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Abstract. Efficient algorithms are described for computing topological, combina- 

torial, and metric properties of the union of finitely many spherical balls in ~d. 

These algorithms are based on a simplicial complex dual to a decomposition of the 

union of balls using Voronoi cells, and on short inclusion-exclusion formulas 

derived from this complex. The algorithms are most relevant in R 3 where unions of 

finitely many balls are commonly used as models of molecules. 

1. Introduction 

The primary object studied in this paper  is the union of finitely many spherical 

d-balls in ~d. One of the motivations for our considerations is their widespread use 

in computat ional  biology, where a molecule is frequently modeled as the union of 

3-balls in ~3 [3], [22]. Each atom is represented by a ball whose size is determined By 

its van der Waals radius. This model  is referred to as the space-filling diagram of the 

molecule. As is seen later, this diagram is related to a certain polytope, called the 

dual shape of the diagram. This paper  is part  of a project that studies such shapes 

and their applications to problems in science. A declared goal of  the project is the 

implementat ion of shapes and some of their useful functions. It is therefore essential 

to find simple algorithms so that the implementat ion produces a compact system of 

programs. At  the same time, efficiency is essential because typical applications 

involve thousands of balls. 

* This work is supported by the National Science Foundation, under Grant ASC-9200301, and the 
Alan T. Waterman award, Grant CCR-9118874. Any opinions, findings, conclusions, or recommen- 
dations expressed in this publication are those of the author and do not necessarily reflect the view 

of the National Science Foundation. 
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Our study of d-balls requires a variety of concepts whose origins lie in the areas 

of convex geometry, geometric algorithms, and algebraic topology. We make essen- 

tial use of Voronoi diagrams and Delaunay simplicial complexes [5], [7], [24] and of 

polytopes arising as underlying spaces of certain subcomplexes of Delaunay simpli- 

cial complexes [9], [11], [13]. Topological concepts such as homotopy equivalence and 

homology groups [18], [23] are instrumental in uncovering the close relationship 

between these geometric diagrams. 

The outline of  this paper follows. Section 2 introduces the basic geometric 

diagrams used in our study. Section 3 establishes the homotopy equivalence of the 

union of balls and its dual shape; it implies effective algorithms for computing the 

homology groups of  the union. Section 4 shows how the topological insights lead to 

an efficient algorithm for counting the faces of the union of a set of balls. Section 5 

studies the Euler relation for convex polyhedra and viewpoints. Based on these 

relations, Section 6 gives short inclusion-exclusion formulas for measuring the union 

of balls. Section 7 considers simplices defined by independent sets of d-balls. Section 

8 derives another set of inclusion-exclusion formulas which are decomposable and, 

among other things, can measure voids formed by the union. Section 9 concludes the 

paper. 

2. The Union of Balls and Related Diagrams 

This section introduces various geometric concepts defined for a finite collection of 

balls, with the aim to develop tools that can enhance our understanding of the union 

of these balls. 

Basic Definitions 

Let Ixzl denote the Euclidean distance between two points x, z E R d. A subset 

b c _ R  a is a d-ball if there is a point z ~ R  d and a real p > 0  so that b =  

{x E ~dtixzl < p}; Z is the center and p is the radius of b. For 0 < k < d - 1, a 

k-ball is the intersection of a (k + 1)-ball b with a hyperplane that contains its 

center but not b itself. A k-sphere is the (relative) boundary of a (k + 1)-baU b. The 

center and radius are inherited from b. For example, a 0-ball is a point, a 1-ball is a 

line segment, and a 2-ball is a disk. A 0-sphere is a pair of points, a 1-sphere is a 

circle, and a 2-sphere is what in R 3 is commonly called a sphere. 

Besides balls and spheres we consider simplices in R d. For 0 < k + 1 _< d + 1, a 

k-simplex, or, in R d is the convex hull of k + 1 affinely independent points. The 

dimension of ~r is dim cr = k. The convex hull of any 0 < l + 1 < k + 1 of these 

points is an /-simplex and a face of o,. For example, the only ( -  1)-simplex is O, a 

0-simplex is a point, a 1-simplex is an edge, a 2-simplex is a triangle, and a 3-simplex 

is a tetrahedron. A tetrahedron has 24 = 16 faces, namely 0 ,  four vertices, sex edges, 

four triangles, and itself. 

Abstract and geometric simplicial complexes play an important role in this paper. 

An abstract simplicial complex is a finite collection A of sets so that X ~ A and 
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y _c X implies Y E A. The vertexset of A is vert A = {x ~ X I X  ~ A}. A (geometric) 

simplicial complex is a finite collection G of simplices that satisfy the following two 

conditions.  First, if tr ~ G and tr '  is a face of o-, then o - ' ~  G. Second, if 

o-1, ~ E G, then  o-~ n ~r 2 is a face of both. As a general  policy, O is considered a 

face of every simplex and is included in all simplicial complexes. The underlying 

space or polytope of G is IGI = U ,  ~ s o-. A subset  H c_ G is a subcomplex of G if it 

is a simplicial complex itself, that is, it satisfies the first condit ion.  A special 

subcomplex is the k-skeleton G (k~ = {g ~ Gldim o- < k}. G is a geometric realization 

of A if there is a bijection ~b: vert A ~ G (~ so that X ~ A iff the convex hull of 

~h(X) is a simplex in G. 

Primal Diagrams 

Let B be a set of  n d-balls in ~d, see Fig. 2.1. To simplify the for thcoming discussion 

we assume the d-balls are in general  position. A n  algorithmic justification of this 

assumpt ion can be found in [12]. For  a subset T ___ B with k + 1 = card T < d + 1, 

the centers of the d-balls in T are affinely independent ,  by assumption,  and 

therefore define a k-simplex, denoted  tr r .  Consider  a d-ball  b, with center  z and. 

radius p, and a point  x. The  power distance of x from b is ~rb(x) = Lxzl 2 - p2. The 

weighted) Voronoi cell of b ~ B is V b = {x ~ Ndl%(X)  < %,(X),  b' ~ B}. It is not  

difficult to see that within its own Voronoi  cell a ball b contains  all other  balls of  B. 

We state this observat ion explicitly for later reference. 

Lemma  2.1. Vb n b' C Vb N b for all b, b' ~ B. 

