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Abstract. In this paper the exact explicit traveling wave solutions to the fKdV Sawada-

Kotera equations are given by using a uniform method. We obtained some new forms of the

solutions more than that appeared in Wazwaz [9]. The results in this paper are significant

extension.

1. Introduction

The standard fifth-order KdV equation (fKdV) of the form

ut + αu2ux + βuxuxx + γuuxxx + uxxxxx = 0 (1)

where α, β and γ are arbitrary nonzero parameters. Lots of forms of the
fKdV equation can be constructed by changing these parameters, such as the
Lax equation [1], the type of the Kaup-Kupershmidt equation [2], [3], [4], the
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Ito equation [5], and the type of the Sawada-Kotera equations [4], [6], [7], [8].
The fKdV equation (1) describes motions of long waves in shallow water under
gravity and in a one-dimensional nonlinear lattice, and has wide applications
in quantum mechanics and nonlinear optics [1-6]. Several different approaches,
such as Bäcklund transformation, the Hirota’s bilinear methods, the Lax pair
methods, the tanh and extended tanh methods, etc., have been used to obtain
soliton and multi-soliton solutions.

In this paper, we will investigate the exact solutions of the type of the
Sawada-Kotera equations (SK equations for short) by using a uniform method.
This type includes:

(i) The Sawada-Kotera equation [7] is given by

ut + 5u2ux + 5uxuxx + 5uuxxx + uxxxxx = 0. (2)

(ii) The Sawada-Kotera-Parker-Dye equation [4] is given by

ut + 45u2ux − 15uxuxx − 15uuxxx + uxxxxx = 0. (3)

(iii) The KdV-Sawada-Kotera-Ramani equation [6], [8] is given by

ut + a(3u2 + uxx)x + b(15u3 + 15uxuxx + uxxxx)x = 0, b 6= 0. (4)

Recently, the type of the SK equations has been studied by several authors
using various methods. In [9] Wazwaz obtained some forms of exact traveling
wave solutions for equations (2) and (3) by tanh and extended tanh method.
He obtained only two soliton solutions to (2) as follows:

u(x, t) =
16

3
µ2 − 8µ2 tanh2(µx− 128

3
µ5t)− 8µ2 coth2(µx− 128

3
µ5t),

u(x, t) = µ2 − 6µ2 tanh2(µx+ 19µ5t)− 6µ2 coth2(µx+ 19µ5t),

and solutions to (3) as follows:

u(x, t) = −16

9
µ2 +

8

3
µ2 tanh2(µx− 128

3
µ5t) +

8

3
µ2 coth2(µx− 128

3
µ5t),

u(x, t) = µ2 + 2µ2 tanh2(µx− 181µ5t) + 2µ2 coth2(µx− 181µ5t),

by using the first and second criterion respectively. Li and Zhang in [10]
obtained some exact traveling wave solutions for equation (4) for some special
case. We notice that the traveling wave equations of the type of the SK
equations has the uniform form by using suitable transformations, so we can
use a uniform method to get the transformed exact solutions for this type of
equations.

To study the traveling wave solutions of (2), (3) and (4), letting u(x, t) =
y(x − vt) = y(ξ), where v stands for wave velocity. Then integrating the
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result equations with respect to ξ once, respectively, equations (2), (3) and (4)
become the following correspondingly traveling wave equations:

u′′′′ = −5uu′′ − 5

3
u3 + vu− 6β, (5)

u′′′′ = 15uu′′ − 15u3 + vu+ 2β, (6)

u′′′′ = −15uu′′ − 15u3 − a

b
(3u2 + u′′) +

v

b
u+ 2g, (7)

where β and g are two integral constants. We notice that by using suitable
transformations these three types of the Sawada-Kotera-equations have the
following uniform model of traveling wave equation:

y′′′′ = 30yy′′ − 60y3 + αy + β (8)

which just meet the F-IV form of Cosgrove’s higher-order Painlevé equation
[11], where α = v for (5), (6) by using the transformations u = −6y to (5),

u = 2y to (6), and α = a2

5b2
+ v

b , β = a3

225b3
+ av

30b2
−g by using u = −2y− a

15b to (7).
Therefore we can study the exact solutions of the type of the SK equations
uniformly by using Cosgrove’s work. In this paper, we will investigate the
exact explicit traveling wave solutions to (8) for the cases (1). β = 1

