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Abstract—The standard equations of general relativity admit extension so that they can be supplemented,
not only with Einsteinian cosmological repulsive forces described by the Λ term, but also with other
forces. Accordingly, we suggest a model of a uniformly expanding Universe (an S model). In this model,
the cosmological forces of attraction and repulsion precisely balance each other. This S model is a good
approximation for describing the Universe’s evolution over a wide range of redshifts (up to z ∼ 1000). The S
model can explain in a simple way observational data on the age of the Universe, the apparent magnitude–
redshift relation for Type Ia supernovae, and the angular separation between the centers of neighboring
bright spots against the uniform background of the cosmic microwave background radiation.
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1. INTRODUCTION

Comparatively recently, it was supposed that the
dynamics of the Universe were determined by at-
tractive forces (see, e.g., [1, 2]), whereas they are
now believed to be determined by both attractive and
repulsive forces. The first clear indication of this was
probably observational data on the dependence be-
tween the apparent magnitudes m and redshifts for
Type Ia supernovae [3, 4].

In modern cosmology, it is supposed that these
data cannot be explained in the framework of gen-
eral relativity (GR) without invoking a cosmological
constant describing repulsive forces, which play an
important role in the dynamics of the Universe (see,
e.g., [5–7]).

The radius of curvature (scale factor) a(t) char-
acterizes the dynamics of a a homogeneous and
isotropic Universe. The Friedmann cosmological
equations describe the time evolution of a(t). These
equations follow from the Einstein GR equations and
the assumption that the Universe is homogeneous
and isotropic. Details concerning the Friedmann
cosmological equations and the methodology for their
derivation from the Einstein equations can be found,
e.g., in [1, 2, 7].

One modern cosmological model based on the
Friedmann equations with a cosmological constant
is the ΛCDM (Cold Dark Matter) model. In this

model, the greater the effect of the Einsteinian re-
pulsive forces (the cosmological constant), the far-
ther objects with a given redshift z are located, and
the lower their apparent brightness (the larger their
apparent magnitude). Agreement between the ap-
parent magnitude–redshift relation calculated theo-
retically for the ΛCDM model and the correspond-
ing observed dependence is achieved if the repulsive
forces are taken to be much more effective in the
modern Universe compared to attractive forces. It is
this circumstance that has led to the statement that
the cosmological constant has an important role in
the accelerated expansion of the Universe.

One source of cosmological repulsive forces de-
scribed by the Λ term in the Einstein equations is
designated in modern cosmology by the term “dark
energy.” It is believed that dark energy is a certain
vacuum-like medium. The Λ term in the GR equa-
tions gives a description of its macroscopic properties
(see, e.g., [5–7]). Dark energy is thought to be a
perfectly homogeneous medium with a density that is
constant in time and space in all reference frames:

ρΛ =
Λc2

8πG
, (1)

where G is the gravitational constant, c the velocity
of light, Λ the cosmological constant, and Λ > 0.
Here and below, the subscript Λ denotes quantities
calculated in the ΛCDM model. Dark energy has
a negative pressure. Its equation of state has the
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Fig. 1. Nature of the scale-factor dependence for (1)
Einsteinian repulsive forces in the ΛCDM model, (2)
attractive forces in the ΛCDM and S models, and (3)
repulsive forces in the S model.

form [6]

PΛ = −εΛ, (2)

where εΛ = ρΛc2.
According to the GR equations, the cosmological

acceleration due to the cosmological constant is

äΛ = −4
3
πG

(
ρΛ +

3PΛ

c2

)
a (3)

(see, e.g., [1, Ch. 4]). Due to (2), the quantity ρΛ +
3PΛ/c2 < 0, and therefore äΛ > 0. This means that
dark energy with the equation of state (2) is a source
of repulsive forces.

Besides the Einsteinian repulsive forces, other
forms of cosmological repulsive forces are also dis-
cussed in the literature. In these variants, as is the
case with the cosmological constant, the repulsive
forces are taken to be associated with media with
negative pressures. The equation of state of these
media is taken in the form

P = wρc2. (4)

For “quintessence” [8–12], the parameter w is
taken to obey the condition −1 < w < −1/3. In this
case,

ρ + 3P/c2 < 0. (5)

For this reason, as in the case (3), the cosmological
acceleration created by the quintessence is positive,
and it is a source of repulsive forces.

Another hypothesis connects the repulsive forces
with “phantom energy” [13–15]. The equation of
state for this idealized medium has the form (4), but
the parameter w obeys the condition w < −1.

The growing precision of cosmological observa-
tions narrows the range of w in (4) for which models of

negative-pressure media agree with the observations.
According to the data of [16–18],

w = P/ρc2 = −0.97 ± 0.09. (6)

It is believed that the substantial reduction of the
range of admissible values of w and its proximity to
−1 provide strong arguments supporting the view
that the cosmological forces are Einsteinian. This
opinion is currently the most widespread, and is even
believed to have almost been proven (see, e.g., [6, 7,
16–20]).

According to the ΛCDM model, attractive forces
played a decisive role in the early Universe. As the
Universe expanded, the role of such forces decreased.
Meanwhile, the role of the Einsteinian repulsive
forces, which grow linearly as the Universe grows
in size, increased more and more. The relationship
between the attractive and repulsive cosmological
forces varies over a wide range (Fig. 1). According
to the ΛCDM model, the expansion of the Universe is
highly non-uniform. In this model, the functions ȧ(t)
and ä(t) grow in an unbounded fashion as a(t) → 0
and a(t) → ∞.

One shortcoming of the repulsive-forces explana-
tion based on the cosmological constant is the lack of
understanding of the physical properties of the entity
it describes. This is connected with a fundamental
difficulty in the description of the physical properties
of dark energy in the framework of known theories.

Klimenko and Fridman [21] consider a fundamen-
tally different explanation of the cosmological repul-
sive forces that is not based on the cosmological
constant. They show that the Einstein version of re-
pulsive forces in GR is not the only one possible, and
suggest the introduction of non-Einsteinian repulsive
forces into the GR equations. They emphasize that
the Friedmann standard cosmological equations do
not take into account the possibility of increasing
the kinetic energy of the expanding cosmic medium
due to its thermal energy decrease. Bearing this in
mind, they put forward the hypothesis that the kinetic
energy of the expansion and the medium’s thermal
energy could be described in these equations in a
similar way, and that the thermal energy of the cosmic
medium is not only that due to sources of gravi-
tational field, which had previously been taken into
account, but also due to a source of repulsive forces.

When realized in a consistent way in the Fried-
mann equations, the idea of a symmetric description
of the kinetic energy of the expansion and the thermal
energy of the cosmic medium leads to certain form
for the additional terms describing the cosmologi-
cal repulsive forces. Their existence is related to the
scale-factor dependence of the thermal energy of the
cosmic medium. Analysis of the properties of these
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forces shows that they are centrifugal in nature. A
clear specific example was considered, clarifying their
physical meaning. It was shown that the inclusion of
terms describing repulsive forces on the right-hand
side of the Friedmann cosmological equations does
not violate the conservation laws contained in the
Einstein equations or their covariance. These terms
likewise do not change the equations describing the
relationship of the scale factor a(t) with the param-
eters describing the thermodynamic properties of the
cosmic medium.

In the present paper, we consider fact that the
generalized Friedmann equations admit a description
of the cosmological repulsive forces such that these
equations acquire a maximally simple form. This oc-
curs if we suppose that the cosmological repulsive
forces precisely balance the effect of the cosmolog-
ical gravitational forces. In this case, the comoving
cosmological reference frame turns out to be inertial.
In this frame, the cosmological equations describ-
ing the evolution of a uniformly expanding Universe
contain only one parameter—the expansion rate. We
will denote the model of a uniformly expanding Uni-
verse, taking into account its simplicity, the S (sim-
ple) model. Unlike the ΛCDM model, the S model
does not contain singularities in the behavior of ȧ(t)
and ä(t) as a(t) → 0 and a(t) → ∞.

We do not believe that the S model fully correctly
describes the evolution of the Universe. However, as
we show in this paper, the S model is apparently a
good approximate description of the Universe’s dy-
namics. We believe that this is connected with the fol-
lowing circumstance. The Universe’s expansion rate
is so high that the influence of the cosmological at-
traction and repulsive forces, which rapidly decrease
as the scale factor a(t) grows, has long been unable
ti alter it appreciably. Therefore, the expansion of the
Universe is almost uniform, except for a compara-
tively short initial period.