The collection of Voronoi  cells, ~ =  ~ ( B )  = {Vblb ~ B}, defines a decomposi-  

t ion of Ed known unde r  a variety of different names,  including (weighted) Voronoi  

diagram, power diagram, and  Dirichlet  tessellation, see Fig. 2.2(a). The collection of 

cells ~ = ~ ( B )  = {V b n bib ~ B} defines a decomposi t ion  of the ball union ,  UB = 

Ub~ B b, see Fig. 2.2(b) and  (c). 

Fig. 2.1. This set of 12 disks (2-balls) is used as a running example to illustrate forthcoming 

definitions. 



418 H. Edelsbrunner 

(a) (b) (c) 

Fig. 2.2. (a) The Voronoi cells of the 12 disks in Fig. 2.1 cover the entire plane. (b) Each Voronoi 
cell is restricted to within the disk that defines it. The collection of such cells covers the union of the 
disks shown in (c). 

The boundary of UB consists of pieces of spheres of various dimensions. 

Consider  the sphere bd b and define fb = Vb n bd b for each b E B. Intuitively, fb 

is the spherical part  of the boundary of V o O b. The components  of the fb are the 

(d  - 1)-faces of UB. The / -d imens iona l  faces of UB can be defined by considering 

subsets T _  B, card T = d -  l, and intersections of the form O b~v fb" By the 

general  position assumption, these intersections are /-dimensional, and the compo- 

nents are the l-faces of UB. 

Dual Diagrams 

The nerve of a collection A of sets is N(A) = {X ___AIN S = n x ~ x  x ~ Q}. We 

always have • ~ N(A). The nerve is an abstract simplicial complex because X 

N(A)  and Y _c X implies Y ~ N(A). For  example, the nerve of B, N(B), is the 

collection of subsets of d-balls with nonempty common intersection. We define two 

of the three dual diagrams as geometric  realizations of  nerves. Let  T c B be a set of 

balls with affinely independent  centers. As before,  we denote by tr T the convex hull 

of the centers. Then 

.~  = . ~ ( B )  = {o'~-I(Vblb ~ T} ~ N ( 7 / ) }  

is the (weighted) Delaunay sirnplicial complex of B, 

g e ' = ~ ' ( B )  = {trrl{V b n bib ~ T} ~ N ( ~ ) }  is the dualcomplex of ~ ,  and 

S ~  = 1.~ is the dualshape of UB. 

Examples of the three diagrams are shown in Fig. 2.3. 

The definition of ,~r as a geometric  realization of  the nerve of ~' is different 

although equivalent to the definition of weighted alpha shapes in [9]. It should be 

clear that gY is a subcomplex of -~. Indeed,  ~r r ~ , ~  only if ~ r  ~ - ~  and T ~ N(B), 

but no necessarily vice versa. Another  interesting simplicial complex is the boundary 

complex of g~. It consists of all simplices ~ r  ~ "~  contained in bd g~. Call such a 
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c 

(a) (b) (c) 

FiB. 2.3. The diagrams _~, ~ ,  and S p of the 12 disks in Fig. 2.1 are shown from left to right. By the 

definition of nerve, _~ is dual to the Voronoi diagram in Figure 2.2(a) and ~ is dual to the 

decomposition of the union defined by ~F. 

simplex a face of S ~. The faces of S p correspond to the faces of UB in the following 

manner,  see also [9]. 

Lemma 2.2. For each T c_ B with 1 _< card T < d, ~ is a face of 5" iff 

b ~ T  

3. An Explicit Deformation Retraction 

The nerve theorem of algebraic topology [23] implies that UB = Ub~ B (Vb n b) 

and ,5" = [,%-'] are homotopy equivalent. We prefer  to give a direct proof  of this 

result, which has also been observed by Naiman and Wynn [19]. It reveals some 

detailed relations between the diagrams used in Sections 4 and 8. We begin with 

some definitions and then prove homotopy equivalence results between UB and S ~. 

Homotopy Equivalence and Deformation Retractions 

It is not necessary to define homotopy equivalence in its full generality. A more 

restrictive notion is the following. Let X ___ Y be two topological spaces. A retraction 

of Y onto X is a continuous map 4': Y ~ X  so that 4,(x) = x  for all x ~ X. A 

deformation retraction of Y onto X is a continuous map qb: y x [0, 1] ~ Y so that 

qb(x, t) = x for all x ~ X and t ~ [0, 1], �9 is the identity on Y for t = 0, and qb is a 

retraction of Y onto X for t = 1. If such a qb exists, then X is a deformation retract 

of Y. If X is a deformation retract  of Y, then X and Y are homotopy equivalent. 

The reverse is not true, although to show that X and Y are homotopy equivalent it 

suffices to find a topological space Z and embeddings, e: X ~ Z and e: Y ~ Z so 

that both e ( X )  and e (Y)  are deformation retracts of Z. As proved in [15] the 

existence of Z, e, and e is also a necessary condition for the homotopy equivalence 

of X and Y. 

A basic property necessary for our construction is S #___ UB. Indeed, assuming 

general position we get S~ ___ int UB. It suffices to show the following result. 
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Lemma 3.1. I f  tr T ~ 5K, then tr r _ int U T. 

Proof. The assertion is obviously true for vertices. So let card T = k + 1 > 2 and 

assume inductively that the assertion holds for simplices of dimension less than k. In 

particular, ~rt: _cint U U _ int U T for each proper face o" v of ~r r. The only possibil- 

ity for ~r r ~ int U T is therefore that the complement of int U T n aft o- r be 

disconnected. Consider A T  = Lib e r  b and note that o" r ~ 32/ implies that 

int A T =  f ' lber  i n t b  r Q. Because A T  lies symmetric with respect to a f f g r ,  a 

point x ~ int fq T n aft ~r r exists. Now, int U T n aft crr is star-convex with respect 

to x, which implies that the complement within aft ~r r is connected. Therefore 

crr c_ int U T. [] 

Covering with Joins 

We construct a deformation retraction of int UB onto S ~ based on a natural 

covering of UB. Because of general position, the omission of bd UB does not affect 

the final result. The sets of this covering are joins of simplices of ~ a n d  faces of UB. 

