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The Unifying Role of Iterative Generalized
Least Squares in Statistical Algorithms

Guido del Pino .

Abstract. This expository paper deals with the role of iterative generalized
least squares as an algorithm for the computation of statistical estimators.
Relationships between various algorithms, such as Newton-Raphson,
Gauss-Newton, and scoring, are studied. A parallel is made between statis-
tical properties of the model and the structure of the numerical algorithm
employed to find parameter estimates. In particular a general linearizability
property that extends the concept of link function in generalized linear
models is considered and its computational meaning is discussed. Maximum
quasilikelihood estimators are reinterpreted so that they may exist even
when there is no quasilikelihood function.
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1. INTRODUCTION

The present paper attempts to provide a unified
view of the role of iteratively reweighted least squares
(IRLS) in statistical estimation problems. IRLS al-
gorithms have proven to be a powerful computing tool
in a variety of estimation problems, notably the com-
putation of M estimators in location and regression
problems (Andrews, 1974; Huber, 1981) and remark-
ably so in the fitting of generalized linear models
(Nelder and Wedderburn, 1972; McCullagh and
Nelder, 1983). For this reason, it is of interest to
characterize the kind of models for which parameter
estimation may be done through IRLS. In linear
regression, weighted least squares is used when the
observations are independent with different variances,
while generalized least squares is used when they are
dependent. In a more general situation, IRLS is pri-
marily appropriate when the observations are statis-
tically independent. An analogy with linear regression
then suggests iterative generalized least squares
(IGLS) as a natural extension of IRLS. From a math-
ematical view point, however, it is IGLS which plays
the dominant role, IRLS being treated as an important
particular case. A short review of generalized least
squares is given in Section 2.

Many estimation problems, like the two mentioned
in the previous paragraph, reduce to minimizing a
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smooth function subject to certain constraints. In
Section 3 we show that, for a rather broad class of
iterative minimization algorithms, each iteration con-
sists of solving a GLS problem, and in this sense these
algorithms are examples of IGLS. A general purpose
minimization algorithm is that of Newton-Raphson
(NR). Although this algorithm does not fall in the
IGLS class, a modification of it does. This modified
Newton-Raphson (MNR) algorithm reduces to NR
when constraints are linear.

One minimization problem of special interest in
statistics is nonlinear least squares, Gauss—-Newton
(GN) being perhaps one of the best known algorithms
for its solution. In Section 4 we show that MNR may
be considered as a generalization of GN. In this way,
the extensive experience existing about GN may be

_ brought to bear on the behavior of MNR.

394

In generalized linear models, the mean parameters
are transformed through the so called link function in
such a way that the new parameter space becomes a
linear manifold. In Section 5, we extend the concept
of link function to that of a general linearizing trans-
formation. This includes as a special case the compos-
ite links first suggested in Thompson and Baker
(1981) and used in the analysis of some genetic models.
The significance of this transformation in relation to
the structure of the equations defining each IGLS
iteration is discussed.

Section 6 studies the computation of maximum
likelihood estimators (MLE) with emphasis on the
method of scoring (SCO), also an important exam-
ple of IGLS. It is examined there how statistical
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properties of the fitted model are related to the behav-
ior of the coefficients defining each IGLS iteration.
For instance, the way in which some of these coeffi-
cients depend on the data or on nuisance parameters
is related to the type of distribution (e.g., exponential
family) followed by the observations. This examina-
tion shows that generalized linear models may be in
some sense characterized by the particularly simple
form taken by the IRLS algorithm. At the same time,
it suggests how to adapt the algorithm to cover more
general classes of statistical models.

In Sections 3 through 6, generalized least squares
estimators play a key role. The famous Gauss—-Markov
theorem states that these estimators are, in fact, best
linear unbiased when the covariance structure of the
observations is known. By allowing it to depend on
the mean vector one is led to the framework of
quasilikelihood. The concepts of quasilikelihood func-
tion and maximum quasilikelihood estimators were
introduced by Wedderburn (1974) in the independent
case and further extended by McCullagh (1983) to the
dependent case. In Section 7 we give a simple argu-
ment that leads to the algorithm (of IGLS type) pro-
posed in McCullagh (1983). It is claimed that the same
procedure makes sense even if a quasilikelihood func-
tion does not exist, and so we propose that the algo-
rithm just mentioned as well as the resulting
estimators be called generalized Gauss-Markov
(GGM).

2. GENERALIZED LEAST SQUARES

In its most general form, we have a vector space E
with inner product (, ) and corresponding norm | ||
and a linear manifold M = a + L, where L is subspace.
Then the minimization problem

(2.1) min | Y - u|*
uEM

may be called a generalized least squares (GLS) prob-
lem, whose solution is

(2.2) pg=a+ P (Y~ a),

where P; denotes the orthogonal projection, with re-
‘spect to the given inner product, onto the subspace L.