In the present paper, the S model is used to ex-
plain observations important for cosmology corre-
sponding to a wide range of redshifts z (up to z ∼
1000). We use this model to interpret the appar-
ent magnitude–redshift relation for Type Ia super-
novae, explain the observed angular separation be-
tween neighboring bright spots in the uniform cosmic
microwave background (CMB), and find the Uni-
verse’s lifetime. We present an explanation of the
above observational data in the ΛCDM model in
parallel, in order to better understand which of the
models—ΛCDM or the S model—better conforms to
the observations.

Below, we present the necessary information used
to obtain the equations describing the dynamics of a
homogeneous, isotropic Universe taking into account

the cosmological repulsive forces. We describe the
methodology used to derive these equations.

2. THE EINSTEIN EQUATIONS

Cosmology is underpinned by general relativity
(GR). According to this theory, the four-dimensional
space–time is non-Euclidean in the presence of mat-
ter. The metric properties of space–time are described
by the metric

ds2 = gikdxidxk. (7)

Here and below, the indices i, j, k, . . . take on the
values 0, 1, 2, 3, and the indices α, β, γ the values
1, 2, 3. The metric coefficients gik are functions of
the four space–time coordinates xi = (x0, x1, x2, x3).
They are connected in a one-to-one fashion with
the distribution of matter and the motion of its con-
stituent particles. The properties of matter are de-
scribed by the energy–momentum tensor Tik. The
relationship between the components of the metric
tensor gik and the energy–momentum tensor Tik is
determined by the Einstein equations

Rk
i − 1

2
δk
i R =

8πG

c4
T k

i , (8)

where Rk
i is the Ricci tensor, R is its trace, and δk

i is
the Kronecker delta function.

The Ricci tensor has the form

Rk
i = gksRis (9)

= gks

(
∂Γl

is

∂xl
− ∂Γl

il

∂xs
+ Γl

isΓ
m
lm − Γm

il Γ
l
sm

)
.

The Christoffel symbols Γl
ik are defined by the formula

Γl
ik = glmΓm,ik (10)

=
1
2
glm

(
∂gmi

∂xk
+

∂gmk

∂xi
− ∂gik

∂xm

)
.

In cosmology, the cosmic medium is usually
described as a continuous, perfect fluid, with the
energy–momentum tensor having the form

T k
i = (ε + P )uiu

k − Pδk
i , (11)

where ui is the four-velocity of macroscopic motion of
the medium.

For more details on the Einstein equations, see
e.g., [1, 2, 7, 22, 23].
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3. THE GEOMETRY OF A HOMONENEOUS,
ISOTROPIC UNIVERSE

To describe the geometry of the homogeneous,
isotropic, non-stationary, three-dimensional space
of the Universe, it is convenient to use a geometric
analogy, considering this space to be a homoge-
neous and isotropic three-dimensional hypersurface
in a fictitious four-dimensional Euclidean space [23,
Section 107]. In this space, we can introduce four-
dimensional Cartesian, spherical and other coordi-
nate systems in the standard way.

The equation describing a non-stationary, homo-
geneous and isotropic, three-dimensional hypersur-
face in the four-dimensional Cartesian coordinates
(x1, x2, x3, x4) has the form

x2
1 + x2

2 + x2
3 + x2

4 = ka2 (t) . (12)

The constant k can take three values: k = +1, –1,
0. The value k = +1 realizes the case of a space with
constant positive curvature. The value k = −1 corre-
sponds to a space with negative curvature. Flat space,
which has zero curvature, corresponds to k = 0. The
point O = (0, 0, 0, 0) is the center of the Universe, and√

ka(t) is its radius. The radius of a non-stationary
Universe a changes in time. Let us consider the geo-
metric properties of spaces with k = +1,−1, 0 sepa-
rately.

3.1. A Spherical Universe (k = +1)

When k = +1, the space of a homogeneous and
isotropic Universe is a three-dimensional hyper-
sphere, which it is convenient to describing using the
four-dimensional spherical coordinate system (a, χ,
θ, ϕ). In this system, the center of the Universe is the
point where a = 0. The four-dimensional Cartesian
and spherical coordinates are related by the expres-
sions

x1 = a sin χ sin θ cos φ, (13)

x2 = a sin χ sin θ sin φ,

x3 = a sin χ cos θ, x4 = a cos χ.

The admissible ranges of the spherical coordinates are

0 ≤ a ≤ ∞, 0 ≤ χ ≤ π, (14)

0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π.

To describe a spherical Universe, we will also use
a three-dimensional curvilinear coordinate system,
namely, the comoving system. We will also call this
the coordinate system of typical observers. A typical
observer is an abstract object of the Universe that
undergoes only radial motion relative to its center
in the four-dimensional spherical coordinate system.
The system of typical observers is an infinite set that
fills the Universe in a homogeneous manner.

We will choose the temporal coordinate such that,
in the comoving coordinate system of any typical ob-
server, the interval between two infinitely close events
occurring at the point where he is located is given by
the relation

ds2 = c2dt2. (15)

Since all typical observers are equivalent, the time
introduced in this way is the same for all observers
and is therefore called the world time.

We will study the dynamics of the Universe with
respect to one typical observer, calling him the “main”
observer. Due to the equivalence of all typical ob-
servers, any of them could be the “main” observer. Let
us choose the four-dimensional spherical coordinate
system such that the “main” typical observer (M̄ ) is
located at the “North” pole of this coordinate system.

To describe the motion of an arbitrary typical ob-
server M relative to the main observer in the comoving
reference frame M̄, it is convenient to use a comoving
three-dimensional coordinate system. By definition,
in this system, the coordinates of the point M are χ, θ,
ϕ, so that the distance from M̄ to M is R(t) = a(t)χ.
The scale factor a(t) describes homogeneous and
isotropic extension and compression of the comoving
coordinate system.

We will assume that the homogeneity and isotropy
of space are preserved during the Universe’s evolu-
tion. Under this condition, any typical observer M
moves only along a radial coordinate line of the four-
dimensional spherical coordinate system. His equa-
tions of motion in this system are

a = a (τ) , χ (τ) = χ0, (16)

θ (τ) = θ0, ϕ (τ) = ϕ0,

where

a (τ0) = a0, χ (τ0) = χ0, (17)

θ (τ0) = θ0, ϕ (τ0) = ϕ0

are the spherical coordinates of M at the initial time
τ = τ0. The quantity τ determines time in the four-
dimensional spherical coordinate system.

In the comoving system, the motion of M relative
to the main typical observer M̄ is given by the equa-
tions

R(t) = a(t)χ0, χ(t) = χ0, (18)

θ(t) = θ0, ϕ(t) = ϕ0.

We see that the motion of M relative to M̄ is subject
to the Hubble law

dR(t)/dt = H(t)R(t), (19)

where
H(t) = (da/dt)/a (20)
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is the Hubble parameter, which is the same for any
R(t).

The Hubble law is an “internal” law determining
the motion of an arbitrary typical observer relative to
the main observer. It is a consequence of the preser-
vation of the Universe’s homogeneity and isotropy
during its evolution.

The spherical space is non-Euclidean. If (χ, θ, ϕ)
and (χ + dχ, θ + dθ, ϕ + dϕ) are the coordinates of
two infinitely close points in the comoving coordinate
system, then the squared spatial distance between
them is

dl2 = a2
{

dχ2 (21)

+ sin2 χ
[
sin2 θ(dϕ)2 + (dθ)2

] }
.

The interval between two infinitely close events in
the comoving reference frame is written, with (15) and
(21), as

ds2 = c2dt − a2(t) (22)

×
{
dχ2 + sin2 χ

[
sin2 θ(dϕ)2 + (dθ)2

]}
.

The circumference of the radius R = aχ is L =
2πa sin χ. The ratio of the circumference to the radius
is L/R = 2π (sin χ/χ) < 2π. The area of a sphere of
radius R = aχ is equal to

S(R) = a2 sin2 χ

2π∫
0

dϕ

π∫
0

sin θdθ (23)

= 4πa2 sin2 χ.

The radius R of the sphere can vary in the range 0 ≤
R ≤ πa. When R = 0, we have S(0) = 0. At first, as
R grows, the quantity S(R) also grows, reaching its
maximum, Smax = 4a2π, at R = πa/2. Upon further
growth of R, S(R) decreases, vanishing at R = πa.

The spatial volume of a Universe whose radius of
curvature at any point is a is given by the relation

V = a3

2π∫
0

dϕ

π∫
0

sin θdθ

π∫
0

sin2 χdχ (24)

=

π∫
0

S(R)adχ = 2π2a3.

3.2. Space of Negative Curvature (k = −1)

The relations describing the geometry of a ho-
mogeneous space of negative curvature are obtained
from those describing a spherical Universe if we
formally substitute a → ia, χ → iχ. With k = −1,
Eq. (12) describes a three-dimensional pseudosphere.