In general, the join of two sets U, V _c Na exists provided any two edges UlV 1 4: u2v2,  

with ul,  u 2 ~ U and va, v 2 ~ V, are either disjoint or meet at a common endpoint. 

Then the j o in  of U and V is U *  V =  U , ~ v , ~ v  uv. For convenience, U * Q  = 

Q * U = U .  

Consider a subset T _ B ,  with k +  1 = c a r d T _ d ,  with ~r r ~ .  Note that 

s T =  f ' l b e r b d b  is a ( d - k - D - s p h e r e .  By Lemma 2.2, tr r is a face of 

iff s r n bd OB is nonempty. In this case the affine hull of tr T is a k-fiat, and that of 

s T is a (d - k)-fiat. These two fiats are orthogonal and meet in the center of s T. 

This implies that the join of tr r and s r exists, and therefore also the join of o- r and 

any component  f of s r n bd OB. Now define 07 =o,~Z(B) = {tr T * f}, where • ~ tr T 

E ~g(and f = O if tr T is not a face of S ~ and f is a component of s T n bd OB if o- r 

is a face of SC A two-dimensional example is shown in Fig. 3.1. It is not difficult 

although tedious to prove that o, r is indeed a covering of LIB and that the interiors 

Fig. 3.1. The covering of LIB using joins between simplices of 0~ and faces of UB. 
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Fig.  3.2.  
l This is ~(UB, �89 at time t = ~ the fringe is narrowed to half the original width. 

of the sets in J are pairwise disjoint. If we ignore the d-simplices of ~,( in ,,g we get 

a covering of the fringe, UB - S  a. Alternatively, we can take the set of edges that 

make up the joins and get a covering of the fringe by an infinite set of edges without 

common interior points. Indeed, if two joins in J -~,~ share a common face, then 

the face is again a join and the union of edges common to both joins. 

The Deformation Retraction 

We construct a map @: UB x [0, 1] ---, UB whose restriction to int UB satisfies the 

requirements of a deformation retraction onto S '~. We specify qb for each individual 

join in J .  Let cr ~ ~ be a face of S a, and let f be a face of UB with cr * f ~ J .  For 

every point y ~  c r * f  there are unique u ~ t r ,  v ~ f ,  and h ~ [ 0 , 1 ]  so that 

y = h u  + ( 1 -  A)v. For each t E [0 ,1 ]  we define r  At + t ) u  + 

(1  - 3.)(1 - t)v. Intuitively, this means that uv is continuously shortened at v so 

that at time t its length is (1 - t)luvl, see Fig. 3.2. If f = O we set @(y, t) = y for all 

t ~ [0, 1]. The map qb restricted to int UB is continuous because it is continuous 

within each join, except possibly at points of bd UB. Clearly, qb is the identity of 

int UB for t = 0, its restriction to 5 p is the identity for all t ~ [0,1], and 

qb(Int UB, 1): int UB --,5~ is a retraction. 

Remark. The construction of qb can be modified to get a deformation retraction qb' 

of R d - 5  ,~ onto R d - i n t u B .  If y e  U B - 5  p, then y = A u  + ( 1 - A ) v ,  and 

we define @ ' ( y , t ) = A ( 1 - t ) u  + ( 1 - A + A t ) c .  For y ~ R  d - i n t U B  we set 

�9 '(y, t) = y for all t. 

Links and Unions of Caps 

A relationship like the one between UB and S '~ can be shown between some of their 

substructures. Consider a subset T _ B so that o" r E ~.. The link of tr r in ~ is 

lk~r(~ v) = {~ e o,~'q~rv * o" ~ 07(}. For example, the link of vertex x in Fig. 2.3 is 

{0, a, b, c, d, bc, cd}, and the link of edge xc is {0, b, d}. Let 1 < k + 1 = card T. 
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Because ~ry ~ ~ ,  s r is nonempty and thus a (d - k - 1)-sphere in Ed. Define 

�9 ~ r  = lk~r (trr), 5 : r  = 1.7-(yl, and B r = {sy (~ bib  ~ B - T}. By the definition of link 

and by Lemma 2.2, the spheres sTu u in s r that contain faces of bd (.JB T correspond 

to simplices tr T u t: that are faces of S:. Of course, such simplices exist only if try is 

a face of 5:. 

Unlike S "~, which is a subset of int LIB, S'~r is usually not contained in int U B  r. 

However, it is possible to embed SaT in int LIB r using a projection map tp r. Let x 

be a point not contained in the k-flat aft tr T. Hence, aft or r u tx~ is a (k + D-flat and 

aft or T decomposes it into halves. The half that contains x intersects sr  in a point 

~br(x). Intuitively, ~O T projects x into ST; the center of the projection is aft tr r. The 

restriction of ~/t T to [lk~(trT) I is continuous and one-to-one. Hence, 0T embeds ~ y  

in sT, and using an argument as in Lemma 3.1 we see that ~br(~ T) _ int UBr.  

Similarly, @T embeds the joins tT' * f ' ,  where tr '  = trt: ~ ~T  and f '  is a face of a 

component of s y u u  tq bdUB.  The embedded joins define a covering J r  of U B  r,  

analogous to the covering J of  U.IB. The composition ~b T o qb restricted to the joins 

mentioned above describes a deformation retraction of int LIB T onto ~br(day). It 

follows that LIB T and S :  T are homotopy equivalent. We summarize the above 

results. 

Theorem 3.2. 

(i) ~ is h o m o t o p y  equivalent  to UB.  

(ii) For  each T c_ B with Cry ~ ~ ,  ~ r  is homo topy  equivalent  to U B  r. 

Remark. Recall that ~ '  is a deformation retraction of ~ d  _ _ ~  onto ~d _ int LIB. 

The composition ~Pr ~ qb' thus defines a deformation retraction of s T - tpr(dPr) onto 

s r - int U B  T. Intuitively, this means that also the complements of UBy and S'~T are 

homotopy equivalent. This is used in the next section. 