More concretely, let X be a n X k matrix whose
columns span the subspace L and let A be an X n
positive definite matrix. Let ( , ), and || || 4 be defined
by

{(u, v)4 = u’Av,
lulla= (u, u)i?

Any inner product and norm in %" has this form.
Then (2.1) and (2.2) become

(2.3) min (Y = p) A(Y — u)

uEla+Xp|pERF)

and

(2.4) i=a+ XB

with

(2.5) B=(X"AX)""X'A(Y - a).

A central problem in the statistical theory of linear
models is the search for best linear unbiased esti-
mators (BLUE). The Gauss—-Markov theorem states
the mathematical equivalence between this problem
and the GLS one. Some details about this important
theorem are included below since they will be useful
in Section 7 in relation to quasilikelihood concepts.

Let Y be a n X 1 random vector with mean u, V be
a positive definite matrix, and « be a positive scalar
such that

(2.6) wu€a+ L, Var(Y)=aV.

The class of linear unbiased estimators of u is
formed by those linear transformations of Y with
expected value p. The BLUE 4 of u is the element of
this class with smallest covariance matrix (with re-
spect to the partial order associated with positive
definite matrices (see Rao, 1973)). The Gauss—Markov
theorem states that u is given by (2.2) where the
orthogonal projection is taken with respect to the
inner product { , )4 or, in matrix form, by (2.4), (2.5),
with A = V.. Another problem which has the same
solution is that of finding the maximum likelihood
estimator of u under (2.6), when Y has a multivariate
normal distribution.

In the remainder of this paper we will see that many
iterative statistical estimation algorithms may be in-
terpreted as the solution of GLS problems correspond-
ing to local linearization of the constraints and
quadratic approximation of the function being mini-
mized. Numerical and computational aspects of the
solution to (2.3) are discussed for instance in Lawson
and Hanson (1974).

3. NONLINEAR MINIMIZATION AND ITERATIVE
GENERALIZED LEAST SQUARES

The GLS problem (2.1) will now be extended by
replacing the quadratic function | Y — u || > and/or the
linear manifold M by a smooth function g and a
nonlinear manifold respectively. It will be seen that
the steps of many numerical algorithms may be inter-
preted as solutions to GLS problems, in which the
norm | | and the linear manifold change at each
iteration. We first discuss a general class of descent
algorithms and then we analyze the important New-
ton-Raphson (NR) method. The reader is referred to
Dennis and Schnabel (1983), hereafter DS, for a gen-
eral discussion. Other relevant references are Avriel
(1976) and Fletcher (1980, 1981).



396 G. DEL PINO

We start by establishing the notation and defini-
tions. Let f be a function defined on an open set in
#Z™ with values in #? and let f (x) = (f1 (%), - - -, fo(x)).
The function f is said to be of class #* if all partial
derivatives of order k of the component functions
fi» - -+, f, are continuous. The Jacobian matrix of f at
the point x is the m X p matrix with entries df./dx;.
When £ is real valued the transpose of the Jacobian
matrix (in this case a vector) is the gradient of f, its
value at x being denoted by T} (x) or T'(x). Let g be a
real valued function of class #'. We say that p(x) is a
descent direction for g at x if g(x + Ap(x)) < g(x) for
A sufficiently small. Any descent direction for f may
be written as —B(x)7T'(x), where B(x) is a positive
definite matrix. A large class of iterative algorithms
for minimizing f has the form

29" = x7 — N B(x9)T(x9)

where A7 is a positive number. Consider now the
problem
min g(0)
EM=a+L

where 6 is the vector of parameters and L is a k-
dimensional subspace of %", which may be written as
(X8, 8 € #*}, for an n X k matrix X of rank k. The
gradient of G(B8) = g(a + XB) is X' T,(a + XB), and
a descent direction for G is —Bx(#) X' T,(a + XB). In
terms of the function g, —XBx(0)X ' T,(a + XB) is a
descent direction contained in L. It seems natural to
impose the condition that this last vector depends
only on g and L and not on the particular X chosen.
This leads to the choice Bx(d) = (X'A@)X)™1. A
geometric interpretation is as follows: The direction
in L given by the indicated choice for Bx(f) is the
orthogonal projection of A () T,(#) on the subspace
L, with respect to the inner product ¢, )a¢), and this
projection does not depend on the choice of the matrix
X whose columns span L. The suggested algorithm is
then

BIL = B+ 2,85,

with
.(3.1a) 07 =(X"AX)'X'AY"?
where

09=a+ XB9, A?=A(09),
(3.1b)

Y9 = —(A7)1T,(89).

The basic algorithm corresponds to the choice
A= 1. From (2.3) and (2.5), (3.1a) is also the solution
to the GLS problem )

(3.2) min (Y? — X6)'A4(Y? — X6).