It is convenient to describe this pseudosphere us-
ing the coordinates (a, χ, θ, ϕ), which are related to
the Cartesian coordinates as

x1 = a sinh χ sin θ cos ϕ, x2 = a sinh χ sin θ sinϕ,
(25)

x3 = a sinh χ cos θ, x4 = −ia cosh χ.

Here, the admissible ranges of the pseudospherical
coordinates are

0 ≤ a ≤ ∞, 0 ≤ χ < ∞, (26)

0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π.

The pseudospherical space of the Universe is non-
Euclidean. If (χ, θ, ϕ) and (χ + dχ, θ + dθ, ϕ + dϕ)
are the coordinates of two infinitely close points in
the comoving coordinate system, the squared spatial
distance between them is

dl2 = a2
{

dχ2 (27)

+ sinh2 χ
[
sin2 θ(dϕ)2 + (dθ)2

] }
.

The interval between two infinitely close events is
written in the comoving coordinate system, with (15)
and (27), as

ds2 = c2dt2 − a2(t)
{

dχ2 (28)

+ sinh2 χ
[
sin2 θ(dϕ)2 + (dθ)2

] }
.

The radius of a circle on the pseudosphere is
R = aχ. The circumference of the radius R is L =
2πa sinh χ. The circumference-to-radius ratio
L/R = 2πa (sinhχ/χ) is greater than 2π. The area
of a sphere of radius R = aχ is equal to

S(R) = 4πa2 sinh2 χ. (29)

The spatial volume encompassed by a pseudo-
sphere of radius R = aχ is

V (R) =

2π∫
0

dϕ

π∫
0

sin θdθ

χ∫
0

a3 sinh2 χdχ (30)

= πa2
(
sinh2 2χ − 2χ

)
.

As the radius R = aχ grows, both S(R) and V (R)
continuously grow.

3.3. Flat (Euclidean) Space (k = 0)

The case of an infinite radius of curvature of the
three-dimensional space is a limiting one, in which
the space of the Universe is flat. The interval ds2 can
be written in this case

ds2 = c2dt2 − b2 (t)
(
dx2 + dy2 + dz2

)
. (31)
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It is convenient to use the Cartesian coordinates x,
y, z as the spatial coordinates. The time-dependent
factor b2(t) in the relation determining the squared
element of length,

dl2 = b2 (t)
(
dx2 + dy2 + dz2

)
, (32)

in the flat Universe does not alter the Euclidean na-
ture of the spatial metric. At any given t, the factor
b2(t) has some value, and can be made equal to unity
via a simple coordinate transformation.

During the evolution of a flat Universe, the
“frozen-in” Cartesian coordinate system suffers a
homogeneous deformation. In this space, a circum-
ference of radius a is 2πa, and the area of a sphere is
4πa2. The volume encompassed by a sphere of radius
a is

V =
4
3
πa3. (33)

Formally, the flat space may be described math-
ematically in spherical coordinates, so that ds2 is
written in the form

ds2 = c2dt2 − a2(t)
{

dχ2 (34)

+ χ2
[
sin2θ(dϕ)2 + (dθ)2

]}
.

4. THE FRIEDMANN COSMOLOGICAL
EQUATIONS

The metric of a homogeneous, isotropic space–
time contains only one scalar parameter, namely, the
scale factor a. This determines the curvature of space.
The Einstein equations for a homogeneous, isotropic
Universe can be transformed to Friedmann’s cosmo-
logical equations, which determine the relationship
between the scale factor a and the quantities de-
scribing the thermodynamic properties of the cosmic
medium (see, e.g., [1, 2]). These equations were first
obtained and used to describe the Universe by Fried-
mann [24, 25], and form the basis for our studies.

The medium is assumed to be perfect, with the
energy–momentum tensor T k

i determined by (11).
Using (11) to calculate the energy–momentum ten-
sor, we neglect all dissipation processes that lead to
entropy growth. On the validity of this approach see,
e.g., [23, Section 108].

When obtaining Friedmann’s equations, we use
the comoving coordinate system, with respect to
which the medium is at rest, so that the four-
velocity components are ui = (1, 0, 0, 0); then, only
the following components T k

i turn out to be nonzero:

T 0
0 = ε, T 1

1 = T 2
2 = T 3

3 = −P. (35)

To describe the geometry of a homogeneous, isotropic
three-dimensional hypersurface, the Friedmann
equations use the three-dimensional curvilinear co-
ordinate system, i.e., the comoving system (see
Section 3). Let us present a brief derivation of Fried-
mann’s cosmological equations from the Einstein
equations for the case of a closed homogeneous,
isotropic spherical space. For such a space, the
interval between two infinitely close events in the
comoving coordinate system is written in the form
[see (22)]

ds2 = c2dt2 − a2(t)
{

dχ2 (36)

+ sin2χ[sin2θ(dϕ)2 + (dθ)2]
}

.

Instead of the variable t, we will use the variable η
defined by the relation

cdt = adη, (37)

where η is a dimensionless time variable; η = x0.
In this case, the interval ds2 determined by (36) is
written in the form

ds2 = a2(η)
{

(dη)2 − (dχ)2 (38)

− sin2χ
[
(dθ)2 + sin2θ(dϕ)2

] }
.

Assuming x0 = η, x1 = χ, x2 = θ, x3 = ϕ and
writing ds2 in the standard form (7), we find the
components of the metric tensor gik:

g00 = a2, g11 = −a2, g22 = −a2 sin2 χ, (39)

g0α = 0, gαβ = 0, g33 = −a2 sin2 χ sin2 θ.

The determinant g = det(gik) is equal to

g = −a8 sin4 χ sin2 θ. (40)

The components of the contravariant metric tensor
gik are, by definition,

gik = G(ik)/g, (41)

where G(ik) are the minors corresponding to the ele-
ments gik in the determinant det(gik). It follows from
the theory of determinants that

gikg
km = δm

i . (42)

Using (40), (41), and (42), we find:

g00 = a−2, g11 = −a−2, (43)

g22 = −a−2 sin−2 χ, g33 = −a−2 sin−2 χ sin−2 θ,

g0α = 0, gαβ = 0.

Calculating the components of the Ricci tensor (9),
we obtain:

R0
0 =

3
a4

[(
a′

)2 − aa′′
]
, (44)
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R0
α = 0, Rβ

α = − 1
a4

[
2a2 + (a′)2 + aa′′

]
δβ
α.

Here, a prime denotes a derivative with respect to η.
The method used to calculate the Ricci tensor

components Ri
k based on the symmetry of the Rie-

mann tensor in the homogeneous, isotropic Universe
is presented in [23, Section 107]. Using (44), we find
the trace of the Ricci tensor:

R = R0
0 + Rα

α = − 6
a3

(
a + a′′

)
. (45)

It follows from (44) and (45) that

R0
0 −

1
2
R = 3

[(
a′

a2

)2

+
1
a2

]
, (46)

R1
1 −

1
2
R = R2

2 −
1
2
R = R3

3 −
1
2
R (47)

= 2
a′′

a3
−

(
a′

a2

)2

+
1
a2

.

Taking into account (35), (44)–(47), we conclude
that, for a space–time with the metric (38) that is
homogeneously filled with a perfect medium, the Ein-
stein equations reduce to the two equations

3

[(
a′

a2

)2

+
1
a2

]
=

8πG

c4
ε, (48)

2
a′′

a3
−

(
a′

a2

)2

+
1
a2

= −8πG

c4
P. (49)

Passing from the variable η to the variable t, we obtain
from (37)

a′ =
a

c
ȧ, a′′ =

a

c2
(aä + ȧ2). (50)

With (50), Eqs. (48) and (49) are brought to the form

3

[(
ȧ

a

)2

+
( c

a

)2
]

=
8πG

c2
ε, (51)

2
ä

a
+

(
ȧ

a

)2

+
( c

a

)2
= −8πG

c2
P. (52)

Here, a dot denotes a derivative with respect to the
time t.

Analogous calculations can be conducted for the
cases k = 0 and k = −1. Their common result for the
cases k = 0,±1 are the equations

3

[(
ȧ

a

)2

+
kc

a2

2
]

=
8πG

c2
ε, (53)

2
ä

a
+

(
ȧ

a

)2

+
kc2

a2
= −8πG

c2
P. (54)

These are called the Friedmann cosmological equa-
tions. It can easily be shown that they can be trans-
formed to

dε

da
+ 3 (ε + P )

1
a

= 0, (55)

ä = −4
3
πG

a

c2
(ε + 3P ) . (56)

We can see from (56) that the contribution of the
pressure (thermal energy) to the creation of a cosmo-
logical gravitational acceleration can be significant.
This occurs in cases when the pressure is comparable
to the energy density of the cosmic medium. In the
cosmic medium, P > 0, and, according to (56), the
effect of the pressure is to decelerate rather than to
accelerate the Universe’s expansion rate.