Algor i thmic  Impl ica t ions  

Theorem 3.2(i) has algorithmic consequences concerning the homology groups of 

UB. We refer to [18] and [23] for an introduction to homology groups of a 

topological space Y. For each integer k, the kth  homology  group, H k = Hk(Y), is an 

abelian group expressing the k-dimensional connectivity of Y. If the dimension of Y 

is d, then the possibly nontrivial homology groups are H o through H a. A n  important 

related numerical value is the kth  betti n u m b e r  of Y, which is the rank of H k. There 

is a general algorithm for computing H k, provided Y is given as a finite simplicial 

complex. Since g :  = I..w, cq, this algorithm computes the homology groups of 5:. Two 

homotopy equivalent topological spaces have isomorphic homology groups, and thus 

the algorithm just mentioned also computes the homology groups of  UB. 

Before we say more about this algorithm, let us briefly discuss the complement 

spaces, • a _  UB and R d - S : .  We have seen that both spaces are homotopy 

equivalent and thus have isomorphic homology groups. However, since the underly- 

ing space of ~ is only a bounded subset of ~d, we do not have a simplicial 
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representation of ~d _ 2~'. This deficiency can be remedied as follows. Call a simplex 

o" T ~ ~ a hull  s implex  if o- r c bd I~l. Add a point to as a new 0-simplex "at infinity" 

to .,~, and for each hull simplex ~r T add crrut~  J to ~ .  Now, ~ is a triangulation of 

5a and no further distinction between hull and other simplices is necessary. 

The general algorithm for computing homology groups of simplicial complexes is 

based on computing Smith normal forms of integer matrices, see, e.g., [18]. Improve- 

ments of the original Smith normal form algorithm with polynomial behavior can be 

found in [8] and [17]. A fast combinatorial algorithm that works for simplicial 

complexes embedded in 53 is described in [6]. For a large problem size, which could 

mean thousands of balls defining LIB or similar numbers of simplices constituting 

X, only the algorithm in [6] performs satisfactorily. This leaves us with the open 

problem of finding faster algorithms for computing homology groups of simplicial 

complexes embedded in dimensions higher than three. 

4. Counting Faces 

In this section we consider the algorithmic problem of counting the faces of UB. 

The assumption is that ~ is given as a subcomplex of .~, and we seek an algorithm 

that computes the number of/-faces of LIB, for each 0 < l _< d - 1. This problem is 

related to determining the betti numbers of links in ~%( because the faces of LIB are 

typically not simply connected. The basic strategy is to consider all /-spheres of the 

form s T = fqb~T b d b ,  c a r d T =  d -  l, with cr T ~ .  For each such /-sphere we 

compute the number of /-faces of LIB it contains, and we take the sum of these 

numbers. The result is nt,  the number of / - faces  of UB. 

C o m p o n e n t s  o f  L i n k  C o m p l e m e n t s  

Recall the definition of B T = {s T N bib ~ B - T}.  The complement of LIBr ,  s r - 

LIB T, is the interior of the union of / - faces  contained in the/ -sphere  s r .  Since we 

assume general position of the d-balls, the connectivity of the interior is the same as 

that of its closure. Hence, each component of the complement is the interior of an 

/-face and is to be counted. For each tr T ~ ,  define ~'~r = l k ~ ( t r r ) -  lka ' (~r) ,  

where we assume that _~ is extended to a triangulation of  sd  as described at the 

end of Section 3. By the remark after Theorem 3.2, the number of  components of 

the complement is the same as that of ~T. For each ~T ~ ~ let n r be the number 

of components of ~ r -  Then we have the following result. 

Lemma4.1. For  each O < l < d - 1, 

nl = E nT" 
o'r E,~, card T=d-l  

Remark. If  o" r ~ J r  is not a face of S a, then lkx ( t r  T) = lka( t r  T) is a complete 
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triangulation of ~t. Hence, nT- = 0, which implies that the equation in Lemma 4.1 

remains valid if the sum extends only over the simplices of Ye" that are faces of S ~. 

The Algorithm 

We assume the following graph representation of 2 and ~ .  Algorithms for 

constructing 2 and ~,T can be found in [9] and [14]. The nodes of the graph 2 *  are 

the d-simplices of 2 ,  and the arcs of 2 *  are the (d - 1)-simplices of 2 ;  this 

includes the d- and (d - 1)-simplices incident to w. Each node and arc is labeled 

whether or not it belongs to ~ The subgraph that consists of the nodes and arcs in 

2 - ~Z/is denoted S~*. Since 5 f  is a proper complex, ~ is a proper graph. Given an 

arc of 2 " ,  we have access to the two incident nodes in constant time. Similarly, 

given a node we have access to the incident arcs in constant time. This is a 

reasonable assumption if d, which is the number  of dimensions as well as one less 

than the node degree, is considered a constant. Furthermore, we assume that given a 

simplex a ~ 2 of dimension less than d, we can find an incident node in 2 *  in 

constant time. Starting at this node, all other nodes incident to ~r can be enumer- 

ated in constant time per node. 

The algorithm relies on the fact that the number  of components of ~'~r is also the 

number  of components of the subgraph of 5 ~* induced by the d-simplices ~r U E 2 

- ~g( with T _c U. Denote this induced subgraph by ~ .  This is because crv ~ 2~/r iff 

T n V =  0 and ~rru v ~ 2  -o~.. In particular, ~v is an l- or (l - 1)-simplex of J / r  

iff Crru v is a d- or (d - D-simplex of 2 - ~ .  The faces of UB can thus be counted 

by finding components of various induced subgraphs of 5"*. A more detailed 

formulation of the algorithm that computes nt follows. Initially, all nodes of !~* are 

unmarked. 

nj := O; 

for each (d - l - 1)-simplex cr T ~ ~ / d o  

for each node crv ~ 2 *  incident to or T do 

if tr u is not marked and cr u ~ ~(  then 

mark cru; n t .'= nt + 1; 

start a graph search to mark all nodes ~v' that 

belong to the same component of ~ as crv 

endif 
endfor; 

unmark all marked nodes 

endfor. 

As remarked earlier, it is actually sufficient to run the outer for-loop only over all 

faces of S,'. In any case, each simplex of 2 is touched only a constant number of 

times, so the entire algorithm runs in time at most proportional to the number  of 

simplices in 2 .  Indeed, the step that employs graph searching also takes only 

constant time per node it marks, see, e.g., Chapter VI,23 [4]. We summarize the 

results of this section. 
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Theorem 4.2. Given a suitable representation of o,~ as a subcomplex of ~ ,  for 

0 < l < d - 1, the number of l-faces of UB can be computed in timeproportional to 

the number of simplices in ~ .  

