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SUMMARY

An elementary discussion is given of the gravitational deflection of light due
to radially and cylindrically symmetric masses. The effect of the deflection on
apparent luminosity of distant sources is also considered. All results are
limited to weak, static, asymptotically flat gravitational fields. Emphasis here
is on observations of sources aligned behind the disc of the deflecting mass so
that the possible transparency of this mass is decisive in image formation.
Detailed calculations are made for the simple case of the uniformly dense
transparent sphere and comparisons are made with the opaque mass sphere.
If they have the same mass and radius, the maximum light deflection pro-
duced by these lenses is nearly equal. However, their effects on the area of
narrow light beams may be quite different. The uniform transparent sphere
does not produce multiple images of one source and, to first order, introduces
no image distortion.

I. INTRODUCTION

The lens-like amplification of apparent luminosity by the gravitational field
of a star has been developed in detail and has been widely applied. The conven-
tional stellar lens analysis deals only with photons which propagate in a weak
external Schwarzschild field. Thus every photon reaching the observer from the
amplified source is assumed to have been deflected from its Euclidean path by a
small angle given by the familiar relation

0(b) x K1b™1; K; = isz— (1)
In this small deflection situation the * collision parameter ’, b, can be approximated
by the Euclidean distance of closest approach of the photon to the mass centre.
'The meaning of 6() is apparent in Fig. 1 which is the usual Euclidean embedding
of the 2-space projection of a ¢ weak Schwarzschild ’ null geodesic. Of course all
angles have been exaggerated for clarity. The gravitational deflection actually
occurs continuously (as in the dotted path), but for weak fields the photon path
can be approximated by the extensions of the initial and final tangents back to the
star. The angle between these lines defines 6(b) and the conventional amplifying
properties of the opaque stellar lens follow from equation (1) (Einstein 1936;
Liebes 1964; Refsdal 1964a).

There are at least two cases when equation (1) does not apply. If the deflecting
mass is extremely dense and nearby, then the observer can see photons which passed
through the part of the stellar field where the curvature is too large for equation (1)
to apply. This situation is discussed by Darwin (1959, 1962), Metzner (1963) and
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Atkinson (1965). Another possibility occurs if the deflecting mass is effectively
transparent and large enough for observations to be made through it. All deflections
may be small but, because the observed photons did not remain external to the
deflector, equation (1) cannot be used and the usual stellar lens properties do not
apply. This paper deals with this case. It will be found that the properties of this
‘ transparent ’ lens are rather different from those of the corresponding opaque
lens.

% i % —

Fi1c. 1. The Euclidean embedding of the 2-space projection of a ‘ weak Schwarzschild’
null geodesic.

A

Possible physical prototypes of the transparent lens developed here are a dust
free giant elliptical galaxy and a populous symmetric cluster of galaxies. The
observational effects of these objects has been calculated by treating them as
opaque stellar lenses (see, e.g. Barnothy 1966; Kantowski 1969; Refsdal 1964b,
1970; Sadeh 1967). Certainly this treatment is justified irrespective of the possible
transparency of the deflector as long as the observed light remains at all times
outside the deflecting mass. However, if for some observer the source is aligned
behind the apparent disc of the deflector, then for this observer the transparency
of the deflector plays a decisive role in image formation. For a deflecting mass as
extensive as a rich cluster of galaxies the required source alignment would not be
rare or transient. Of course the approximation of a cluster of galaxies by a uniform
transparent mass sphere requires some justification. However, such specific
applications of the transparent lens in observational cosmology are pursued in a
forthcoming paper. The present paper is chiefly concerned with deriving the
imaging properties of the uniform transparent mass sphere and with comparing this
lens with the opaque stellar lens.