9α
√
α and

(2). β = −1
9α
√
α, α > 0 in the next two sections, respectively. We notice

that in [10] the authors only studied equation (8) for β = 0. Hence the
solutions obtained in the present paper are new exact traveling wave solutions
for the original equations (2)-(4). We will show that for the equation (8), their
traveling wave solutions correspond to some orbits in a 4-dimensional phase
space of 4-dimensional dynamical system. These traveling wave solutions lie
in a two-dimensional global homoclinic manifold to a hyperbolic equilibrium
and in a two dimensional center manifold to a center-center equilibrium point.

2. The Exact Traveling Wave Solutions Of Equation (8) For

β = 1
9

√
α3 And Their Geometric Property

Now we begin to state and prove our theorem. For β = 1
9

√
α3 we have the

following conclusion.

Theorem 2.1. The type of SK equations (2)-(4) have the uniformly trans-
formed traveling wave equation (8) which has the nontrivial exact explicit
solutions given by (11)-(15)(see below). These solutions are the correspond-
ingly changed singular or regular solitary wave solutions of the original equa-
tions (2)-(4). Geometrically, the solution curves of the equation (8) defined by
(x1(ξ) = y(ξ), x2(ξ) = y′(ξ), x3(ξ) = y′′(ξ), x4(ξ) = y′′′(ξ)) lie in the intersec-
tion of two level homoclinic manifolds

Φ1(x1, x2, x3, x4) = 0, Φ2(x1, x2, x3, x4) = 0
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of system (9)(see below) for β = 1
9

√
α3, α > 0.

Proof. For convenience, we take α = v = 16µ4, µ > 0 and then β = 64
9 µ

6 to
equation (8). Let

x1 = y, x2 = y′, x3 = y′′, x4 = y′′′,

then equation (8) for α = 16µ4, β = 64
9 µ

6 is equivalent to the four-dimensional
system

x′1 = x2, x
′
2 = x3, x

′
3 = x4,

x′4 = 30x1x3 − 60x31 + αx1 + β
(9)

which has two first integrals(see [11])

Φ1(x1, x2, x3, x4) = (x4 − 6x1x2)
2

− 24(x3 − 3x21 +
1

12
α)(x1x3 −

1

2
x22 − 2x31 +

1

12
β),

Φ2(x1, x2, x3, x4) = x1(x4 − 6x1x2)
2 − x2(x4 − 6x1x2)(x3 + 6x21 −

1

6
α)

+ 12x1(x3 − 3x21 +
1

12
α)(x1x3 −

1

2
x22 − 2x31 +

1

12
β)

− 36(x1x3 −
1

2
x22 − 2x31 +

1

12
β)2

+ 3(x1x3 −
1

2
x22 − 2x31 +

1

12
β)(12x31 − αx1 + β)

+
1

3
(x3 − 3x21 +

1

12
α)(x3 + 6x21 −

1

6
α)2.

For given two constants K1 and K2, the two level sets defined by

Φ1(x1, x2, x3, x4) = K1

and

Φ2(x1, x2, x3, x4) = K2

determine two three-dimensional invariant manifolds of system (9). By using
the method given in Li and Zhang [10], we first discuss the number and position
of the equilibria of (9) in the phase space. For a known equilibrium, we
compute the eigenvalues of the coefficient matrix of the linearized system of (9)
at the equilibrium point in order to understand its local dynamical behavior.
It is easy to see that (9) has a unique real equilibrium point E1(

2
3µ

2, 0, 0, 0) for

which the eigenvalues of the coefficient matrix M1(
2
3µ

2, 0, 0, 0) of the linearized
system of (9) are two real pairs ±2µ, ±4µ, the equilibrium point E1 is a saddle-
saddle. Let