So far A(#) has been an arbitrary positive definite
matrix. If we assume further that the function g is of

class #2, then ¢ may be approximated in the neigh-
borhood of 87 by the quadratic function

g07+8) = %l Y = 8| o)

(3.3) ,
+ g(09) — YT H(#9)Y"

where H(f) is the Hessian of g at 6. If g is exactly
quadratic, using (3.1) with A(#) = H(#) solves the
minimizing problem in one step. More relevant per-
haps is that this choice for A(8) will provide fast
convergence when the initial point is close to the
solution. It turns out that this algorithm is just a
special case of NR applied to G(8) = g(a + XB8). It
is well known that NR is quadratically convergent

(DS, page 90).
We next lift the linearity condition on M by letting
(3.4) M = {h(B), 8 € B}

where B is open in #* and 4 is a function of class &*
with full rank Jacobian matrix X(8) for all 8in B. A
natural modification of algorithm 3.1 is to minimize
£(0) subject to # € M by replacing X in (3.1) by X? =
X(B7). The iteration then becomes 9" = 7 + A\?5¢
with

(3.5a) §7=(X(87)"A(6)X(B7))'X(B?) A(69)Y(87)
where
(3.5b) Y(0) = —A(0)T,(6).
An equivalent formula is
3:6) B = (X(B) A(B)X(B))?
- X(B7) A0 [X (BB + Y(09)].

We call (8.5) or (3.6) the IGLS algorithm. Unlike the
linear manifold case, the IGLS algorithm with A () =
H(#) does not reduce to NR. In fact, NR corresponds
toA?=1and

87 = ((X(B7)' H(B)X(BY)

(3.7) _
+ E(89))7'X(89) H(69)Y(67)
with
(3.8) E;(B)= 5 T.(h(B)) O, ,j=1 k
. ij 6 —rgl r 6 aﬂiaﬂj, L=l R

Note that E(3) = 0 for a linear manifold. Thus IGLS
with A () = H(0) differs from NR by a term which is
null for a linear manifold. For this reason we will refer
to it as modified Newton-Raphson (MNR).

In many statistical problems, the function g to be
minimized has separable structure, in the sense that

(39) g(0) = 2 (6),

where each g, is a smooth function of one real variable.
This type of structure is often associated with
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independence properties in the statistical model.
When (3.9) holds, it is natural to choose A(#) in (3.5)
as a diagonal matrix, whose rth element is a, = u,(6,)
for some functions u,, r =1, ---, n. It is easily seen
that MNR satisfies this condition. With this choice
of A, each iteration in (3.5) reduces to the solution of
a weighted least squares problem and so IGLS be-
comes IRLS.

Next we point out how the ideas considered so far
may be applied in two statistical problems. The first
problem is the computation of M estimators in robust
regression. The mathematical problem is the minimi-
zation of
(3.10) g(0) = ? (U, - 6,),
subject to 0 = XB, 8 € #*, where U,, ---, U, are the
observed responses (assumed to be independent). The
function p is assumed to be an even function, nonde-
creasing for positive values of the argument, and null
when this argument is 0. If f is of class #2, a natural
algorithm is MNR (which coincides with NR), and it
will be of IRLS type. Note, however, that the depend-
ent variable does not coincide with the response.
Andrews (1974) and Beaton and Tukey (1974)
suggest replacing the second derivative 6”(v) by
the secant approximation

p' ) —p’(0) _p'

v—20 v
so that
_p =6
r u,—ﬂ, ’
’ ‘r— 0r
Yr=%= Ur— 01‘9

and the rth component of the last term in (3.4)
becomes U,.

Huber (1974, 1977) proposes the choice a, = 1, i.e.,
A(0) = I, the identity matrix. For further discussion
of these algorithms, we refer the reader to Birch
(1980), Byrd and Pyne (1979), Holland and Welsch
(1977), Huber (1981) and Peters, Klema and Holland
(1978).

The second problem we discuss is the fitting of
linear regression with censored data. We follow Ait-
kin’s (1981) discussion of Schmee and Hahn (1979).
The essential point is that the negative log-likelihood
of normal data under censoring has the form (3.9). If
furthermore A is chosen as the identity matrix, (3.6)
becomes

6q+1 = (X/X)—lX/ Wq
with

Wg=0g_gl{(0g), r=17""n-

In the special application considered, g.(f,) =
v.(u, — 6,), where the form of function v, depends on
whether the rth observation is censored or not.