The viewpoint that pressure can only decelerate
the cosmological expansion is conventional (see, e.g.,
[1, Ch. 1]). The suggestion that pressure (thermal en-
ergy) can influence the direction of the expansion rate
of a homogeneous cosmic medium is perceived nega-
tively. Everybody understands that there are no pres-
sure gradients in a homogeneous medium, and there-
fore there are no outward-pushing forces due to the
pressure. According to the standard form of Fried-
mann’s equations, the thermal energy of a homo-
geneous, isotropic medium not only cannot change
the sign of the cosmological acceleration, but, as
can be seen from (56), it can only enhance the ef-
fect of gravity. Note that this conclusion is obtained
from the standard Friedmann equations, which do not
take into account the effect of cosmological repulsive
forces on the cosmic medium. It was shown in [21]
that a significant role can be played by centrifugal
cosmological repulsive forces in a homogeneous and
isotropic cosmic medium. These are connected with
thermal-energy changes in the cosmic medium in
curved space. Their effect can lead to an increase in
the expansion rate of the cosmic medium.

5. EINSTEIN EQUATIONS
WITH Λ COSMOLOGICAL CONSTANT

The Einstein equations (8) do not contain re-
pulsive forces. A version of the GR equations that
contains repulsive forces was put forward by Einstein
[26], via the introduction of the so-called Λ term
containing the cosmological constant Λ, bringing the
Einstein equations into the form

Rk
i − 1

2
δk
i R =

8πG

c4
T k

i + δk
i Λ. (57)

The value of the universal constant Λ can be found by
comparing theoretical predictions with observations.
It is supposed that Λ ≈ 10−56 cm−2 [1, 6, 7].
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Taking into account the Einstein repulsive forces
described by the Λ term in the Einstein equations
leads to the appearance of additional terms on the
right-hand sides of the Friedmann equations (53) and
(54), which take the form

3

[(
ȧ

a

)2

+
kc2

a2

]
=

8πG

c2
εeff (58)

=
8πG

c2
ε + c2Λ,

2
ä

a
+

(
ȧ

a

)2

+
kc2

a2
= −8πG

c2
Peff (59)

= −8πG

c2
P + c2Λ,

(for details, see, e.g., [1, Chapter 4]).
The transition from (8) to (57) means the substi-

tution

T k
i ⇒ T k

ieff = (εeff + Peff )uiu
k − Peffδk

i , (60)

ε ⇒ εeff = ε + εΛ, P ⇒ Peff = P + PΛ, (61)

where
εΛ = c4Λ/8πG, PΛ = −εΛ. (62)

In our view, it is important to understand that εΛ

and PΛ are not corrections to ε and P , but instead
independent quantities that are sources of repulsive
forces, which are fundamentally different from gravi-
tational forces.

Equations (58) and (59) can straightforwardly be
used to obtain a relation determining the cosmo-
logical acceleration due to the Einsteinian repulsive
forces, which has the form [1, Chapter 4]

äΛ = −4
3
πG

a

c2
(εΛ + 3PΛ) =

1
3
Λc2a. (63)

For the Einsteinian repulsive forces, whose source
are the quantities εΛ and PΛ, it is significant that
PΛ = −εΛ; precisely this is the reason for the repul-
sive nature of these forces. At the same time, even
when G ≡ 0, there remains the Einsteinian repulsion
force field (non-removable curvature), and we there-
fore consider at to be an entity independent of the
gravitational field.

6. GENERALIZED EINSTEIN EQUATIONS

We have noted that, apart from Einsteinian forces
related to the cosmological constant, other cosmo-
logical repulsive forces are theoretically possible in
the Einstein equations. The standard Einstein equa-
tions (8) admit a substitution of a more general nature
than (60) and (61). This has the form

T k
i ⇒ T k

i,eff , ε ⇒ εeff = ε + εΔ, (64)

P ⇒ Peff = P + PΔ.

The quantities εΔ and PΔ are defined by the rela-
tions

εΔ = − 3c2

8πG

Δ2(a)
a2

, (65)

PΔ =
c2

8πG

(
Δ2(a)

a2
+

1
a

dΔ2(a)
da

)
,

where Δ2(a) is an arbitrary function of the scale
factor a. The quantity a is a scalar characterizing the
properties of a homogeneous and isotropic Universe,
which vary in the same way at all its points. The
quantities εΔ and PΔ are a source of cosmological
repulsive forces. Like ε and P , they are scalar func-
tions. The Einsteinian sources of repulsive forces εΛ

and PΛ are a special case of the quantities εΔ and PΔ

introduced here.
With (64), the Einstein equations acquire the form

Rk
i − 1

2
δk
i R =

8πG

c4
T k

i,eff . (66)

These equations describe not only the gravitational
field but also a cosmological field of repulsive forces
whose sources are the quantities εΔ and PΔ. Let us
again stress that the existence of the terms εΔ and PΔ

in the suggested expressions for εeff and Peff does not
at all mean that these are corrections to the energy
and pressure. The quantities εeff and Peff consist of
two parts. The first of these, ε and P , are sources of
the gravitational field, while εΔ and PΔ are sources of
cosmological repulsive forces. Our suggested repul-
sive forces, like the Einsteinian ones, are independent
of the gravitational field. To distinguish (66) from
the standard Einstein equations (8), we will call the
former the generalized Einstein equations.

In the transformations (64) and (65), the matrix
T k

ieff;k remains a second-rank tensor, so that the co-
variance of the Einstein equations is not violated.
The substitution (64), (65) likewise does not violate
the conservation laws T k

i eff; k = 0 contained in the
Einstein equations. Under any choice of the function
Δ2(a), the conservation laws are valid:

T k
i eff; k = 0. (67)

With any form of the function Δ2(a), the following
relation holds:

T k
i eff; k = 0 ⇒ T k

i,k = 0. (68)

The transformations (60)–(62), leading to the
Einstein equations with the cosmological constant,
are special cases of the transformations (64), (65).
Indeed, if Δ2(a) is chosen in the form

Δ2(a)/2 = Δ2
Λ(a)/2 = −1

6
Λc2a2, (69)
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then εΔ = εΛ, PΔ = PΛ, and we obtain the Einstein
equations with the cosmological constant.

7. GENERALIZED FRIEDMANN EQUATIONS

In the case of a homogeneous, isotropic Universe,
the corresponding generalized Friedmann equations
are obtained from the generalized Einstein equations
in the standard way. The resulting equations are writ-
ten

3
(

ȧ2

a2
+

kc2

a2

)
=

8πG

c2
ε − 3

Δ2(a)
a2

, (70)

2
ä

a
+

ȧ2

a2
+

kc2

a2
(71)

= −8πG

c2
p − 1

a

dΔ2(a)
da

− Δ2(a)
a2

.

These were termed in [21] the generalized Friedmann
equations. We consider the Universe to be a homoge-
neous and isotropic hypersurface in four-dimensional
space. We suppose that the generalized Friedmann
equations describe a motion of this hypersurface in
the fourth spatial dimension, which is perpendicular
to it at each point. This dimension is large-scale and
is not curved.

In the generalized Friedmann equations (70) and
(71), terms ∼ȧ2 describe the kinetic energy of the
cosmological medium. The additional terms ∼Δ2(a)
describe the effect of some energy that is a source
of cosmological repulsive forces. It is supposed that
the description of the kinetic energy of the cosmic
medium and the energy that is the source of repulsive
forces in these equations should be symmetric. It is
this kind of generalization of the Friedmann equations
that was carried out in [21]. Formally, this implies the
substitution

ȧ2 ⇒ ȧ2 + Δ2(a), (72)

ä ⇒ ä +
1
2

dΔ2(a)
da

.

This substitution leads to equations which can de-
scribe both attractive and repulsive forces in a ho-
mogeneous and isotropic Universe. Substituting (72)
into (53) and (54) and using the notation (65), we
conclude that the substitutions (72) and (64), (65) are
equivalent.

The generalized Friedmann equations (70), (71)
can be brought to the form

dε

da
+ 3 (ε + P )

1
a

= 0, (73)

ä = −4
3
πG

a

c2
(ε + 3P ) − d

da

(
Δ2(a)

2

)
. (74)

We can easily verify that the first of these equations is
the zeroth component of the conservation law (67) for
a homogeneous isotropic Universe. The other com-
ponents of (67) are identically equal to zero for any
choice of the function Δ2(a).

Note that (73) is the first law of thermodynamics
written per unit mass in a homogeneous isotropic
Universe. Bearing in mind that the expansion of the
Universe is an adiabatic process (see, e.g., [1, 2]), the
first law of thermodynamics can be written in the form

dE = d (εV ) = −PdV. (75)

Since, in the case under consideration, V ∼ a3, we
conclude that (73) follows from (75).