5. Euler Relation from a Viewpoint 

This section derives Euler relations for convex polyhedra and viewpoints in IR d. For 

each point x ~ ~d we specify an alternating sum for the faces of a polyhedron 

visible from x. This sum will be 1 inside the polyhedron and 0 outside. These sums 

are used in Section 6 to derive short formulas for measuring a polyhedron or its 

intersection with another body. 

Inclusion-Exclusion for Convex Polyhedra 

Let H be a finite set of closed half-spaces in 1~ d that defines a nonempty convex 

polyhedron O H = n h~ H h. For simplicity we assume general position of the 

half-spaces. For every x ~ ~d and every I ~ 2 H define the characteristic function 

1 if xq~h  forall  h E I ,  
TI(x) = 0 otherwise. 

For L c_ 2 H define FL(x) = ~ ~ ~ L ( -  1) tara ~3q(x). The general inclusion-exclusion 

principle implies that 

[ 

F 2 ' ~ (X )  = / 1  if x ~ n H,  

L 0 if x ~  n H.  

A direct proof can easily be given. Define G = {h ~ HIx q~ h}. Clearly, l - ' 2 . (X)  = 

F2~(x). If x ~  A H ,  then G = O  and F2~(x)= ~ / e ( x ) =  1. If x ~  N H ,  then 

G 4= O and Fzc(x) = E l e 2 C ( - 1 )  c a r d / =  (1 - 1) cardG = 0.  

It should be clear that redundant half-spaces can be eliminated, that is, if 

O H = O G, for some G c H, then [ ' 2 u ( X )  = [ ' 2 ~ ( x ) .  We claim that a more dra- 

matic reduction of the set 2 H is possible. For I ~ 2 H define f l  = n H n Oh~ X bd h. 

If f l  § 0 ,  then it is a unique face of O H. This includes the case I = Q where 

fl  = f o  = n H. Define D = D ( H ) =  {I ~ 2"1fi  ~ Q}. Observe that D is an ab- 

stract simplicial complex, and because of general position any I ~ D has cardinality 

at most d. Figure 5.1 illustrates the following result. It can be proved using the Euler 

relation for convex polyhedra [16, Chapter 8]. We prefer to give an explicit proof 

using induction over the number of half-spaces. We also indicate how this proof 

extends to an elementary inductive proof of the classic Euler relation for convex 

polyhedra and polytopes. 
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O X  

Fig. 5.1. The faces ft of O H for which ,,v1(x) = 1 are the ones visible from x. The point x sees the 
cube itself, three facets, three edges, and one vertex. Hence Fo(x) = 1 - 3 + 3 - 1 = 0 as claimed. 

Lemma  5.1. 

F D ( x ) =  {10 if x ~  N H, 

if xr I"i1-1. 

Proof. W e  use induc t ion  over the size of G = {h ~ Hlx q~ h}. G is empty iff 

x ~ n H ,  and  indeed  we have Fo(x)  = y~ (x)  = 1 in this case. So assume x ~ n H. 

There  is at least one  half-space g ~ G: let ~ be the o ther  half-space bounded  by the 

same hyperplane.  Define H ' =  H - { g }  and H " =  H ' U  {~}. By the induct ion 

hypothesis the assert ion applies to n H' and to O H", see Fig. 5.2. Define D ' =  

D(H') and  D" = D(H"). We express D, D', and D" as disjoint  un ions  of smaller  

sets. By definit ion,  this t ranslates  to addi t ion for F. For  a fixed point  x ~ n H we 

have 

rD, = rL, + rx,  + r v , ,  

where 12 ={I~D' l f l c_g} ,  X ' = { I ~ D ' l f l n g - c f g  and f l N ~  ~ Q}, and U ' =  

{I ~ D'lfl _c g}. Similarly, 

r ~  = rL, + rx,  + r x ,  

where X = {I U {g}lI ~ X'}. Indeed  X '  represents  all faces of  n H '  that  intersect  

the hyperplane  b o u n d i n g  g, and  at the same time it represents  all faces of n H and  

Fig. 5.2. O H'  is the union of O H and n H". Since x ~ N H, by assumption, we have x ~ n H'  

i f f x ~  AH". 
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of n H"  that touch this hyperplane. Finally, 

Fo~ F~, + F~~ + r~,, 

where X" = {I U {~}[I ~ X'}. Now we express F D in terms of the other  sets: 

r~ = r o , -  r~, + rx  

= V o , -  ro,, + Vx. + Vx, + Vx. 

We have x ~  N H '  iff x ~  A H "  and therefore F D , - F t y , = 0  by the induction 

hypothesis. Furthermore,  Fx,, = 0 because x ~ g and each I E X" contains g. 

finally, F x, + F x = 0 because  Yt = "Y/U{g} and therefore (--1)card'r71 + 

( - -  1)  card Z+l"Ylu{g } = 0 for each I ~ X' .  Therefore  F o = 0 as required. [ ]  

Remarks.  (1) The following modifications generalize Lemma 5.1 and its proof  to 

cover degenerate  positions of the half-spaces. First, D is defined so it contains only 

maximal sets defining faces of N H :  D = { I ~ 2 H [ f ~ : ~ Q  and f ~ f j  if I c J } .  

Second, the signs in F D alternate with the codimensions of the faces: F D ( x ) =  

i ~ D (--1)c~ where codim f l  = d - dim ft. Third, in the proof  we have 

three additional sets, 

C' = {I E D'lfz ~ bd g}, 

C = {I u {g}[l ~ C'}, 

C" = {I  u {~'}1I ~ C'}, 

which are subsets of D', D, and D" disjoint from L', U', X ' ,  X, X". In the final 

expression for F D we get Fc,, - F c, + F c as an addit ional term. It vanishes just as 

Fx,, + F x, + F x does. 

(2) Lemma 5.1 implies the Euler  relation for unbounded convex polyhedra. To 

see this take x outside all half-spaces. The following standard decomposit ion of the 

boundary of a bounded convex polyhedron can be used to extend this result to a 

proof  of the Euler  relation for convex polytopes. Choose a generic direction 

classifying each facet either as a front or back facet. The collection of front facets 

forms a (d  - D-ball, and so does the collection of back facets. The intersection of 

the two balls projected along the chosen direction forms the boundary of a (d  - 1)- 

dimensional convex polytope, which is decomposed the same way. 