4. NONLINEAR LEAST SQUARES

The statistical origin of the nonlinear least-
squares problem is as follows: Let U, --- U, be
independent with constant variance and EU, = h,(8),
r=1, ---, n, where h, are the components of the
function h in Section 3. The method of least squares
to estimate 8 consists of minimizing

(4.) 3 (U, — h(8))>

If U, is also normally distributed, r = 1, - .-, n, this
method coincides with that of maximum likelihood. It
is clear that (4.1) is a particular case of the problem
of Section 3 with

(4.2) go)=1U-0]3

where [ is the identity matrix. The MNR algorithm
applied to (4.2) coincides with the popular method of
Gauss—-Newton (GN) (see DS, Chapter 10). A natural
extension is to replace (4.2) by

(4.3) g(0) = | U -0l

and the corresponding MNR algorithm may still be
referred to as GN. We might consider MNR as a
generalized Gauss-Newton (GGN) algorithm, in the
sense that the quadratic function (4.2) is replaced at
each iteration by a local quadratic approximation of
g(#). It is also possible to apply the general IGLS
algorithm of Section 3. We remark, however, that the
popular Marquardt algorithm, which consists of re-
placing X' H(89)X by

X'H)X + 9,

is not a particular case of IGLS since it is not invariant
with respect to the choice of X. If we allow A? to

_depend on X(B879) then the choice A7 = H(§9) +

79(X (87’ X(89))% leads to
89 = (X(B9)' X (B8 + ¢ I)'X(B9)' U,

which correspond to Marquardt’s algorithm. As a final
remark, we point out that the problem will have sep-
arable structure if the matrix A defining the norm is
diagonal.

5. LINEARIZABLE MANIFOLDS

In a typical statistical problem the numbers n and
k will correspond to the number of observations and
the number of independent parameters in the model,
respectively. Often n may be very large so that the
cost of storing and computing the matrices involved
in each step of algorithm (3.5) would consequently be
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very high. We concentrate here on the MNR algorithm
since it is directly related to iterative generalized least
squares. To simplify the notation, we omit the super-
script g in (3.5) and related equations.

We point out first that the matrix A and the vector
Y in (3.5) depend explicitly on the value of ¢ and not
the value of 8 yielding § = h(8). Matrix X, on the
other hand, will generally depend on 8. In the sepa-
rable case (3.9), matrix A is diagonal and so only n
elements need to be computed and stored. In this
situation, the most expensive computation would be
that associated with the n X k matrix X. The most
favorable case arises when X is a constant matrix so
that it does not need to be recomputed at each step.
This condition actually means that M is a linear
manifold so that MNR will coincide with NR and
enjoy the rapid convergence properties of this algo-
rithm near the optimum. Assume now M is not linear.
We pose the folowing question: May (3.5) be replaced
by an equivalent system of equations

(5'1) Zl;XanXnankakxl = ZI:XanXn anl

so that Z is constant and B, W are functions of 6?
Note that if there is an invertible matrix E, depending
on #, such that X = EZ, with Z being a constant
matrix, then (5.1) holds with

(56.2) B=E'AE, W=E"Y.

Since X is the Jacobian matrix of 4 at 8, a sufficient
condition for (5.1) to hold is then

oh,

(5.3) a8, = & 0%

1
r=1,...,n; j=1,...’k’

where e,, are functions of 8 and Z,; are constants. To
get further insight on the meaning of (5.3), it is con-
venient to make the following definition.

DEFINITION 5.1. A k-dimensional manifold M of
class #' is said to be linearizable if there exists an
invertible mapping F of class @1, with F! also of class
#1, such that the following condition holds: F maps
an open set in %" containing M onfo an open set and
F (M) is contained in a k-dimensional linear manifold.

Definition 5.1 means that there is a change of vari-
able n = F(#) such that § € M is equivalent to
7 € F(M) and F(M) is contained in a linear mani-
fold N of the same dimension as M. Any element
of N may then be written as

n=v+ 28, B E R*

with Z of order n X k and rank k. Hence any point 6
in M may be written as

5.4) 6=F'(v+ ZB), B E B open in #*.

In what follows we will not deal explicitly with the
restriction 8 € B, and so for our purposes we will
essentially assume B = #*. By the chain rule (5.4)
implies (5.3), the n X n matrix E(#) with components
e,;(8) being the Jacobian matrix of F~.. In turn this
implies that (5.1) holds with B and W given by (5.2),
where E is the matrix E(09).

In the separable case (3.9), it is natural to impose
the condition that B, and hence E, be diagonal. Then
(5.3) becomes

oh,

— = tr(hr(ﬁ))zrj,
(5.5) 96,
r=]_, ...,n;j= ]_"...,k_
The equations m; = 1/t,, r =1, .-, n, define m,

uniquely up to additive constants. The transformation
F, given by

(5.6) (F(o))r = mr(or),

linearizes the manifold and the arbitrary constants in
m,,r=1, ---, n, may be absorbed into the vector v in
(5.4). The special case (5.5, 5.6) arises in the theory of
generalized linear models (Nelder and Wedderburn,
1972; McCullagh and Nelder, 1983) in relation to link
functions, although only the case m; = - = m, and
v = 0 is considered there. The case of general v is
allowed, however, in the GLIM package (Baker and
Nelder, 1978) through the OFFSET option. The more
general choice of F is relevant for the extension to
composite links (Thompson and Baker, 1981). It is
somewhat surprising how purely computational con-
siderations may suggest meaningful statistical ideas.
We will have the opportunity to do a similar analysis
in the next section. Given a linearizable manifold, a
natural procedure is to make the parameter transfor-
mation g = F(#) and minimize G(n) = g(F~'(»)) with
7 restricted to a linear manifold. NR and MNR are
identical when applied to G and this common algo-
rithm will in general be different from NR or MNR

A applied to the original function g.