We can see from (74) that using the transforma-
tions (64), (65) is actually a method of describing
the effect of some energy Δ2(a)/2 on the Universe’s
dynamics.

The system of equations (73), (74) is not complete.
To close it, we must take into account equations
describing the thermodynamic properties of the cos-
mic medium. It is difficult to write such equations
in the general case. During the Universe’s evolution,
the component composition of the cosmic medium
changes, as well as the conditions for the interaction
between the components (see, e.g., [1, 2, 7]).

The following two limiting cases are frequently
considered in the theory.

7.1. A Non-relativistic Universe

Assuming P ≡ 0 and ε = ρc2, we find from (73)
that, for any k and Δ2(a),

1
ρ

dρ

dt
+

3
a

da

dt
= 0. (76)

It follows that the density of the cosmic medium ρ(t)
and the scale factor of the Universe a(t) are related by

ρa3 = const. (77)

In modern cosmology it is supposed that (73) and
(74) with P = 0 describe the Universe’s dynamics
when the contribution of the relativistic component
of the cosmic medium to its total mass (energy) is
negligibly small.

7.2. A Relativistic Universe

Assuming P = (1/3)ρc2, we find from (73) that,
for any k and Δ2(a),

1
ρ

dρ

dt
+

4
a

da

dt
= 0. (78)
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It follows that, in a relativistic Universe, the density,
specific energy, and pressure are related to the scale
factor as

ρa4 ∼ εa4 ∼ Pa4 = const. (79)

In modern cosmology, it is supposed that (73)
and (74) with P = (1/3)ρc2 describe well the early
Universe at the epoch when the contribution of the
relativistic component of the cosmic medium to its
total mass (energy) was dominant.

8. MODEL OF A UNIFORMLY EXPANDING
UNIVERSE

Let us describe the model for a uniformly expand-
ing Universe (S model) we propose here. We will also
write equations describing the cosmological model
that is the most widespread at present, namely, the
ΛCDM model. We will use these equations to com-
pare the calculated characteristics of observational
dependences obtained in the S and ΛCDM models.

Let us take into account the multi-component
nature of the medium that fills the Universe. We will
describe it using a two-component approximation.
We will assume that the medium consists of two ho-
mogeneously mixed components: (a) non-relativistic
and (b) relativistic.

The non-relativistic component includes all ele-
ments of the cosmic medium, both observable (“bary-
onic”) and unobservable (“dark matter”), containing
particles whose rest mass is much higher than their
kinetic energy. The dark matter may be clustered,
and is currently the dominating (by mass) part of the
non-relativistic component of the cosmic medium.
We assume that the effect of the pressure of the non-
relativistic component on the Universe’s dynamics is
insignificant.

The relativistic component will include all ele-
ments of the cosmic medium, both observable (the
CMB) and unobservable, whose equation of state
is P = (1/3)ε. This component consists of particles
whose rest mass is either zero or much smaller than
their total energy. We assume that the relativistic
component is not clustered. Its contribution to the
total mass of the cosmic medium is at present small
(see, e.g., [6, 7]).

The ratio of the number densities of the non-
relativistic (n1) and relativistic (n2) components re-
mains constant, except for the earliest stages in the
Universe’s evolution. We take into account that, ac-
cording to the observational data, n2/n1 ∼ 109, but it
is possible that this ratio is much greater.

Note that the description of some constituents of
the cosmic medium (such as neutrinos) must be more
detailed, and must allow for the possibly finite value of
their rest mass.

Our description of the Universe’s dynamics us-
ing the model suggested begins with the general-
ized Friedmann equations (70), (71). For our two-
component cosmic medium, these equations are writ-
ten in the form

3
(

ȧ2

a2
+

kc2

a2

)
= 8πG (ρ1 + ρ2) −

3Δ2

a2
, (80)

2
ä

a
+

(
ȧ2

a2
+

kc2

a2

)
(81)

= −8
3
πGρ2 −

Δ2

a2
− 1

a

dΔ2

da
.

Here and below, the subscripts “1” and “2” are used
to denote the non-relativistic and relativistic compo-
nents, respectively.

When writing (80) and (81), we assumed that the
full pressure of the cosmic medium is P = P1 + P2 ≈
P2 = (1/3)ε2. The energy densities ε1 and ε2 are
related to the densities ρ1 and ρ2 by the expressions
ε1 = ρ1c

2, ε2 = ρ2c
2.

Equations (80), (81) can easily be transformed to

ä = −4
3
πGa (ρ1 + 2ρ2) −

1
2

dΔ2

da
, (82)

d

da
(ε1 + ε2) + (3ε1 + 4ε2)

1
a

= 0. (83)

When Δ2(a) 
= const, Eq. (82) describes not only the
action of gravitational forces, but also of repulsive
forces. Equation (83) describes the energy change
of the two-component cosmic medium during the
Universe’s evolution. It has this form for any choice
of Δ2(a) and any value of the parameter k.

In the two-component model of the cosmic
medium, (83) divides into two equations:

dρ1

da
+ 3ρ1

1
a

= 0, (84)

dρ2

da
+ 3ρ2

1
a

= 0. (85)

Integrating these equations, we conclude that the
densities of the non-relativistic (ρ1) and relativistic
(ρ2) components are related to the characteristic size
of the Universe a(t) as

ρ1 (a) = ρ10(a0/a)3, ρ2 (a) = ρ20(a0/a)4. (86)

With (86), Eqs. (80), (81) can be written

ȧ2

2
+

Δ2

2
− τ1

a
− τ2

2a2
= −kc2

2
, (87)

ä = − d

da

(
−τ1

a
− τ2

2a2

)
− 1

2
dΔ2

da
. (88)

The constants τ1 and τ2 are defined by the relations

τ1 =
4
3
πGρ10a

3
0, τ2 =

8
3
πGρ20a

4
0. (89)
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Equation (87) is interpreted as representing en-
ergy conservation per unit total mass of the cos-
mic medium. According to this equation, the sum
of the kinetic energy of the cosmic medium’s ex-
pansion

(
ȧ2/2

)
, the energy Δ2(a)/2, which is a

source of repulsive forces, and the potential energy
−

(
τ1/a + τ2/2a2

)
, which is a source of attractive

forces, remains constant during the Universe’s evo-
lution.

Equation (88) represents the radial motion of the
cosmic medium in the fictitious four-dimensional
space. The first term on the right-hand side of (88)
describes the action of attractive forces, and is related
to changes in the potential energy of the cosmic
medium. The second term describes repulsive forces,
which are related to changes in the energy Δ2(a)/2. It
is obvious that a necessary condition for the presence
of volume repulsive forces in a homogeneous isotropic
Universe is that the energy Δ2(a)/2 be variable
during the evolution.

The standard Friedmann equations without a cos-
mological constant correspond to Δ2(a) ≡ 0. These
equations describe the old classical cosmological
model (see, e.g., [1]). The Friedmann equations with a
cosmological constant correspond to “dark energy”:

1
2
Δ2

Λ (a) = −1
6
Λc2a2, (90)

where Λ is the cosmological constant. With (90), the
Friedmann equations (80), (81) take the form (58),
(59). These are components of the Einstein equations
with a Λ term for a homogeneous and isotropic Uni-
verse. They underlie the ΛCDM model [6, 7]. Let us
write them in the form(

1
ā

dā

dt̄

)2

= Ωcurv(ā)−2 (91)

+ ΩM(ā)−3 + Ωrad(ā)−4 + ΩΛ,

d2ā

dt̄2
= −ΩM

2ā2

(
1 +

2āeq

ā

)
+ ΩΛā, (92)

where
ΩΛ = ρΛ/ρc, ρΛ = Λc2/8πG, (93)

ā = a/a0, t̄ = tH0.

When writing (91) and (92) we have used the
standard notation [7]

ΩM = ρ10/ρc, Ωrad = ρ20/ρc, (94)

Ωcurv = ρcurv,0/ρc, āeq = Ωrad/ΩM ,

where ρ10 and ρ20 are the modern values of the non-
relativistic and relativistic components, respectively.
The quantities ρc and ρcurv,0 are, by definition,

ρc = 3H3
0/8πG, ρcurv,0 = −3kc2/8πGa2

0. (95)

Solutions to (91), (92) must satisfy the initial con-
ditions

ā(t̄0) = 1, (dā/dt̄)(t̄0) = 1, (96)

where t̄0 is the present age of the Universe and H0 is
the Hubble constant. We assume that the time t̄ = 0
corresponds to the Big Bang. Analysis of available
observational data gives [27, 28]

H0 = 73 ± 3 km s−1Mpc−1. (97)

The Hubble constant H0 is often written in the
form H0 = h · 100 km s−1Mpc−1. In calculations, one
usually sets h = 0.7 [7].