K1 = Φ1

(
2

3
µ2, 0, 0, 0

)
= 0, K2 = Φ2

(
2

3
µ2, 0, 0, 0

)
= 0.
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Thus the two level sets defined by Φ1(x1, x2, x3, x4) = 0 and Φ2(x1, x2, x3, x4) =
0 pass through the equilibrium point E1(

2
3µ

2, 0, 0, 0). Their intersection lies in
the homoclinic manifold of E1. By using the method given in Cosgrove [11],
we know that the equation (8) admits solutions as the following form:

y(ξ) = U(ξ) + V (ξ),

where U(ξ) and V (ξ) are elliptic functions defined by the differential equations

(U ′)2 = 4U3 − 1

12
αU +

1

24
β = 4(U +

2

3
µ2)(U − 1

3
µ2)2,

(V ′)2 = 4V 3 − 1

12
αV +

1

24
β = 4(V +

2

3
µ2)(V − 1

3
µ2)2.

(10)

In the (U, U̇)−phase plane and (V, V̇ )−phase plane, the two equations defined
by (10) determine the same cubic algebraic curve which is shown in Fig.1.
Clearly, these equations of (10) give rise to a homoclinic orbit to the equilib-
rium point (13µ

2, 0) and an open orbit.
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Fig.1. The phase curve defined by (10).

By using (10) to do integration, we obtain the following results.
(1) Corresponding to the homoclinic orbit in Fig.1, we have the parametric
representation

U1(ξ) = V1(ξ) = −2

3
µ2 + µ2 tanh2(µξ).

(2) Corresponding to the open orbit in Fig.1, we have the parametric repre-
sentation

U2(ξ) = V2(ξ) = −2

3
µ2 + µ2 coth2(µξ).

(3) Corresponding to the equilibrium point (13µ
2, 0) in Fig.1, we have the

parametric representation

U3(ξ) = V3(ξ) =
1

3
µ2.
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Therefore, we obtain the exact explicit parametric representations of the non-
trivial solutions to (8) for β = 64

9 µ
6 as follows:

y1(ξ) = x1(ξ) = U1 + V1 = 2U1 = −4

3
µ2 + 2µ2 tanh2(µξ), (11)

y2(ξ) = x1(ξ) = U1 + V2 = −4

3
µ2 + µ2[tanh2(µξ) + coth2(µξ)], (12)

y3(ξ) = x1(ξ) = U1 + V3 = − 1

12
p2 + µ2 tanh2(µξ), (13)

y4(ξ) = x1(ξ) = U2 + V2 = 2U2 = −4

3
µ2 + µ2 coth2(µξ), (14)

y5(ξ) = x1(ξ) = U2 + V3 = −1

3
µ2 + µ2 coth2(µξ), (15)

y6(ξ) = x1(ξ) = U3 + V3 = 2U3 =
2

3
µ2.

This completes the proof of Theorem 2.1. �

By utilizing Theorem 2.1, let u(ξ) = −6y(ξ), and α = 16µ4, β = 1
9

√
α3 =

64
9 µ

6 we obtain the nontrivial exact explicit traveling wave solutions to (2) as
follows:

u1(ξ) = 8µ2 − 12µ2 tanh2(µξ),

u2(ξ) = 8µ2 − 6µ2[tanh2(µξ) + coth2(µξ)],

u3(ξ) = 2µ2 − 6µ2 tanh2(µξ),

u4(ξ) = 8µ2 − 12µ2 coth2(µξ),

u5(ξ) = 2µ2 − 6µ2 coth2(µξ).