2. THE DEFLECTION ANGLE RELATION FOR THE UNIFORM
TRANSPARENT LENS

For ease of comparison with the stellar lens this analysis of the transparent lens
is also based on the deflection angle relation 6(b). For a transparent mass of radius
a, 0(b<a) is clearly dependent on the mass distribution in the deflector. In many
applications a variety of centrally condensed mass distributions would be of
interest. However, here we make the simple assumption that the lens is approxi-
mated as a uniformly dense static sphere. As in the stellar lens case the surrounding
universe is assumed asymptotically flat. If, in addition, we assume that the trans-
parent mass has small mean density and is of less than cosmological scale, then the
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metric may be approximated as

goo = I+ Ago (2)
gog = O (3)
gab = —8ap(1 — Ago) (4)
where
0]
Ago = 247 (5)

(see, e.g. Adler, Basin & Schiffer 1965).
For a radially symmetric mass distribution, the Newtonian gravitational potential
® takes the familiar form

Gm

O(rza) = — .

(6)
_ Gm(r)

D(r<a) = ;

(7)
where m is the total mass and m(7) is the mass contained within a sphere of radius 7.

In a space whose metric may be approximated in this form the deflection angle
may be calculated using a very general approximation technique due to Plebanski
(1960). Plebanski’s technique is based on the eikonal equation (or geometric optics
in a pseudo-Riemannian space) and is applicable to any asymptotically flat space-
time whose metric can be expressed as the flat metric plus a small correction in
each component.

For the metric given above Plebanski’s light deflection formula takes the
simple form

fgm — Opm (Smn — Otmotn) j dongo, n(xO’ Ps + OtsxO)_ (8)

In equation (8) ft™ is the ‘ final > (x0 - c0) unit tangent of a light ray which at a
large negative time before deflection had an ‘initial’ unit tangent 0™, In the
argument of the integrand p$ is that part of the ‘initial * photon position vector
which is orthogonal to %™, The coordinates represent time and space as measured
in Minkowski space comoving with the deflecting mass. Thus this argument is
the flat space position vector of the photon at time x%/c. The Plebanski formula
is correct to first order in Agy.

It is convenient here to choose an orthogonal coordinate system with the origin
at the centre of the deflecting mass. Because of the spherical symmetry of the mass
no particular orientation of the coordinate triad can be distinguished and calcula-
tions based on a convenient orientation will be completely general. As shown in
Fig. 2 an orientation is chosen such that 0™ = [1, o, 0] and ps = [o, o, b]. With
this choice p3 = b plays the role of a photon collision parameter and by the small
deflection assumption, b is also approximately the distance of closest approach of
the ray to the mass centre. The time is chosen to be zero when the photon crosses
the ¥1 = o plane.

Spherical symmetry or explicit calculation shows that the ray will remain in the
plane containing the initial tangent vector and the mass centre. Thus, in these
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Fic. 2. The orthogonal coordinate system chosen for calculation of the transparent lens
ray deflection.

coordinates, the only deflection which can occur is in the — &3 direction. The small
deflection approximation implies /23— 03 z — 6(b). Equation (8) becomes

6(b<a) = zf

L )7
dx0Ago, 3(7 > a)+ J. dxOAgo, 3(r < a). (9)
© —L

The distance 7 is the Euclidean distance of the photon from the mass centre and in
the present coordinates is

r(x%, B) = [(°)*(é1)%+ 6%(&5)?]1/2

where é; is the unit vector in the &% direction. The integration limit L is the value
of x0 corresponding to 7 = a, the mass radius. It is apparent in Fig. 2 that
L = (a2—-b2)1/2, Using a metric perturbation based on equations (6) and (7) the
integration results in

bb<a) = 4™ [1—5] 4G [Fml(r) 4 (09)

c2b a 2 Jo 78

For constant density this becomes

1_(a® —52)3’2] _ (10)

Gm
<) = 437 [b a%

This deflection is a smooth function which increases monotonically from a
minimum of 6(b = o) = o to a single maximum at b = (§)/4 4. This maximum
value of 6(b) is only slightly greater than the maximum opaque stellar deflection,
0(b = a) = Kia=1. Of course, for b>a the deflection is given by equation (1).
For b<a equation (10) becomes

d(b<a) ~ (%fc_’;’) b= %Kla—zb = Ksb. (11)
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Because d20/db2<o for o<b<a, the ‘exact’ deflection is always less than this
linear approximation. However, for b<a/2 the approximation error increases very
slowly with b. At b = a/3 the error is 2 per cent and at b = a/2 it is 7 per cent. For
most purposes of application equation (11) may be considered a valid approxima-
tion of 6(b) not just for b<a but for b < a/2. This behaviour of §(b) and its physical
basis are clarified in the next section.