Intersection with a Convex Body 

We generalize Lemma 5.1 so it makes a statement about points x of a compact  

convex set A. Define K = K ( A ,  H )  c_ D ( H )  so that I ~ K iff fz n i n t  A ~ ~3. 
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Lemma 5.2. 

r'K( x ) = 
i i f  x ~ A n  n H, 

if x ~ A -  n H. 

Proof. We choose a suitable polyhedral approximation of A. Let H A be a finite 

collection of closed half-spaces so that A ___ n Ha and K(A,  H) = K(N H A, H). 

Such a finite set H A can be constructed during the following iteration. Find a face f j  

of O H disjoint from int A with f j  N int n HA 4= Q. By convexity of fj  and A there 

is a separating hyperplane. Add the half-space bounded by this hyperplane that 

contains A to H A, The process is finite because n H has only finitely many faces. 

Define D n =  D(H U H A) and use Lemma 5.1 to get 

t o ( x )  = 
1 if x ~  Nx~n NH, 

0 if x ~  NHAn n,,. 

Note that D n = K ~ ] L ,  where K = K ( N H  A , H )  and L = { I E D n t l N H  A ~ 0 } .  

For all x ~ N HA and each I ~ L we have yl(x) = 0. Hence, 

rK(x )  = r~,o(X) - rL(x)  = rDo(x )  

for all x ~  NHA. The assertion follows because A N OH___ AHA N O H  and 

A - n H c  A H  A - OH.  [] 

Remark. The relation in Lemma 5.2 also applies to compact nonconvex sets A if 

the collection of faces considered is determined by the convex hull of A, that is, 

K = K(conv A, H). For example, it applies to the boundary of a compact convex set, 

and the intersection of this boundary with the boundary of O H, etc. 

6. Measuring the Union of Balls 

This section and the one after the next simplify, improve, and generalize earlier 

work on algorithms for measuring the union of balls [1], [2]. Based on the correspon- 

dences between tl~e various diagrams introduced in Section 2, this section derives 

short inclusion-exclusion formulas for the d-dimensional volume or Lebesgue 

measure of UB and the total/-dimensional Lebesgue measure of its /-dimensional 

faces. We begin by studying inclusion-exclusion formulas for convex polyhedra. 

Measuring by Integration 

We measure A N O H using Lemma 5.2. Consider a compact convex set A 

with the nonempty interior in R a. The d-dimensional measure of A n N H, 
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I.td(A N n H),  is the integral of FK(x) over all points x ~ A,  where K = K ( A ,  H).  

We get 

= fxEA E (--])cardl3"l(X)dx 
I~K 

= E (--l)cardlfxeA3"l(X)dx" 
leK 

The integral of y l (x)  over all x ~ A is the d-dimensional measure of A O Qt,  

where Q1 = n h ~ l  ~" 

The same calculation can be done for lower-dimensional sets. We are interested 

in the sets bd A n n H (l§ where n H ~+~) is the union of all (1 + D-dimensional 

faces of  O H. Assuming general position, these sets a re / -d imensional .  We state the 

results. 

Lemma 6.1. 

(i) i~a(A N N H )  = ~ . t e K  (--1)card~a(A n QI)" 

(ii) For O < l < d - 1, 

/ z / ( b d A  N n H(/+I))  = y~. ( -1 ) ca rdz / z / (bdA ("10(l+l)). 
IeK 

Remarks.  (1) The lowest dimension of any face of Ql is d - card I. This implies 

that in Lemma 6.1(ii) all terms for sets I with card 1 _< d - l - 2 vanish and can 

therefore be omitted. 

(2) The relations in Lemma 6.1 are based on the assumption of a uniform density 

distribution. All  results hold without change for any other reasonable density 

function. To see this redefine 3't(x) equal to the density at x, provided x ~ h for all 

h ~ I. Otherwise, 3'1(x) = 0 as before. 

(3) Consider a simple special case of Lemma 6.1(ii): O H is a tr iangular cone with 

apex y in R 3, and A is a 3-ball with the unit surface area centered at y. By Lemma 
3 

6.1(ii) the size,/x2, of the spherical triangle bd A N O H is 1 - ~ + (=  + /3 + 3') - 

/z 2, where ~, /3,  y are the three dihedral  angles of fl H normalized between 0 and 

1. This implies the famous formula 

~ + f l + 3 '  1 

#2 2 4 
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for spherical triangles. In a similar vein it is possible to derive Gram's formulas for 

convex polyhedra, see, e.g., Chapter 14 of [16]. 

Inclusion-Exclusion with Intersections o f  Balls 

We write/x d =/Xd(UB) for the d-dimensional Lebesgue measure of UB = UbE B b, 

and /x t = ~ t (UB)  for the total / -dimensional  Lebesgue measure of all/-faces of UB, 

for 0 __< l < d - 1. In particular, IZd_ 1 is the size o f b d  UB, and /x 0 is the number of 

vertices or corners of UB. We derive formulas that express /x t in terms of 

/-dimensional measures of intersections of at most d + 1 balls from B. These 

formulas are shorter than similar formulas in [20] because they take K as the index 

set rather than D. This difference turns out to be essential for the derivation of the 

decomposable formulas in Section 8. We note also that the weighted Voronoi cells 

used to handle varying radii, see Section 2, are different from the ones suggested in 

[20]. 

Call T c_ B independent if for each subset U c T we have i n t ( n  U - O T - U) =~ 

O. For example, if o- T is a simplex in ~ ,  then T is independent.  If T is independent,  

then n T ~ ~ and its face structure is dual to that of ~rT, see Figure 6.1. We write 

/~t(n T) for the tota l / -dimensional  measure of all /-faces of n T. Clearly, the lowest 

dimension of any face of n T is d - card T, s o / ~ l ( n  T) = 0 if l < d - card T - 1. 

We are ready to state the first set of inclusion-exclusion formulas for UB. 

Theorem 6.2. 

(i) /~d(UB) = E o~ o.T ~ -  ( - 1) card T- 1/~d(n T). 