We see that u1(ξ), u3(ξ) are regular solitary wave solutions, while u2(ξ), u4(ξ),
u5(ξ) are singular solitary wave solutions of equation (2). Notice that Wazwaz
in [9] obtained only two soliton solutions akin to u2(ξ) for equation (2), hence
the results in this work are significant extension and we obtain else some new
ones.
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By u(ξ) = 2y(ξ), and α = 16µ4, β = 1
9

√
α3 = 64

9 µ
6 we obtain the nontrivial

exact explicit traveling wave solutions to (6) as follows:

u1(ξ) = −8

3
µ2 + 4µ2 tanh2(µξ),

u2(ξ) = −8

3
µ2 + 2µ2[tanh2(µξ) + coth2(µξ)],

u3(ξ) = −2

3
µ2 + 2µ2 tanh2(µξ),

u4(ξ) = −8

3
µ2 + 4µ2 coth2(µξ),

u5(ξ) = −2

3
µ2 + 2µ2 coth2(µξ).

Similarly, we see that u1(ξ), u3(ξ) are regular solitary wave solutions, while
u2(ξ), u4(ξ), u5(ξ) are singular solitary wave solutions of equation (3). Notice
that Wazwaz in [9] obtained only two soliton solutions akin to u2(ξ) for equa-
tion (3), hence the results in this work are significant extension and we obtain
else some new ones. For

µ =
4

√
a2 − 5bv

80b2
, a2 − 5bv > 0, g =

a3

225b3
+

av

30b2
− 1

45|b|3
√

(a2 − 5bv)3,

then α = 16µ4 and β = 1
9

√
α3 = 64

9 µ
6, by u(ξ) = −2y(ξ)− a

15b we obtain the
nontrivial exact explicit traveling wave solutions to (4) in parametric repre-
sentations as follows:

u1(ξ) =
8

3
µ2 − a

15b
− 4µ2 tanh2(µξ),

u2(ξ) =
8

3
µ2 − a

15b
− 2µ2[tanh2(µξ) + coth2(µξ)],

u3(ξ) =
2

3
µ2 − a

15b
− 2µ2 tanh2(µξ),

u4(ξ) =
8

3
µ2 − a

15b
− 4µ2 coth2(µξ),

u5(ξ) =
2

3
µ2 − a

15b
− 2µ2 coth2(µξ).

Similarly, we see that u1(ξ), u3(ξ) are regular solitary wave solutions, while
u2(ξ), u4(ξ), u5(ξ) are singular solitary wave solutions of equation (7) which is
the traveling wave solutions of equation (4).

3. The Exact Traveling Wave Solutions To (8) For β = −1
9

√
α3

And Their Geometric Property

For β = −1
9

√
α3, we have the following conclusion.
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Theorem 3.1. The type of SK equations (2)-(4) have the uniformly trans-
formed traveling wave equation (8) which has the nontrivial exact explicit so-
lutions given by (17), (18)(see below). These solutions are the correspond-
ingly changed singular periodic wave solutions of the original equations (2)-
(4). Geometrically, the solution curves of the equation (8) defined by (x1(ξ) =
y(ξ), x2(ξ) = y′(ξ), x3(ξ) = y′′(ξ), x4(ξ) = y′′′(ξ)) lie in the intersection of two
level center manifolds

Φ1(x1, x2, x3, x4) = 0, Φ2(x1, x2, x3, x4) = 0

of system (9) (see Theorem 2.1) for β = −1
9

√
α3, α > 0.

Proof. We take α = 16µ4, β = −1
9

√
α3 = −64

9 µ
6 to (8). Then system (9)

has a unique real equilibrium point E2(−2
3µ

2, 0, 0, 0) for which the eigenvalues

of the coefficient matrix M2(−2
3µ

2, 0, 0, 0) of the linearized system of (9) are

two purely imaginary pairs ±µ2i, ±2µ2i, the equilibrium point E2 is a center-
center.

At this point, we haveK1 = Φ1(−2
3µ

2, 0, 0, 0) = 0, K2 = Φ2(−2
3µ

2, 0, 0, 0) =
0, hence the two level sets defined by

Φ1(x1, x2, x3, x4) = 0

and
Φ2(x1, x2, x3, x4) = 0

pass through the equilibrium point E2. Their intersection lies on the center
manifold of E2(−2

3µ
2, 0, 0, 0). In this manifold, we know that the equation (8)

admits solutions as the following form:

y(ξ) = U(ξ) + V (ξ),

where U(ξ) and V (ξ) are elliptic functions defined by the differential equations

(U ′)2 = 4U3 − 1

12
αU +

1

24
β = 4(U − 2

3
µ2)(U +

1

3
µ2)2,

(V ′)2 = 4V 3 − 1

12
αV +

1

24
β = 4(V − 2

3
µ2)(V +

1

3
µ2)2.