Although it seems natural to make the change of
parameters, it is possible that a computer program has
been written for minimizing only special cases of the
function g. This, in fact, is the case for generalized
linear models and the GLIM package. To illustrate
the two alternatives consider the following simple
example:

EXAMPLE 5.1. Let g(8) = %2 X2, (u, — 6,)% and let
6, = exp(py + Bzr). Then Z,. = 1, Z,, = r. At each step
of MNR applied to the function g, the following system
of equations is solved (we omit the superscript ¢ and
the evaluation at 87 for simplicity):

k n n
(57) 2 2 ZrinjO?aj = 2 Zriar(ur - 0r)
r=1

ji=1 r=1
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whereas MNR applied after the transformation
n = log 8 yields

k

(58) 2 i Zrinj(orz' +_0r(0r - ur)) = i Zrior(ur - 07')

j=1r=1 r=1

We see that the right-hand sides of (5.7) and (5.8)
are identical, a property easily seen to hold in general.
The only difference lies in the coefficient multiplying
Z,:Z,;, the coefficient in (5.8) having an extra term
8,(6, — U,). In (5.7) the coefficient is always positive,
while in (5.7) it is possible that it has a negative value.
This suggests that (5.6) might be safer for practical
use. If u,, - - -, u, are the observed values of random
variables Uy, ---, U, such that EU, =0,,r=1, ---,
n, the expected value of the extra term 26,(6, — U,),
evaluated assuming the current value of 8, in the iter-
ative procedure is the true one, is null. This in turn
suggests that the MNR applied to the original function
g will be close to the NR applied to the transformed
problem if the initial estimates are close to the true
values and the observations have high precision.

Example 5.1 suggests that there is not a clear cut
choice between an algorithm based on (5.1) and the
MNR algorithm applied after a parameter transfor-
mation that linearizes the manifold. Similar discus-
sions may also be made in connection with the scoring
algorithm of the next section.

6. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we attempt to relate the mate-
rial already discussed to the special case where the
function g to be minimized is the negative of a log-
likelihood. We also want to consider a new element
coming into the picture, namely the data. The data
may be represented by a vector u, and u may be
considered as the realization of a random vector U.

In order that the n-dimensional vector # be a con-
venient description of the statistical model, we impose
the condition that the log-likelihood L{-, u) be defined
in an open set ©. The corresponding model will be
called the full model and the model to be fitted cor-
responds to the restricted model § € M, where M is a
k-dimensional manifold. It will be assumed that the
full model satisfies all the usual regularity conditions.
In particular it is assumed that the Fisher infor-
mation matrix I(f) exists, is positive definite, and
coincides with the expected value of the Hessian of
—-L(-, U).

Consider first the NR algorithm. The expected value
of E(B8?) in (3.7) under the assumption that 87 is the
true value, is null. This suggests simplifying NR by
dropping the E term, thereby arriving at the NMR
algorithm. A further step consists of replacing the
Hessian by its expected value. This leads to an IGLS

algorithm called scoring (SCO). This was originally
proposed by Fisher (1925) in the unidimensional case
and a convenient general reference is Rao (1973).
Consider again Example 5.1 and assume U, ---, U,
are iid and U, ~ N{6,,1),r=1, ---, n. Then —L(8, u)
differs from g(d) only by an additive constant.
Since the Hessian of —L{-, u) is constant, it fol-
lows that (5.6) coincides with the scoring algorithm
applied to the original parametrization. The same
algorithm applied to the new parametrization . =
log 6,, r =1, .-+, n is obtained by replacing the co-
efficient of Z,,Z,; in the left-hand side by its expected
value #2. It is seen that the scoring algorithm is
invariant under changes in the § parameter. This
property holds in general and may be considered as
an advantage of SCO over MNR and NR. What is
claimed is that the system of equations associated
with two different parametrizations will be equivalent.
However, the actual sets of equations and the corre-
sponding numerical properties may be quite different.
In the linearizable case, the convenient form (5.1) is
directly obtained by applying SCO to the transformed
parameter n = F(8) that linearizes the manifold M.
Using the results of Section 3, it is clear that SCO is
a special case of IGLS with A (#) = I(#). From Section
4 it follows that SCO may also be considered as a
modification of GGN, in which the Hessian is replaced
by its expected value. The connection between MLE
and nonlinear least squares has been much discussed
in the literature (see e.g., Bradley, 1973; Wedderburn,
1974; Jennrich and Moore, 1975; and Green, 1984). If
U, r=1, --., n, are independent and the distribution
of U, depends only on 0,, the log-likelihood has the
separable form (3.9). SCO shares with MNR the prop-
erty that it reduces to a special case of IRLS.