The critical density value ρc is defined by the rela-
tion

ρc = 3H2
0/8πG = 1.88 × 10−29h2 g/cm3

. (98)

The parameters ΩM , Ωrad, ΩΛ determine the densities
of the non-relativistic and relativistic components and
dark energy, respectively, in units of ρc.

The solutions that describe the Universe’s dynam-
ics in the framework of the ΛCDM model contain sin-
gularities in the behavior of a(t), determining the time
evolution of the characteristic scale of the Universe.
As a(t) → 0 and a(t) → ∞, the functions ȧ(t) and
ä(t) grow without bound [see (91) and (92)].

The nature of the cosmological repulsive forces
has not been fully established. Therefore, we believe
that it is expedient to consider a non-Einsteinian
choice of Δ2(a), which describes the cosmological
repulsive forces in the framework of the generalized
Einstein equations. Here, we suggest a form of Δ2(a)
that removes the above singularities in the behavior
of the scale factor a(t), and the generalized Fried-
mann equations have the simplest possible form. We
suggest that Nature may choose this simplest form
among all possible ways of evolution. The form of
Δ2(a) that allows us to achieve these aims is

Δ2(a) =
2τ1

a
+

τ2

a2
−

(
k c2 + γ2c2

)
, (99)

where γ is a constant of this model.

If the function Δ2(a) is chosen in the form (99),
the generalized Friedmann equations (87), (88) take
the form

ȧ2 = γ2c2, ä = 0. (100)

According to these equations, the Universe is ex-
panding at a constant rate, equal to γc. The quantity
γ is one of the parameters of the uniformly expanding
model of the Universe (S model). The value of this pa-
rameter should be taken such that the model correctly
describes the observations.
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We assume that the Universe has emerged as a
result of the Big Bang, and the solution to equation
(100) satisfies the initial conditions

a(0) = 0, da/dt(0) = γc. (101)

According to (100) and (101), the scale factor a(t)
changes according to

a(t) = γct. (102)

The Hubble law is valid in a homogeneous isotropic
Universe with any form of a(t):

da/dt = H(t)a(t). (103)

The Hubble constant is H0 = H(t0), where t0 is the
age of the Universe. With (102) and (103), we find

H0 = (da/dt) (t0)/a(t0) = 1/t0. (104)

The age of the Universe t0 and the Hubble con-
stant H0 in the S model are related by this expression.
Since H0 = h · 100 km s−1Mpc−1 and h ≈ 0.7, we
find t0 ≈ 14 × 109 years. This is believed in modern
cosmology to be the lifetime of the Universe (see, e.g.,
[6, 7]). The equations determining the evolution of
the scale factor a(t) in the S model and the ΛCDM
model are fundamentally different. The equations that
describe the relationship of a(t) and the parameters
describing the thermodynamic properties of the cos-
mic medium [see, e.g., (76)–(79)], do not depend on
the choice of Δ2(a), and are the same.

The radiation temperature T (t) and the scale fac-
tor a(t) are related by

T (t)a(t) = T0a0 = const. (105)

Since t0 = H−1
0 and a(t) = γct in the S model, we

find from (105) the time at which the temperature T is
achieved:

t = t0
T0

T
. (106)

According to modern data (see, e.g., [7]), T0 ≈
2.725 K.

Figure 2 shows a schematic of the most important
epochs in the evolution of the Universe and a compar-
ison of their dates in the S model and ΛCDM model.
The expansion rate of the early Universe is much
lower in the S model than in the ΛCDM model. This
difference could be significant in calculating the pri-
mordial chemical composition of the cosmic medium.
The conditions for cosmological nucleosynthesis are
more favorable in the S model than in the ΛCDM
model. The duration of the high-temperature epoch is
longer in the S model than that in the ΛCDM model
by many orders of magnitude.

9. INTERPRETATION OF THE OBSERVED
APPARENT MAGNITUDE–REDSHIFT

RELATION FOR TYPE IA SUPERNOVAE

One of the effective methods of testing the correct-
ness of a cosmological model is by comparing the ap-
parent magnitude–redshift relation theoretically cal-
culated in the model with the observed relation [1, 3,
4]. These calculations use the formula determining
the relation between the visible brightness and red-
shift for a source whose absolute luminosity is as-
sumed to be known. Let us present a brief derivation
of this formula.

9.1. Apparent Magnitude–Redshift Relation

In an expanding Universe, the wavelength λ of
a photon emitted at time t and its wavelength λ0

detected by an observer at time t0 are related by

λ0/λ = a0/a. (107)

The quantities a and a0 determine the characteristic
size of the Universe at the times t and t0, respectively.

The redshift z of an observed object is defined as

z = (λ0 − λ) /λ = a0/a − 1. (108)

The farther the object emitting the photons, the
longer their travel time in the expanding Universe,
and the greater the ratio a0/a(t), and hence the
redshift z, according to the relation a0/a = 1 + z
(see, e.g., [1]). The redshift z of an object is a directly
observed quantity. A measurement of z consists in
identifying an emission (or absorption) line or line
system and determining how much these lines are
shifted toward longer wavelengths. Equations (107)
and (108) are general and valid for any z.

In the ΛCDM, it is usually assumed that the Uni-
verse is open and has the metric

ds2 = c2dt2 − a2(t)
{

(dχ)2 (109)

+ sinh2 χ
[
(dθ)2 + sin2θ(dϕ)2

]}

(see, e.g., [7]). The reason for this assumption is
as follows. In the absence of cosmological repulsive
forces, a closed model of the Universe can be realized
when ΩM + Ωrad > 1. This holds if the density of the
cosmic medium is higher than the critical density
(see, e.g., [1, 2]). Taking into account repulsive forces,
the value of ΩM + Ωrad for which the Universe can be
closed should be higher than in the absence of such
forces, i.e., greater than unity.

The parameter ΩM contains contributions from
two constituents: “baryonic matter” and “dark mat-
ter”. Observational estimates of the baryonic com-
ponent ΩM are approximately 0.04−0.05 (see, e.g.,
[6, 7]). On the other hand, numerous observational
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and ΛCDM model.

data (see, e.g., [17–19]) imply that the amount of
dark matter exceeds the amount of baryonic matter
by a factor of five to six. Thus, taking into account
the dark-matter contribution, it is supposed that the
value of ΩM lies in the range 0.25−0.30 [16–19]. In
modern cosmology, the contribution of the relativistic
component to the total energy density of the modern
Universe is believed to be very small. It is thought that
the value of Ωrad is ≈

(
4.2/h2

)
× 10−5 [7, Chapter 4].

Using the above values of ΩM and Ωrad, we con-
clude that the density of the cosmic medium is ap-
preciably lower than the critical density, so that the
Universe is open. This is the reason for using the met-
ric (109) to describe the geometry of the Universe in
the ΛCDM model. In our proposed S model, we also
use the metric (109) and assume that the Universe is
open.

The area of a surface reached by the photons emit-
ted by a source with redshift z is determined by the
relation

S(z) = 4πr2(z), (110)

where
r(z) = a0 sinh χ(z), (111)

and a0 = a(t0) is the scale factor of the modern Uni-
verse. Taking cH−1

0 as a unit of length, we write r(z)
in the dimensionless form

r̄(z) = r(z)/cH−1
0 . (112)

The flux density of photons falling onto a receiver is
proportional to 1/S(z). Due to the redshift, the energy

of each detected photon �ω0 differs from that of the
emitted photon �ω. These energies are related as

�ω0/�ω = a/a0 = (1 + z)−1. (113)

Obviously, the energy of each received photon is
smaller than its energy when it is emitted by a factor
of (1 + z)−1. In addition, the apparent brightness of
an object with redshift z is diminished by a factor of
(1 + z)−1. This is due to the fact that a unit time for
the receiver corresponds to the time (1 + z)−1 for the
emitter (see, e.g., [1, Chapter 3].

Taking into account all the above, the apparent
brightness E of a source with absolute luminosity
L and redshift z, neglecting photon absorption and
scattering, can be written

E = L/[(1 + z)2S(z)]. (114)

Astronomers usually use magnitudes m instead of
E. By definition,

m = −2.5 log E + const. (115)

To single out the effect of factors determining the
Universe’s evolution in the dependence m(z) and to
exclude the influence of the absolute luminosity of the
observed object, we study objects having a known
luminosity (“standard candles”). In addition to the
apparent magnitude m, we introduce the notion of the
absolute magnitude M . The quantity M is m for the
case when the source is located at a distance of 10 pc
from the observer. By definition,

M = −2.5 log E1 + const, (116)
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where E1 = L/4πl20, l0 = 10 pc. With the expressions
(112), (114), (115), and (116), we find

m − M = 5 log [(1 + z)r̄(z)] (117)

+ 5 log
(
cH−1

0 /l0
)
.