3. A NEWTONIAN MODEL OF GRAVITATIONAL LIGHT DEFLECTION
APPLIED TO SPHERICAL AND CYLINDRICAL MASSES

In the deflection discussion above, the photon is deflected with respect to a
Euclidean straight line simply because it must follow a null geodesic in a curved
space-time. In the weak field approximation this space-time curvature is a function
only of the Newtonian gravitational potential ® (whose argument is distance in a
flat 3-space). This allows the deflection to be interpreted as a Newtonian gravita-
tional scattering process in a fictitious flat 3-space. As an intuitive aid, the language
of this process is adopted in this section. However, the Newtonian language is not
essential to the argument. For example, the discussion is easily recast in terms of a
relativistic Fermat’s Principle of stationary travel time (Weyl 1922). The simplicity
of the argument depends on the fact that ® obeys Poisson’s equation—not that
VO be called a force. _

It follows almost immediately from requiring a null interval and ®/c2<1 in
the weak field metric that a photon in such a space-time is deflected as if it were a
Newtonian particle with speed ¢ in a Euclidean space with an effective gravitational
potential 2®. In order to account for this relativistic curvature factor a Newtonian
could perhaps assign the photon an anomalous passive gravitational mass twice
that of slow particles having the same inertial mass.

Considered as a Newtonian scattering problem the small angle of deflection
of the photon can be approximated by the fractional transverse change in the
photon velocity vector and this is given by the time integral of the transverse force
along the photon trajectory. For small deflections this path integral may be calcu-
lated assuming the photon moves along its undeflected path with speed c.

If the localized mass distribution has radial symmetry then only m(7), the mass
inside a sphere of radius 7, exerts a radial force at  and

o(b) = %f :0 ™r)® g, (9b)

The coordinates are chosen here to agree with the derivation of equation (9a) and
this result is obviously in agreement with (ga).

Further physical insight into the dependence of the deflection on the mass
distribution is provided by applying Gauss’ Law to an axially symmetric mass.
Consider an undeflected light ray parallel to the symmetry axis and at a distance .
By rotation of the undeflected ray generate a circular cylinder of radius b about the
mass symmetry axis and cap the ends arbitrarily to form a closed surface. According
to Gauss’ Law, the total normal Newtonian flux into this surface is 47Gm(b) where
m(b) is the total mass enclosed by the surface. For a cylindrical surface of length /
extended sufficiently far beyond a localized mass, the flux through the end surfaces
is negligible and the mean normal force over the cylindrical part of the surface is

16
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2Gm(b)/bl. By cylindrical symmetry this must also be the mean normal Newtonian
force across each undeflected ray generating the surface. The effective photon
deflecting force is twice this. Thus, over a sufficiently long distance /, the photon
is deflected by an angle
m
o(p) = 4970, (%)

Gauss’ Law requires that the mean flux over the closed surface due to mass
exterior to this surface vanish. Again, if the mean outward normal flux through the
end surfaces is zero, axial symmetry requires that the mean flux across each
generator (light ray) vanish. Thus, axially symmetric mass situated beyond b
does not contribute to the small total deflection of a ray initially parallel to the axis
at a distance b.

In the special case of radial symmetry all lines through the centre are axes of
cylindrical symmetry and this relation then applies to all rays. Simple solid geo-
metry demonstrates that equation (g9c) is another version of (9a). For a constant
density right circular cylinder of length 24, equation (gc) is identical with the small
b approximation given in equation (11). This demonstrates that this approximation
treats the column density of mass seen along rays at small b as a constant.

For some purposes equations (9a) or (g9b) are more useful than (gc) because, by
changing the limits of integration, the spherical treatment yields information on
where the deflection occurs. This is useful in studying lens effects when the source
is near or inside the deflector.