(ii) For O < l < d - 1, 

(a) (b) (c) (d) 

Fig. 6.1. The intersection of one, two, three, and four 3-balls. The face structure is dual to that of a 

vertex, an edge, a triangle, and a tetrahedron. 
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Fig. 6.2. Under inversion in d + 1 dimensions, the image of a hyperplane is a d-sphere, and every 

(d - 1)-sphere in the hyperplane maps to a (d - D-sphere on the d-sphere. 

Remark.  The  sets T of size card T < d - l - 1 can be omit ted  from the sums in 

Theo rem 6.2(ii) because their  cont r ibut ion  to P~l is zero anyway. Note that the thus 

simplified formula  for l = 0 counts  2 for each (d  - 1)-simplex ~r~ ~ ~ and  then 

subtracts the n u m b e r  of incident  d-simplices that  are in ~ .  The result  is the same as 

derived in I ~ m m a  4.1. 

Proof. We present  the detai led a rgument  for (i) using an embedding  of It~ a as a 

hyperplane H in •d§ Let  z be a point  in It~ a+l - II  and consider  the inversion 

t ransform with center  z. It maps every point  x ~ z to a point  x ~ so that x and x ~ lie 

on  the same half-l ine with endpo in t  z and Izx~ = 1/IzxL. The image of II unde r  

inversion is a d-sphere  H ~ that contains  z. Fur the rmore ,  each d-ball  b in H maps  to 

a spherical cap b ~ on H ~ see Fig. 6.2. Let h b be the half-space in R a§ so that  

b ~ = H ~ N T/b . 

With  an eye on L e m m a  6.1 we define A = c o n v H  ~ b d A  = I I  ~ and  H =  

{hblb E B}. Inversion maps  bd A - n H to int  UB. Note that for points  on II ~ 

inversion is the same as s tereographic project ion into II centrally from z. The  same 

project ion maps  the facets of O H to the Voronoi  cells of  ~ ' =  ~/ '(B). Moreover,  a 

face f~ of n H maps to the intersect ion of Voronoi  cells nhb~ ~Vb" Fur the rmore  

f t  n i n t  A 4; Q iff this intersect ion of Voronoi  cells has a c o m m o n  point  with 

int  UB. By assumpt ion  of general  posit ion the same is t rue if we replace int A by A 

and int  UB by UB. Hence ,  I ~ K(A ,  H)  iff the simplex spanned  by the centers of 

the corresponding balls belongs to ~ = ~ ( B ) .  

W e  derive a formula for the d-d imens ional  measure  of bd  A -  O H using 

L e m m a  6.1(ii). For  the intersect ion,  bd A n n H,  we get 

( -  1) card ~txa(bd A n Qt), 

I~K(A, H) 

where  Qz = O h e I h, as usual. For  bd A - O H we therefore get 

= ~ ( -  1)cardt-1/Zd(bd A n Q1). 

f ~ I ~ K ( A , H )  
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To get (i) note that for each I ~ K(A,  H)  the set bd A n Qt is the image under 

inversion of the corresponding intersection of balls, n T. Finally, to get the d-dimen- 

sional measure of UB we put a density function on bd A = II ~ whose image under 

inversion is the uniform density in 1-I. 

The relations in (ii) are obtained by similar arguments using Lemma 6.1(ii) for 

values of l less than d. The main difference to the above proof for l = d is that for 

l < d we compute bd A n n H (l+ 1) directly, without considering any complement. 

This explains the inconsistency in sign between the formulas in (i) and (ii). []  

7. Results on Independent Simplices 

This section proves several results on simplices, which are used in Section 8 where 

another set of formulas for the measure of LIB is derived. The main result is 

Theorem 7.3. It expresses the common intersection of d + 1 d-balls in terms of the 

simplex spanned by their centers and common intersections of d or fewer of the 

d-balls. The theorem applies only if the d + 1 balls are independent, which is 

assumed throughout this section. 

Inclusion-Exclusion for Simplices 

Let H be a set of d + 1 closed half-spaces in R d defining a d-simplex n H. Each 

proper subset I c H defines a proper face, f t ,  of n H. Except for the vanishing 

term yH(x), Lemma 5.1 for n H coincides with the trivial inclusion-exclusion 

formula, 

I-2.(x)  = 
1 if x ~  n H,  

o if x ~  n H.  

Let D r contain all sets in 2 ~/that contain I, s o  D I = {J U I]J ~ 2n-t} .  Recall that 

Qt = n h e l  ~ and define Pt = Qt N N ( H -  I),  see Fig. 7.1. We are interested in 

Foj(x) for points x E QI. Because FD~ coincides with F2,-,  for such points we get 

the following result. 

Lemma 7.1. 

10 i f  x ~ P ~ ,  

Fh'(X) = i f  x ~ Qt  - PI .  

Intuitively, this means that with respect to inclusion-exclusion PI behaves in Q1 

the same way as O H behaves in R a. 
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q/ q/  

. Z 

(a) (b) (c) 

Fig. 7.1. Regions '~ of a 3-simplex, with card I = 1 to the left, card I = 2 in the middle, and 
card I = 3 to the right. 

Independent Sets o f  Balls 

Recall the definition of an independent  set T of d + 1 d-balls in It~ d. T has 2 d+l 

subsets each defining a nonempty set in ~d  consisting of all points inside balls of the 

subset and outside balls not in the subset. The (d  - 1)-spheres bounding d + 1 

d-balls decompose ~d into at most 2 d§ cells. In the case of d + 1 independent  

d-balls the numbers are the same, so each cell must belong to a unique subset of T. 

This implies each set defined by a subset of T is connected. Notice that T is 

independent  iff J~(T)  consists of g r  and all its faces. 

Let H bc a sct of d §  1 half-spaces so that N H =  ~rv, as before. Each 

hyperplane bd h, h ~ H, contains the centers of d d-balls in T. For  each I ___ H let 

X = X I c_ T contain the d-balls whose centers lie in all hyperplanes bounding 

half-spaces in I. Define Y = Y1 = T - X and note that card I = card Y. For  a choice 

of I we are interested in Pj ,  see Fig. 7.1. In particular, we claim that within Pt the 

intersection of  the d-balls in Y is contained in the union of the d-balls in X. To help 

the discussion we call PI the focus of Y in T. For  example, n H is the focus of Q in 

T, and • is the focus of T in T. See Fig. 7.2 for an illustration. The disks around a 

and b at the right intersect their focus outside the disk around c, but  the intersec- 

tion of the two disks does not. The claim is now formally stated and proved. 