Next we examine three issues related to the special
way in which the observations, nuisance parameters
and linearizable manifolds affect the solution to the
likelihood equations, as well as the steps in the MNR
and scoring algorithms.

Hessian of log-likelihood. When MNR is used, it

" may be convenient that the Hessian of the log-likeli-

hood does not depend on the observations. This is
equivalent to the condition that the Hessian coincides
with —I(f) and it is well known that this will hold if
and only if

6.1) L@, U)=0"TW)+ SWU) + C)

for suitable functions T, S, and C, i.e., if the model
corresponds to an exponential family with the natural
parameter space.

Nuisance parameters. Let 6 be the vector parameter
of interest and let ¢ € & be a nuisance parameter. Let
0(¢,M) be the MLE of 6 in the model § € M. A
sufficient condition for

(6.2) 0(p1, M) = b(poM)
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for all ¢, ¢ € ® and all manifolds M is
(6.3) L6, ¢, u) =f(g(6, u), ¢, u) for all 8, ¢, u,

for some functions f and g of class 2, such that the
partial derivative of f with respect to the first argu-
ment is non-null. A special case of {(6.2) is

(6.4) L, ¢, u) = a(s, u)g(d, u) + v(u, 0)

for suitable functions g, «, v, with a > 0. Functions «,
g and v are not unique, but it is possible to impose the
condition that g(8, u) be equal to L(8, ¢, u) for some
¢o, in which case we have a{¢g, u) =1, v(¢o, u) = 0.

When «(¢, u) does not depend on u, the Hessian of
L at ¢ is the Hessian of L at ¢ = ¢, multiplied by
a(¢g) and the same happens with the information
matrix. We may write the log-likelihood as

(6.5) L6, ¢, u) = a(9)g(6, u) + v(¢, u),

which corresponds to the extended class of generalized
linear models proposed by Jorgensen (1983). When U
corresponds to a vector (U, .-+, U,)’ of independent
observations, with the distribution of U, depending
only on 4.,

(6.6) ua@w=§um@w)

and the form (6.4) may be actually derived from (6.3).

Under (6.4) the steps of MNR will not depend on ¢
while the steps of SCO will depend on this nuisance
parameter, unless we have a natural exponential fam-
ily for fixed ¢, i.e.,

(6.7) L6, ¢,u)=a(p)(0T(u)—b(0))+v(s,u)

in which case MNR and SCO coincide.

Linearizable manifolds. We have already mentioned
the invariance of SCO under changes in parametriza-
tion. The convenient form (5.1) is obtained applying
it to the transformed parameter n = F(8).

The popular class of generalized linear models cor-
responds to the following set of assumptions:

(1) (6.4) holds.

(2) Uy, ---, U, are independent and U, has distri-
bution @ 4, r =1, ---, n.

(8) For a fixed ¢, the family @, is an exponential
family.

(4) Manifold M is linearizable.

The useful fact, pointed out by Nelder and Wedder-
burn, that MLE for these models may be conveniently
computed using IRLS, follows from the general frame-
work discussed in this paper. More precisely, NR
applied to the natural parametrization of the exponen-
tial family coincides with SCO applied to the same
parametrization. By the invariance of SCO, it will also

coincide with SCO applied to the transformed param-
eter n linearizing the manifold and will have the
convenient form (5.1). It should be recalled that NR
applied to the parameter 5 leads to a different algo-
rithm. More discussion along these lines may be found
in del Pino (1984). Perhaps a more valuable property
of the approach presented is that it makes clear that
similar methods may be valuable for estimating pa-
rameters in more general classes of models. Some
relevant references are Jorgensen (1983, 1987) and
Green (1984).

7. GENERALIZED GAUSS-MARKOV ESTIMATION
Consider the problem of estimating § = EY given

(7.1) Var(Y) = aV(6)
and
(7.2) e M,

where as usual M is a manifold of class #*. VYhen M
is linear and V(0) = V constant, the BLUE 6 of ¢ is
characterized by § € M and

(Y—46,x)y=0, Vx€L,

where L is the translate of M to the origin and
(a, by = a’V7'b. This suggests that a reasonable
estimator 0 of 8 in the general case, having some “local
optimality properties” is given by

(783 6€eM and(Y—-6,x)=0, Vx€L,

where L is the tangent subspace to M at § and
(a,b) =a’V(0)™b.

We call § satisfying (7.3) a generalized Gauss-
Markov estimator (GGME) of 6. An iterative solution
to (7.3) may proceed as follows.

Let 02 = (B9 be the current estimate of § after ¢
steps, let (a, b),=a’ V(89 7'b, and let L be the tangent
subspace to M at 8% By analogy with (7.3) consider
the problem: Find 67 € #* such that (Y — 69 —
X(894% x) = 0, for all x € L% More explicitly, since
an arbitrary element of L? can be expressed as X (893,
where § is an arbitrary element of %%, it follows that
the orthogonal projection of Y — 6% onto L7, with
respect to the inner product {, ),, is X(8967 and

89 = (X(B9)' V(69X (89))™
- X (B V(E)TU(Y - 69).