(16)

In the (U, U̇)−phase plane and (V, V̇ )−phase plane, the two equations defined
by (16) determine the same cubic algebraic curve which is shown in Fig.2.
Clearly, these equations of (16) give rise to an open curve passing through the
point (23µ

2, 0) and, the equilibrium point (−1
3µ

2, 0).
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Fig.2. The phase curve defined by (16).

By using (16) to do integration, we obtain the following results.
(1) Corresponding to the open orbit in Fig.2, we have the parametric repre-
sentation

U1(ξ) = V1(ξ) =
2

3
µ2 + µ2 tan2(µ2ξ).

(2) Corresponding to the equilibrium point (−1
3µ

2, 0) in Fig.2, we have the
parametric representation

U2(ξ) = V2(ξ) = −1

3
µ2.

Therefore, we obtain the exact explicit parametric representations of the non-
trivial solutions to (11) for β = −24p2 as follows:

y1(ξ) = x1(ξ) = U1 + V1 = 2U1 =
4

3
µ2 + 2µ2 tan2(µξ), (17)

y2(ξ) = x1(ξ) = U1 + V2 =
1

3
µ2 + µ2 tan2(µξ), (18)

y3(ξ) = x1(ξ) = U2 + V2 = −2

3
µ2.

This completes the proof of Theorem 3.1. �

Remark 3.2. Correspondingly, by u(ξ) = −6y(ξ), and α = 16µ4, β = −1
9

√
α3 =

−64
9 µ

6 we obtain the nontrivial exact explicit traveling wave solutions to (2)
as follows:

u1(ξ) = −8µ2 − 12µ2 tan(µξ),

u2(ξ) = −2µ2 − 6µ2 tan(µξ).

Hence the equation (2) has noncompact singular periodic wave solutions u1(ξ)

and u2(ξ) for β = −1
9

√
α3 to equation (8).



532 Z. H. Sun, W. Zhang, T. He and C. Gao

By u(ξ) = 2y(ξ), and α = 16µ4, β = −1
9

√
α3 = −64

9 µ
6 we obtain the

nontrivial exact explicit traveling wave solutions to (6) as follows:

u1(ξ) =
8

3
µ2 + 4µ2 tan(µξ),

u2(ξ) =
2

3
µ2 + 2µ2 tan(µξ).

Hence the equation (3) has noncompact singular periodic wave solutions u1(ξ)

and u2(ξ) for β = −1
9

√
α3 to equation (8).

For µ = 4

√
a2−5bv
80b2

, a2 − 5bv > 0, g = a3

225b3
+ av

30b2
+ 1

45|b|3
√

(a2 − 5bv)3,

then α = 16µ4 and β = −1
9

√
α3 = −64

9 µ
6, by u(ξ) = −2y(ξ) − a

15b we ob-
tain the nontrivial exact explicit traveling wave solutions to (4) in parametric
representations as follows:

u1(ξ) = −8

3
µ2 − a

15b
− 4µ2 tan(µξ),

u2(ξ) = −2

3
µ2 − a

15b
− 2µ2 tan(µξ).

Hence the equation (4) has noncompact singular periodic wave solutions u1(ξ)

and u2(ξ) for β = −1
9

√
α3 to equation (8).

4. Conclusion

In this paper, we have obtained many exact explicit wave solutions for
the type of the SK equations (2)-(4) by uniformly employing the Cosgrove’s
method. Some exact explicit traveling wave solutions are obtained. The local
dynamical behavior of some known equilibria are discussed. The obtained
solutions included the types of regular or singular solitary waves, noncompact
periodic singular waves. The results in this work are significant extension to
that in [9] and we obtain else some new forms of the solutions.
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