4. GENERAL EFFECTS OF MASS ON BEAM AREA

In the deflection discussion of the previous section emphasis was on the total
mass within the cylinder generated by rotating the undeflected light ray about a
symmetry axis. However, if we are interested specifically in the effect of the light
deflection on the area of a narrow beam of light, it is only the mass enclosed by
the beam which is important. For small deflections and narrow beams, the mass
outside of the beam has only a second order effect on beam area. This is apparent
in the results of the final section where it is shown that, for small b, the effect of the
uniform transparent sphere on beam area is first order in the parameter /b oc pa.
However, if the observed beam passes entirely outside of the mass sphere the first
order area effect cancels and the second order effect depends on (6/b)2 oc m2/b4.

In terms of ray geometry, the area effect is insensitive to mass outside of the
beam because it is not the deflection itself which changes the beam area but rather
the difference in the deflection of the rays forming the boundary of the beam.

This feature of the effect of mass on beam area is easily seen to be a general
property of weak gravitational fields. Simply apply Gauss’ Divergence Theorem
to the coordinate light velocity 9(x, ¥, 2) and the closed surface formed by cutting
a narrow bundle of light rays with two plane surfaces orthogonal to the central ray
of the bundle. Consider two planes a differential distance ds apart as measured
along the central ray. If the area of cross-section, 85, as defined by each of these
planes is small enough to ignore terms in (8.5)2, then Gauss’ Law takes the familiar
first order form

S 1o .
—S—S’—NEV.vds'
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It has also been assumed here that |9| = ¢ on both end surfaces. This is consistent
with the assumption that ®/c2<1 (small deflections) and requires further that
longitudinal effects on ¥ vanish. Under these dynamical conditions, a beam with
no initial divergence satisfies

o) ds'.

V.9 = —3f8 vep ay = —57C [
CJs, c

89

Thus, first order gravitational effects on beam area depend only on the column
density as seen along the central ray of the beam.

In the following sections the lens effects of the uniformly dense, transparent
mass sphere will be examined in detail. This brief gaussian treatment serves to
show that the central part of the lens, approximated as a region of constant column
density, has particularly simple effects on beam area. Furthermore, the first order
effect on beam area is not changed by the addition of a massive core to an otherwise
uniform sphere unless the beam passes through the core. In this sense, the assump-
tion of uniform density is not so special ss it first appears.

This gaussian analysis could be the basis of a complete treatment of weak field
lens effects. Indeed, it is only a special case of the optical scalar equations of General
Relativity (see, e.g. Kristian & Sachs 1966; Penrose 1966; Zipoy 1966). However,
in the sections to follow, we choose to analyse the effects of spherical gravitational
lenses by an elementary ray construction. Because this ray analysis is based on
spherical symmetry it is easily generalized for application to homogeneous, iso-
tropic cosmological spaces.

5. THE EFFECT OF A SPHERICAL LENS ON APPARENT LUMINOSITY

An easy way to calculate the effect of the light deflection on the apparent
luminosity of distant sources is to examine the effect of this deflection on the cross-
sectional area of a narrow bundle of light from the source. Because the transparent
lens under study here is spherically symmetric we can use a geometric construction
identical to that used by Refsdal (1964a) in his analysis of the stellar lens and its
effect on bundle area.

Such a narrow bundle of light coming from a source at S and passing through a
weakly deflecting but otherwise arbitrary spherical lens is shown in Fig. 3. After
deflection this bundle reaches the observer with an area Ag. If the beam had
propagated undeflected through a Euclidean space and had an area A; in the median
plane of the lens it would have intersected the plane of 44 with an area 4, = n24,;
where n = (ds+ d;)/ds.

In cylindrical coordinates the bundle area 4; can be written as A; = b(db) dé;
and the observed bundle area is Ag = r(dr) dpg. The spherical symmetry of the
lens means that all rays lie entirely in a plane containing the mass centre. Therefore
dp; = dbg. The deflection then results in a smaller bundle area which is related

to the undeflected area by
Ae b (dr)“l
a, = n ) - (12)
This analysis assumes that no caustics may be observed in the ray bundle. The

geometry of Fig. 3 shows that this is equivalent to dr/db> o.
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I | , |
Fi1G. 3. Cylindrical coordinates used to analyse the area of a narrow bundle of light which
has been deflected by a spherical lens.