The influence of factors determining the properties
of the observed objects has been removed in the
(m − M)(z) dependence, and there only remains the
dependence on the factors determining the Universe’s
evolution. We use (117) to calculate theoretically
(m − M)(z) in the ΛCDM model and in the model
of a uniformly expanding Universe.

To find the function r̄(z) in (117), it is necessary
to calculate χ(z) [see (111) and (112)]. The function
χ(z) is unambiguously related to a(t), which deter-
mines the dynamics of the Universe. For a photon
moving towards a receiver located at the origin of the
coordinate system χ, θ, ϕ,

ds2 = c2dt2 − a2(t)dχ2 = 0. (118)

Hence, we find

dχ = −cdt/a(t). (119)

The minus sign is taken because we consider beams
coming toward an observer located at the origin.

Using (108), we can pass from the variable t to the
variable z, obtaining

dt2 = a2dz/a0 (da/dt) , (120)

and (119) can be written

dχ = cdz/a0 (ȧ/a) . (121)

Thus, we obtain the function

χ(z) = c

z∫
0

dz′

a0 (ȧ/a)z′
. (122)

9.2. (m − M)(z) Dependence in the ΛCDM Model

To calculate (m − M)Λ(z), we previously calcu-
late the function r(z). Taking into account (111),
(112) and (91), we can write the relation determining
the distance r(z) to an observed object with redshift z
in the form

r̄Λ(z) =

sinh

z∫
0

√
Ωcurvdz′√

Ωcurv(1 + z′)2 + ΩM(1 + z′)3 + Ωrad(1 + z′)4 + ΩΛ

√
Ωcurv

. (123)

Here and below, quantities calculated in the ΛCDM
model will be denoted with the subscript Λ.

The parameters ΩM , Ωcurv, Ωrad and ΩΛ are not
independent. It follows from (91) and (96) that

Ωcurv + ΩM + Ωrad + ΩΛ = 1. (124)

Most often observations are interpreted using the
“flat ΛCDM model”, in which it is assumed that
Ωcurv = 0. The predictions of the ΛCDM model with
appreciably nonzero Ωcurv are not consistent with the
observations (see, e.g., [7]). Assuming Ωcurv = 0, we
write (123) and (124) in the form

r̄Λ(z) (125)

=

z∫
0

dz′

[ΩM (1 + z′)3 + Ωrad(1 + z′)4 + ΩΛ]
1/2

,

ΩM + Ωrad + ΩΛ = 1. (126)

If we agree with the assertion that space is flat and
assume Ωcurv = 0, while the value of Ωrad is taken
to be

(
4.2/h2

)
× 10−5 (see, e.g., [7]), the parameters

determining r̄Λ(z) in the ΛCDM model are ΩM and
ΩΛ, and, by virtue of (126), only one of these is inde-
pendent, for example, ΩM . In the ΛCDM model, the
larger ΩM , the larger the influence of gravitational and
the smaller the influence of repulsive forces.

The standard mathematical procedure for identi-
fying the theoretical (m − M)Λ(z) dependence that
best describes the observational data on Type Ia su-
pernovae yields ΩM ≈ 0.27, ΩΛ ≈ 0.73 (see, e.g., [7,
16–18]). Bearing this in mind, the following values of
the parameter of the ΛCDM model are generally used:

Ωcurv = 0, ΩM = 0.27, (127)

Ωrad =
(
4.2/h2

)
× 10−5, ΩΛ = 1 − ΩM − Ωrad,

H0 = h · 100 km/s Mpc, h = 0.7.
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9.3. (m − M)(z) Dependence in the S Model

With (122) and (102), Eq. (112) determining the
distance r(z) in the S model can be written

r̄(z) = γsinh
[

1
γ

ln(1 + z)
]

. (128)

Using (117) and (128), we obtain a formula for the
(m − M)(z) dependence in this model.

The S model contains the two independent pa-
rameters γ and h. Figure 3 plots the (m − M)(z) de-
pendences for the S model calculated using (117) for
several values of γ. For comparison, a plot of the (m−
M)Λ(z) dependence is also presented, calculated in
the ΛCDM model for the parameter values (127).

A comparison of the theoretical (m − M)(z) de-
pendences presented in Fig. 3 calculated in the S
and ΛCDM models shows the following. In the red-
shift range z < 2, to each curve (m − M)Λ(z) of
the ΛCDM model corresponding to particular val-
ues of ΩM , Ωrad, ΩΛ, and h, we can match a curve
(m − M)(z) for the S model with parameters γ and
h selected accordingly, which differs only little from
the former curve. This means that the S model can
explain the observational data on Type Ia supernovae
as well as the ΛCDM model, at least at z < 2 (pre-
cisely the range to which the observational data on
Type Ia supernovae belong [17, 18]). As is clear from
Fig. 3, the values of γ fort which the S model fits
the observational data on Type Ia supernovae well are
close to unity.

As Fig. 3 shows, the difference between the calcu-
lated curves r̄(z) and the plots (m − M)(z) obtained
in the S and ΛCDM models can become significant
at redshifts z > 2. To check the applicability of the
S model to observations corresponding to z � 1, we
use this model in the next section to explain the
observed anisotropy of the CMB radiation. These ob-
servations correspond to redshifts z ≈ 1000.

10. INTERPRETATION
OF THE CMB ANISOTROPY

10.1. CMB anisotropy

In modern cosmology, it is believed that establish-
ing smallness of the spatial curvature of the Universe
(its “flatness”) is a fundamental result of recent years
[6, 7]. It is believed that data on anisotropy of the
CMB convincingly demonstrate this result. These
have been obtained as a result of vast systematic
anisotropy observations with the aid of the Relict,
COBE, and WMAP spacecraft [16–18, 29–31].

Analysis of the fine structure of the CMB shows
that there are very small deviations from a uniform
background. Weak temperature variations at the level
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of tens of ppm are observed. These indicate the ex-
istence of weak inhomogeneities (compressions and
extensions) of the cosmic medium at the epoch of
recombination. These inhomogeneities were seeds for
galaxies and clusters of galaxies. In the compressions,
the temperature was slightly higher than the mean
value, and these are seen as bright spots (relative to
the mean background). In the extensions, the tem-
perature was slightly lower, and these are observed
as relatively dark spots. The degrees of brightness
deviation from the mean background differ, and vary
from spot to spot, as well as among bright and dark
spots.

Of special interest are the brightest spots in the
CMB pattern. It is believed that the observed neigh-
boring spots at the epoch of recombination of the cos-
mic medium are located at a well defined separation
from each other. Following the structure formation
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theory based on Lifshitz’s classical paper [32] (see
also [33]), it is thought that this separation is specified
by the age of the Universe at the epoch of recombina-
tion. This age turns out to be substantially different
in the ΛCDM model and in the model of a uniformly
expanding Universe. In the ΛCDM model, this ages
is approximately 440 thousand years, whereas it is
about 14 million years in the uniformly expanding
model. In the ΛCDM model, the observed spots are
thought to be protogalactic. In the S model, they are
condensations that later gave rise to galaxy cluster
formation.

The observations clearly indicate the existence of
a certain angular separation Δθ between the spatial
directions pointing at the centers of two neighboring
spots.

The relation between the angular and linear sizes
of an observed object depends on the geometry of
space. To explain the observed angular separation
Δθ in the ΛCDM model, we must assume that the
space where the cosmological expansion occurs is
almost flat and set Ωcurv ≈ 0. The size of the observed
Universe is then approximately cH−1

0 (see, e.g., [6,
7]). It is believed that space can be regarded as flat
on the scale cH−1

0 . Therefore, when solving the equa-
tions describing the dynamics of the Universe in the
ΛCDM model, Ωcurv is usually set equal to zero.
Disagreement with the observations arises for values
of Ωcurv appreciably different from zero.

A fundamental difficulty of fitting the ΛCDM
model to the observations is that, according to this
model, the Universe expands non-uniformly most of
the time. At the same time, the observations seem to
indicate that the Universe expands uniformly.

We will show that we can explain the observed an-
gular separation between the centers of neighboring
bright spots against the homogeneous CMB back-
ground in the S model without invoking the idea of
spatial flatness.