The (g + 1)th iteration of the algorithm is then
7 = B9 + §9, 9 = h(B87*"). We will refer to this as
the GGM algorithm. The iteration (7.4) becomes iden-
tical to (3.5) for some function g if A(8) = V(8)™! and

(7.4)
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if the gradient T,(@) satisfies
(7.5) T.0) =-V(@)"Y(Y — 9).

A necessary and sufﬁcieﬁt condition for (7.5) to hold
is as follows.

LEMMA 7.1. Let © be a convex open set in #" and
let the matrix V~'(0) be continuous on 8. A necessary
and sufficient condition for the existence of a function
g of class % such that

- Ty0) = VHOY — 6)

is that V~(0) be the Hessian of some function G,
evaluated at 0.

COROLLARY 7.1. If V(8) is diagonal and V,.(8) =
a.(6,), for some continuous functions a, - - -, a, then
(7.5) holds. Furthermore, if 1/a, = A then

£0)= T A0)+ T ALGI(Y, - 0)

up to an additive function of Y.

As an example, if Y, are independent Poisson ran-
dom variables with E(Y,) = 6,, r =1, ..., n, then
ar(ar) = 0r, Ar(or) = 0,10g 0r - 0r’ Ar{(or) = lOg 0r’ and
g(a) = 2’11(0r10g Hr - 0,-) + Zi’ IOg Hr(Yr - 0,-) =
Y1 Y.log 6, — ¥ 6,, up to a function of Y.

If Y has an exponential family distribution with
EY = 0 and Var(Y) = V(8), for 6 in an open convex
set in %", then the negative of the log-likelihood
function expressed in terms of 4, may be used as the
function g in Lemma 7.1 and V~1(8) coincides with
the Fisher information matrix. In this special case the
GGM algorithm coincides with SCO and the GGM
estimator coincides with MLE.

A function of § whose gradient T(f) satisfies (7.5)
is called a quasilikelihood (Wedderburn 1974;
McCullagh 1983). The GGM estimator then maxi-
mizes the quasilikelihood and it may be called a
maximum quasilikelihood estimator (MQLE). The
properties of MQLE discussed in McCullagh (1983)
appear to hold for GGM even if a quasilikelihood does
not exist. When the manifold M is linearizable (as in
generalized linear models), GGM may be implemented
in the form (5.1). As shown in McCullagh and Nelder
(1983), this algorithm may be heuristically obtained
by using a “working dependent variable” F(8?) +
E@#9)7*(Y — 67) — v, whose expected value and covar-
iance matrix are approximately given by Z8 and
aE(67)'V(6)E@)Y. A related approach to esti-
mate the mean 6 is to minimize the statistic

(7.6) S@)=(Y—-6)' V(@) (Y—9)

for # € M. When Y has a multinomial distribution,
(7.6) reduces the Pearson chi-squared statistic (ac-

tually B(6) is singular and a generalized inverse must
be used). This is probably the reason why the method
of estimation based on minimizing (7.6) is called min-
imum chi-squared (MCS). There has been a long
discussion in the literature about the relative merits
of MLE and MCS. We refer the reader to Berkson
(1980) and the discussion therein. We point out that
for a multivariate normal —2L(8, Y) = S(8) + logdet
V{(6), so that MLE and MCS do not agree. Although
(7.6) may be interpreted as a Mahalanobis squared-
distance between Y and 6, the dependence of the
covariance matrix on 6, is a source of theoretical as
well as practical difficulties. In fact, MCS are not
usually consistent and the minimization of (7.6) may
involve the analytic computation of complicated
derivatives.

Another use of (7.6) is in testing 8 = 6, vs. § # 8.
In fact, for an exponential family, S(8,) is the score
test statistic. Pregibon (1982) shows that the GLIM
package provides the value of S(#9°') and this may be
used for the computation of score tests. The MCS
may be then considered as the least rejected value of
6, when using the score test. The fact that score tests
may be good against local alternatives does not imply
that MCS is a good estimator.

When comparing SCO, GGM and MCS, a relevant
point is that the last two use only information about
the covariance matrix V(#). This suggests that SCO
would generally lead to a more efficient estimation.
As a counterpart, GGM and MCS may be more robust
in the sense that they do not depend on a full distri-
butional assumption. The following example illus-
trates several of the estimation algorithms discussed.

ExamPLE 7.1. Let Uy, - - -, U, be independent ran-
dom variables and let U, be normal with mean 4, and
variance 67, where 6, > 0 are unknown parameters
and « > 0 is a known constant. Assume that 6, satisfies
the parametric model §, = e#Z%,r=1, ..., n, where
the Z, are known constants.