For small deflections it is apparent from the Euclidean triangles of Fig. 3 that

r = nb—d;0(b) (13)
and
_43 _ 2b( _ de)-l
Ad—n;n dl% . (14)

In the context of relativistic geometric optics it has been shown that the family
of observers who all see the same photon frequency in this bundle find

Lq A,

L= d,

Le Ad E(b’ dl’ 3) (15)
where Lg is the apparent luminosity of the source as seen by an observer whose
local bundle area is A4 (Kristian & Sachs 1966). The luminosity ratio, E, will be
referred to here as the amplification factors of the lens.

6. FOCUSING EFFECTS OF THE UNIFORM TRANSPARENT LENS

The results of applying the ‘ exact’ deflection equation (10) in equation (14)
are quite complicated. However it is not difficult to show that the lens described
by equation (10) has the following simple properties.

(1) The amplification factor, E(b< a), is a monotonically decreasing function
of b.

(2) For small b this amplification factor is approximately independent of b.

In proof of the first property consider a fixed source and lens and the class of
observers with fixed d; but arbitrary b. For these observers

E@®) (g;’_;)'l. (16)

Under the two conditions that (b = o) = o and that dr/db is strictly increasing it
follows necessarily that »/b is also strictly increasing with b. It is also clear that both
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dr{db and r[b must approach an identical minimum as b approaches o. Thus
E(b), the inverse of their product, is a strictly decreasing function of b.

The first condition for this result holds for all spherical lenses (no deflection of
radial light rays). For all lenses described by equation (14) (small deflections) the
second condition is equivalent to the requirement that d6/db be strictly decreasing.
(Recall that the ‘ no caustic’ condition is dr/db>o0.) Thus a sufficient (but not
necessary) condition that E(b) be monotonically decreasing for any weak spherical
lens is d26/db2 < o. In particular this condition is satisfied for the uniform transparent
lens whose deflection relation is given in equation (10). This further implies that
the maximum E(b) for the uniform lens results from the use of the small b approxi-
mation for 6(b) which is given in equation (11).

Equation (14) implies that any weak spherical lens with a linearly increasing
6(b) is characterized by a constant E(b). As a special case, the amplification factor
for the uniform transparent lens is approximately constant in the domain of
validity of equation (11). The resulting lens is discussed in detail in the following
section.

7. FOCAL EFFECTS OF THE CENTRAL TRANSPARENT LENS
COMPARED WITH THE STELLAR LENS

For simplicity and because it yields the maximum amplification factor of the
lens the remainder of this study of the uniform density transparent lens is based
on equation (11). This approximation applies only for b < a/2 and thus the following
results are valid only for observations made through the central half of this lens.
However, in application the central region may be large enough to have many
distant sources visible in its background.

Substitution from equation (11) into equation (14) yields the simple b inde-
pendent relation

E(b<al2) = n2(n— Kodj)™2. (17)

Apparently, if the source is very distant (# — 1) and there is no observed caustic
(di < K271), the effect of the lens increases with d;. The conditions required for this
result are seen more clearly by using equation (15) to rewrite (17) as

La (b<‘_2’) _E (b<g-) (Zfd—s)z ~ C% 1+ dy(ds~1 - Ka)]2. (18)
Here L is the intrinsic luminosity of the source and we assume that there is no
redshift. Thus if ds>Ka1>d; the apparent luminosity of the source actually
increases as the observer moves away from the lens (and source). Although
Einstein (1936) considered a similar result for the stellar lens ‘ curious’, this is
simply the requirement that a narrow pencil of light from the source be converging
after it passes through the central transparent lens. Of course equation (18) is
valid only in a flat static universe. In application the essentially Euclidean distances
ds and d; may be of cosmological scale. In this case ds and d; must be generalized
to cosmological luminosity distances corrected for redshift effects. Such a generali-
zation will be given in a forthcoming paper.
Equation (17) implies that the central part of the transparent lens has a focal

length ) 2\ a2
e ket () (%) ”

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snBny 0z uo 1senb AQ £80£092/££2/2/8S |L/210IHE/SEIUW /WO dNO DIWSpEoE//:SA)Y WOl POPEOjUMOQ


http://adsabs.harvard.edu/abs/1972MNRAS.158..233C

FI972WNRAS, 158C ~Z33C!

