realization
A realization is a semantic relationship between
classifiers, wherein, one classifier specifies a contract
that another classifier guarantees to carry out.

Register.exeBilling.exe Billing System
<<interface>>

23

Class and Object Diagram

Class diagram
A class diagram shows a set of classes, interfaces,
and collaborations and their relationships.

Object diagram
An object diagram shows a set of objects and their
relationships.

24

Sequence Diagram
Sequence diagram

A sequence diagram is an interaction diagram that emphasizes the
time-ordering of messages.
This diagram is a model describing how groups of objects collaborate in
some behavior over time.
The diagram captures the behavior of a single use case.
It shows objects and the messages that are passed between these objects
in the use case.

When to use a sequence diagram
A good design can have lots of small methods in different classes. Because
of this it can be difficult to figure out the overall sequence of behavior. This
diagram is simple and visually logical, so it is easy to see the sequence of
the flow of control.
A sequence diagram also clearly shows concurrent processes and
activations.

7

25

Sequence Diagram

26

State Chart Diagram

Statechart diagram
A statechart diagram shows a state machine, consisting of
states, transitions, events, and activities.
Provides a very detailed picture of how a specific symbols
changes states.
A state refers to the value associated with a specific attribute of
an object and to any actions or side
effects that occur when the attribute’s value changes

When to use a State Diagram
Used when you are working on real-time process control
applications or systems that involve concurrent processing
When you want to show the behavior of a class over several use
cases

27

State Chart Diagram

28

Activity Diagram

Activity diagram
An activity diagram is a
special kind of a statechart
diagram that shows the flow
from activity to activity
within a system.

8

29

Deployment Diagram
A Deployment diagram shows the configuration of run-time processing elements
and the software components, processes, and objects. Software component
instances represent run-time manifestations of code units. Components that do
not exist as run-time entities do not appear on these diagrams. These
components should be shown on component diagrams.

30

Component Diagram
A component diagram shows the dependencies among software components,
including source code, binary code and executable components. Some
components exist at compile time, some exist at link time, and some exist at run
time; some exist at more than one time.

31

Example
An University wants to computerize their registration
system

The Registrar sets up the curriculum for a semester
One course may have multiple course offerings

Students select 4 primary courses and 2 alternate courses
Once a student registers for a semester, the billing system
is notified so the student may be billed for the semester
Students may use the system to add/drop courses for a
period of time after registration
Professors use the system to receive their course offering
rosters
Users of the registration system are assigned passwords
which are used at logon validation

32

Actors

An actor is someone or some thing that must
interact with the system under development

Student

Registrar

Professor

Billing System

9

33

Use Cases
use case is a pattern of behavior the system exhibits

Each use case is a sequence of related transactions
performed by an actor and the system in a dialogue

Actors are examined to determine their needs
Registrar -- maintain the curriculum
Professor -- request roster
Student -- maintain schedule
Billing System -- receive billing information from
registration

Maintain ScheduleMaintain Curriculum Request Course Roster

34

Use Case Diagram

Student Professor

Maintain Schedule

Maintain Curriculum

Request Course Roster

Billing System

Registrar

35

Sequence Diagram

StudentRecord StudentScheduleEnrollment courseOffering

StudentId

create studentSchedule

verifyPrerequisites

display studentSchedule

selectCourse

addCourse

prereqs met

prereqs not met

password verified

prerequisites

deny enrollment

getPrerequisites

checkEnrollment

space available

Student

prompt for password

password

display studentSchedule

select another course?

Course Enrollment
36

Collaboration Diagram

: Registrar

course form :
CourseForm

theManager :
CurriculumManageraCourse :

Course

1: set course info
2: process

3: add course

4: new course

10

37

Classes
RegistrationForm

RegistrationManager

Course

Student

CourseOffering
Professor

ScheduleAlgorithm

38

Classes

RegistrationForm

RegistrationManager

addStudent(Course, StudentInfo)
Course

name
numberCredits

open()
addStudent(StudentInfo)

Student
name
major

CourseOffering
location

open()
addStudent(StudentInfo)

Professor
name
tenureStatus

ScheduleAlgorithm

39

Relationships

RegistrationForm

RegistrationManager

Course

Student

CourseOffering
Professor

addStudent(Course, StudentInfo)

name
numberCredits

open()
addStudent(StudentInfo)name

major

location

open()
addStudent(StudentInfo)

name
tenureStatus

ScheduleAlgorithm

40

Multiplicity and Navigation

RegistrationForm

RegistrationManager

Course

Student

CourseOffering
Professor

addStudent(Course, StudentInfo)

name
numberCredits

open()
addStudent(StudentInfo)

major

location

open()
addStudent(StudentInfo)

tenureStatus

ScheduleAlgorithm

1
0..*

0..*
1

1

1..*
4

3..10

0..4
1

11

41

Inheritance

RegistrationForm

RegistrationManager

Course

Student

CourseOffering
Professor

addStudent(Course, StudentInfo)

name
numberCredits

open()
addStudent(StudentInfo)

major

location

open()
addStudent(StudentInfo)

tenureStatus

ScheduleAlgorithm

name
RegistrationUser

42

State Transition Diagram

Initialization Open
entry: Register student
exit: Increment count

Closed

Canceled

do: Initialize course

do: Finalize course

do: Notify registered students

Add Student /
Set count = 0

Add student[count < 10]

[count = 10]

Cancel

Cancel

Cancel

43

Component Diagram

Course Course
Offering

Student Professor

Course.dll

People.dll

Course

User

Register.exeBilling.exe

Billing
System

44

Deployment Diagram

Registration Database

Library

Dorm

Main
Building