10.2. The Angular Size of Remote Objects

The formula for the angular extent Δθ of an object
of linear size d at a redshift z can be written [7,
Section 4.7]:

Δθ = d(1 + z)/r(z). (129)

In this formula, r(z) is the distance to the observed
object given by (111). Bearing in mind that the phys-
ical size of an object emitting photons at time ti is
d = a(ti) sinh χ, the ratio a(ti)/a0 = (1 + z)−1 and
the relation r(z) = a0 sinhχ, and measuring lengths
in units of cH−1

0 , we write (129) in the form

Δθ = d̄(1 + z)/r̄(z), (130)

where d̄ = d/cH−1
0 and r̄(z) = r(z)/cH−1

0 .
In the ΛCDM model, r̄(z) is calculated using

Eq. (125). The ΛCDM model gives a correct value
for the angular separation between the centers of
neighboring bright spots against the homogeneous
CMB background if ΩM , Ωrad, Ωcurv, ΩΛ, and h
are close to the values given in (127). The time trec
when a(trec) = 1/(1 + zrec) in the ΛCDM model is
found by solving (108) under the boundary conditions
(112). Calculation shows that, with the parameter
values (127),

trec ≈ 4.4 × 105 years. (131)

In the model of a uniformly expanding Universe,
the distance r̄(z) is calculated using (128). The re-
combination epoch trec in this model is given by the
relation

trec = H−1
0 / (1 + zrec) . (132)

Taking into account that H−1
0 ≈ 14 × 109 years and

zrec ≈ 1000, we find that

trec ≈ 14 × 108 years. (133)

Let us qualitatively explain what determines the
characteristic size of the bright spots against the
homogeneous CMB background.

There inevitably exist perturbations in an expand-
ing Universe. When t < trec, the growth of these
perturbations is prevented by the pushing-apart ef-
fect of the pressure of the relativistic component. Af-
ter recombination, its influence on the dynamics of
the non-relativistic component disappears. Therefore,
the homogeneous distribution of the non-relativistic
component becomes unstable.

At recombination, the density perturbations have
a small magnitude, Δρ/ρ ∼ 10−5 (see, e.g., [7]). Re-
gions of increased density represent sources of an
unbalanced gravitational field. Due to this field, con-
traction of non-relativistic matter located in causally
connected regions, which by recombination had sizes
of lrec = ctrec or smaller, led to a growth of Δρ/ρ on
these scales. Even an insignificant density increase
over the mean density on sizes of l ≤ lrec in a uni-
formly expanding Universe is sufficient for inhomo-
geneities with sizes l ≤ lrec to become gravitationally
bound. This is due to the fact that there is an exact
balance between the attractive and repulsive forces in
an unperturbed uniformly expanding Universe.

Beginning with the epoch of recombination, the
non-relativistic component of the cosmic medium be-
gan to split into gravitationally bound clumps of size
lrec or smaller. Taking part in the common cosmo-
logical expansion, these fragments behave at t ≥ trec
as quasi-independent gravitationally bound subsys-
tems.
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At present, in the uniformly expanding Uni-
verse inside the apparent horizon, there are about
(1 + zrec)

3 ∼ 109 inhomogeneities of characteristic
size approximately equal to lrec = ctrec. Since trec ≈
14 × 109 years, we find lrec ≈ 4.6 Mpc. This is the
typical size of galaxy clusters in the modern Universe.

Note also that, in the S model, the time teq when
the densities of the relativistic and non-relativistic
components are equal is given by the relation

teq = H−1
0 (ρ20/ρ10) = H−1

0 (Ωrad/ΩM ) . (134)

If one admits that
(

Ωrad

ΩM

)
≈ 4.2 × 10−5

ΩMh2
, then teq ≈

4.2 × 10−5H−1
0

ΩMh2
. With ΩM ≈ 0.25 and h ≈ 0.7, we

have teq ≈ 4.8 × 106 years. Since, in the model pro-
posed, trec = 14 × 106 years and teq = 4.8 ×
106 years, we conclude that, at the epoch of recombi-
nation, the energy density of the cosmic medium was
to a large extent determined by the non-relativistic
component.

The size d determining the distance between
neighboring spots against the homogeneous CMB
background at the epoch of recombination is calcu-
lated as

d = 2ctrec. (135)

With (135), we can write (129) in the form

Δθ =
2trec (1 + zrec)

r̄(zrec)H−1
0

180
π

. (136)

This relation gives the value of the angular separation
in degrees.

In the ΛCDM model with the parameter val-
ues (127) and zrec = 1000, trec = 4.4 × 105 years,
r̄Λ(z) = 3.3, and the value of this angular separation
is ΔΛθ = 1.09. In the S model, trec (1 + zrec) = H−1

0 ,
so that

Δθ =
2 × 180
r̄(zrec)π

. (137)

With (128) and (137), we find that, in our proposed
model, Δθ ≈ 1◦ if γ is taken to be 1.35. With this
value of γ, the model of a uniformly expanding
Universe also describes well the observed apparent
magnitude–redshift relation for Type Ia supernovae
in the redshift range z ≤ 2 (Fig. 3).

When describing the dynamics of the Universe in
the comoving reference frame, we should keep in mind
the following. The quantity da/dt does not represent
a physical velocity of any particles. There is no reason
to think that da/dt cannot be larger than the speed of
light. At the same time, the expansion rate da/dτ of

the Universe in the Euclidean four-dimensional space
is always lower than the speed of light. Let us verify
this. Obviously,

da/dt = γc, c2dt2 = c2dτ2 − da2. (138)

Hence, we find that

da/dτ = c
γ√

1 + γ2
. (139)

For any value of γ, we have da/dτ < c. As γ in-
creases, the quantity da/dτ monotonically grows.
When γ � 1, we have da/dτ ≈ c.

11. CONCLUSION

(1) We have shown that the GR equations can
be supplemented not only with Einsteinian repulsive
forces, described by the Λ term, but also with other
forces. We have presented the generalized Einstein
equations allowing for the existence of such forces.

(2) We have considered in detail the theoretically
admissible case that the cosmological repulsive and
attractive forces precisely balance each other. A
model of a uniformly expanding Universe (S model)
has been proposed.

(3) We have written cosmological equations de-
scribing the S model. In the comoving coordinate
system, these have the form

da

dt
= γc,

d2a

dt2
= 0,

where γ is the S model parameter that determines
the rate of variation of the spatial scale a(t) (the
radius of curvature of the Universe). In addition to the
parameter γ, the dynamics of the Universe in the S
model depends on the value of the Hubble constant
H0.

(4) It has been shown that the equations deter-
mining the evolution of a(t) in the S and ΛCDM
models are fundamentally different, while the equa-
tions relating a(t) and the parameters determining the
thermodynamic properties of the cosmic medium are
the same in these models.

(5) An interpretation of the apparent magnitude–
redshift relation (m − M)(z) for Type Ia supernovae
is given in the S model, which can describe these
data well. The difference between the calculated (m−
M)(z) curves obtained in the S and ΛCDM models
can be substantial at redshifts z > 2.

(6) We can explain the observed angular separa-
tion between the centers of neighboring bright spots
(Δθ ≈ 1◦) against the homogeneous CMB back-
ground using the S model, without assuming spatial
flatness. The values of γ and h for which Δθ ≈ 1◦ and
the calculated (m − M)(z) curve describes well the
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Fig. 4. (m−M)(z) dependence in the S model for γ = 1.22 and h = 0.63. We give the value of the angular separation between
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observations for Type Ia supernovae turn out to be
γ = 1.22, h = 0.63 (Fig. 4).

(7) In the S model, the lifetime of the Universe
is determined by the value of the Hubble con-
stant, and is precisely equal to H−1

0 . With H0 =
63 km s−1Mpc−1, this implies approximately 15.5 ×
109 years, consistent with modern views of the age of
the Universe.

(8) Due to its simplicity, the S model makes it pos-
sible to improve our understanding of the laws gov-
erning the evolution of the Universe. It does not con-
tain singularities in the behavior of the scale factor,
such as occur in other cosmological models. Accord-
ing to the S model, the dates of the most important
processes in the early Universe are completely dif-
ferent from the predictions of modern cosmology. For
example, the duration of the high-temperature epoch
that is favorable for nucleosynthesis is much longer in
this model than in the ΛCDM model. Therefore, the
ratio between the amounts of hydrogen and heavier
elements in the primordial chemical composition of
the cosmic medium may prove to be different from the
conventional ones. In the present paper, we have not
applied the S model to explain the early evolution of
the Universe.

In conclusion, we note that the character of the
expansion of the Universe at z > 1000 may differ from
what is proposed in this paper. At the same time,
applying the S model to interpret observations at
z ≤ 1000 shows that the assumption of a uniformly

expanding Universe in the post-recombination period
seems to be correct.

The possibility of carrying out computer simu-
lations of the dynamics of the Universe that en-
able independent variation of the model parame-
ters with a clear graphical representation of the
calculated results for various cosmological models,
including the S model, is available on our site,
http://www.cosmoway.ru/.
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