242 Eugene E. Clark Vol. 158

Although this result follows several stages of approximation, the focal length
terminology seems more justified here than for the opaque stellar lens. Even in
first order the stellar lens condenses the light from a distant point source onto a
semi-infinite line rather than onto a point. This can easily be seen in the ‘ primary
image > amplification factor for the opaque stellar lens which results from the use of
equation (1) in (14).

Eyb>o0, dy, d5) = n2[n?—(dK1b-2)2]L. (20)

(In spite of the different form of this relation which results from a different choice
of variable, it is equivalent to equation (17) of Refsdal (1964a) or equation (15) of
Liebes (1964).)

Although the focal length of the stellar lens is & dependent, it is perhaps useful
to define the ‘ minimum ’ focal length as the caustic distance for any two parallel
rays which skirt the stellar limb. For these rays b = a and

fmin = 2Kyl = 32 f. (21)

The reference above to the ‘ primary image ’ is necessary as a caution here because
this simple derivation of E; assumes that there is no observed caustic (d; < f,0in)
and thus does not reveal the possibility of a secondary image of one source. Because
this image is seen at a smaller b than the primary and crosses the source-lens axis
before reaching the observer it cannot be observed unless d;> f;min, The existence
of a secondary image under certain conditions is seen in the quadratic nature of
equation (13) when () is given by equation (1). The resulting images are discussed
clearly in the papers of Refsdal (1964a) and Liebes (1964).

If the stellar deflector is extremely dense, then not only can a luminous secon-
dary image be seen by a nearby observer but both images also have large geometric
distortion. As a spherical source approaches perfect alignment behind such a dense
stellar lens the two distorted images of this source coalesce and at b = o the image
becomes a luminous annular ring around the deflector. Of course, such spectacular
relativistic effects depend on rare and transient alignments behind unusual
deflectors.

In contrast to the stellar lens, the uniform transparent lens produces only one
image of a given source seen through the lens. This property is easily understood
by considering Fig. 1 and equation (13) in light of the general behaviour of 6(b)
discussed after equation (10). If §(b) increased as b2 or faster, then multiple images
would be possible. However, the rate of increase of 8(b) for this lens actually is
everywhere less than linear.

It is also characteristic of the uniform transparent lens that it produces no
observable image distortion. Penrose (1966) has given an interesting interpretation
of image distortion due to gravitational lenses. From his viewpoint the focusing
of light by the opaque stellar lens is dominated by the Weyl conformal tensor of the
stellar field and this results in astigmatic focusing. The action of the central,
uniform, transparent lens may be described as Ricci tensor focusing resulting in
distortion-free magnification. This is to be expected from the conformal flatness of
the uniform density mass sphere (Schwarzschild interior) (Buchdahl 1971).

This may also be understood from simple geometric considerations. As discussed
above, the light deflection due to a spherical lens moves all image points radially
away from the deflection centre (d¢; = dég). This stretches the image in a direction
perpendicular to this radial image motion. The stretching is proportional to the
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change in the apparent radial distance of the image centre from the deflection
centre. The central, uniform, transparent lens also stretches the image by the same
factor along the radial direction. This is true wherever the deflection 6(b) is propor-
tional to b, the apparent radial distance to the deflection centre. For larger b the
radial image stretching decreases and for b>(2)/4(e) it becomes compression.
However, because practical candidates for transparent gravitational lenses must
be extended masses with small mean density, the distortions produced at these
large values of b will not be large enough to observe.

Finally it should be noted that no annular images are produced by the trans-
parent lens. A spherical source seen with b = o has a full disc image.
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NOTE ADDED IN PROOF

The author wishes to call attention to the following two papers which were
published after the submission of the present work.

Noorman, T. W., 1971. The effect of the Einstein light deflection on observed properties of
clusters of galaxies. Astr, ¥., 76, 765.

Lawrence, J. K., 1971. Focusing of gravitational radiation by interior gravitational fields,
Nuovo Cim., 6B 225.
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