We discuss below the GGM, MLE and MCS esti-
mators of 8 = (B, B2)’. More precisely, we consider
the following five algorithms: 1. GGM; 2. MNR ap-
plied to MCS; 3. MNR with expected second order
derivatives applied to MCS; 4. MNR applied to MLE;
and 5. SCO. These five algorithms have the IGLS
structure (3.5) so that it is only necessary to specify
the elements a, of the diagonal matrix A () and the
elements t. of the vector T'(§). The matrix X (of
dimension n X 2) is the same in all cases and its
elements are X,, = e®1Z%, X, = (log Z,)X,1, r = 1,
- - -, n. The superscripts of a, and ¢, below indicate the
number of the corresponding method of estimation.
To make the coefficients easier to compare, we will
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minimize half of the expression (7.5) when computing
MCS.

1) tP=—(U,—6,)/67,a =06,
2 tP=t® —a(U,—6,)%/(20:*),
a® =gl (1 + 20w, + a(a + Dw2/2)
with w, = (U, — 6,)/6,,
B) tP=t?,aP=a"(1+ala+1)677%/2),
(4) t@=tP+ /26,0 =a® — /20,
(6) tP=t?,a®=0a—a/26}.

As expected, MNR, applied to either MCS or MLE,
generates a data dependent term a,, which may be
negative, possibly implying lack of convergence. This
problem is avoided by using expected second deriva-
tives, although this is likely to decrease the speed of
convergence in well-behaved cases. The computa-
tional difficulty of MCS and MLE is about the same,
so that the last should be preferred. The simplest
computations are those corresponding to GGM.
For ¢« = 1(a = 2) the computations may be per-
formed through GLIM, using ERROR POISSON
(ERROR GAMMA). Although the GGM is less effi-
cient than MLE, it will be safer to use if the assump-
tion of normality is suspect.

In this example M is linearizable since log 8, = 8, +
Bzlog Z,. Any of the five algorithms may be then better
implemented replacing (X,,, X,2) by (1, log Z,), a. by
6%a,, and t, by 0,t,.
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Comment

Bent Jorgensen

del Pino is to be congratulated for his extensive
survey of iterative least squares methods. In particu-
lar, I welcome the emphasis on the parallel between
statistical properties of the model and the structure
of the algorithm. This is where statistical computing
distinguishes itself from the general area of optimi-
zation. An example of this is the role of orthogonality
of parameters (cf. Cox and Reid, 1987), which implies
an exact or approximate block diagonal structure of
the Hessian of the log-likelihood function, with con-
sequent simplification of the calculations. Another
example is the discussion in Jgrgensen (1984) of
marginal and conditional maximum likelihood
calculations.

Actually, I think that this marriage between algo-
rithms and statistical theory will be taken much fur-
ther in the future, and while, at the moment, iterative
weighted least squares algorithms are probably the
best general class of statistical algorithms available, I
predict that the use of iterative least-squares methods
will soon be changing. One of the driving forces in this
development is the theory related to Barndorff-
Nielsen’s formula (cf. Barndorff-Nielsen, 1988; Reid,
1988 and references therein) and associated methods,
such as saddlepoint approximations, modified profile
likelihoods and so on. It is possible that these devel-
opments, in particular their geometric aspects, will
lead to new and improved statistical algorithms.

To illustrate the potential influence of statistical
theory on computing habits, consider the fact that the
iterative weighted least-squares algorithm effectively
ignores the second derivative of the model function h,
denoted E(8) by del Pino. On the other hand the
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theory associated with Barndorff-Nielsen’s formula is
effectively the systematic exploration of high-order
derivatives of the likelihood, which certainly involves
quantities such as E(B3). Hence, the advantage of
iterative weighted least-squares methods, that E(8)
need not be calculated, will soon become unimportant,
because E(8) is needed for other purposes. In conclu-
sion, statistical calculations involve much more than
just the maximization of the likelihood or of some
other objective function, and future statistical com-
puter systems will to a larger extent than is the case
today, involve a complete system of procedures for
answering various types of inferential problems con-
cerning the data. No doubt, automatic execution of
symbolic mathematical calculations will play a crucial
role in these developments.

In the meantime, I would like to mention some
aspects of iterative weighted least-squares methods
considered in Jgrgensen (1984). There, I considered
what I call the delta algorithm, which is nothing more
than the iterative weighted least-squares algorithm
with a general A-matrix, concentrating mainly on the
case of a separable structure for the likelihood, and

“the possibility for implementing the algorithm in

GLIM. The paper discussed the relation with various
other algorithms and mentioned the algorithm for
robust estimation considered by del Pino in connec-
tion with (3.10), which I referred to as the case of
“score weights.” In fact, this algorithm may be used
in connection with any objective function and is not
specific to robust estimation. Among other choices for
A considered in Jorgensen (1984) was the case (re-
ferred to as “deviance weights”), which, in the lan-
guage of generalized linear models, corresponds to a
data-dependent link function, such that the objective
function g becomes exactly quadratic. In other words,
all the nonlinearity of the model is “thrown” into the
link function. The point here is that there exists a