Lemma 7.2. For each I c_ H,  we hate 

n np,  Ux,. 

Proof. Note that the assertion holds in ~1, where we have two intersecting 1-balls 

(intervals) that do not nest. They define a 1-simplex connecting the midpoints of the 

1-balls. Assume the assertion inductively for dimensions less than d. Take a subset 

I _c H and consider the focus, Pt,  of  Y in T. If I ~ H,  ~ ,  then Pt is a proper  convex 

polyhedron which shares the face o" x with O H. By Lemma 3.1, this face is 

contained in U X. All other proper  faces of P1 are lower-dimensional loci, namely, 

loci of Y' in T', where Y' ___ Y, X '  c_ X, and Y' U X '  = T' c T. For  each choice of 

Y' and X '  the assertion holds by induction hypothesis. It follows that O Y n bd Pr 

c U X. We just need to extend this result from bd PI to PI itself. 

To get a contradiction, assume n Y is not contained in U X. Choose a point 

x ~ n Y n Pj not contained in U X. Note that n Y is symmetric with respect to 
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aft  a y .  Similarly, I,J X is symmetr ic  with respect to aft tr x .  Let  hy  be  the hyperplane  

that conta ins  aft ~r v and  is parallel  to aft  tr x .  h y  is un ique  because the d imens ions  

of the two affine hulls add to d - 1. Let y be the reflection of x with respect to hy ,  

and observe that y e f'l II. By construct ion,  h v n Pt = Q, and thus y ~ / ' 1 .  Since y 

is fur ther  away from all b e X than  x, we also have y ff U X .  This implies that  x 

and y be long to the region of the same subset  Y of T, that is, x ~ b iff y e b for all 

b ~ T. Fur the rmore ,  x ~ PI, Y q~ PI, and  this region does not  intersect  bd PI. 

This implies that the region is disconnected,  which contradicts  the independence  

of T. []  

Measuring Simplices and Balls 

Using Lemmas  7.1 and  7.2 we derive a relat ion for the measure  of f'l T. We  still 

suppose that T is independen t .  Hence,  tr r ~ ~ ( T )  and, by L e m m a  3.1, tr T ___ [_IT. 

For  each face tru, U ___ T, let q~u, T be the angle at ~r v inside crv. We normal ize  

angles be tween  0 and 1, so all angles can be in terpre ted  as follows. Take a point  

x ~ int  ~v  and a sufficiently small  (d  - 1)-sphere s with center  x. Then  q~v, r is the 

fract ion of s inside or r ,  that  is, 

txd_l(s n ~ r )  

~ov, r = txd_ l (s)  

1 if card U = d. It  is convenien t  to set ~ ,  r = 0. For  example,  ~ r , r  = 1, and  ~ , r  = 

In  R 3 an  angle at a vertex is usually referred to as a solid angle, and an angle at an  

edge as a dihedral  angle. 

Theorem 7.3. 

(i) ~ v_~r ( -  1) c"~dU- 1 9v, r" txd(f] U)  = IZd(o'r). 

(ii) For O < l < d - 1, 

(-- 1)cardU-1 ~PU, T " IXl( n u)  = o. 
Uc_T 

Before proving these relat ions,  let us consider  a two-dimensional  example,  see, 

e.g., Fig. 7.2. There  are three disks satisfying the assumpt ions  of independence .  

@ 
(a) (b) 

Fig. 7.2. The three disks to the left define a favorable case, whereas the disks to the right do not. 

Indeed, the intersection of the disk around b with the half-plane opposite ac is not covered by the 

disks around a and c. The same is true for the disk around a and the lfalf-plane opposite bc. 
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Relation (i) expresses the area of the triangle spanned by the centers of the three 

disks in terms of angular pieces of the disks and their intersections. The fraction of 

each disk is defined by the angle at its vertex inside the triangle. Half  the area of 

each pairwise intersection is subtracted, and the area of the common intersection of 

all three disks is finally added. The validity of  relation (i) is obvious for the three 

disks shown on the left in Fig. 7.2, and it is less obvious for the disks on the right in 

Fig. 7.2. 

Proof. We present  the proof  of  (i) in detail. Recall that 131" T = n H, and that every 

subset I c H defines a face f l  = ~rx, with X = X l ___ T. We use Lemma 6.1(i) with 

O H =  o- T and A = U T a n d g e t  

n-): (--1)card//3"d ( A n  Q,) ,  

Ic_H 

where A n Q1 is the closure of A outside all half-spaces h ~ I, as before. We first 

assume the favorable case where A n QI = U X  n Qt for all I ~ H, see Fig. 7.2. 

This case is favorable because all hyperplanes bd h, h ~ I, contain the centers of all 

b ~ X and thus cut these d-balls into halves. We use the fact that the angle at cr x 

inside n H is that same as the opposite angle inside Q1 and get 

Q ~  Uc_X 

The last line is obtained by straightforward application of the inclusion-exclusion 

principle. Now we plug the last relation into the earlier one for /zd(n H )  and get 

, . ( n , - , )  = ,B( (-l)card, 1)cardU-1//"d( n 

Summing over all subsets I of H is the same as summing over all subsets X of T. 

Therefore,  

~ U c X  

= ~OU, T 

Uc_T 
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The last line is obtained by observing that Y'~x_Du ( -1)d-cardX+l qgX, T = q~U,T for 

all U __c T, see remark (3) after Lemma 6.1. This proves (i) in the favorable case. 

With  Lemmas 7.1 and 7.2 we can reduce the unfavorable case to the favorable 

one. Consider  a subset I ___ H. In the unfavorable case we have A N Qz ~ U X  G QI. 

By Lemma 7.2, N Y intersects Pl  at most  inside UX.  By Lemma 7.1, within Q~ - Pz 

all points of N Y outside U X can be ignored without penalty. After  doing this for all 

I c H we have the same derivation as in the favorable case. 

The proof  for (ii) is essentially the same using Lemma 6.1(ii) instead of 6.1(i). For  

l < d - 1 the right side vanishes because ~r r does not intersect bd A = bd U T. [ ]  

8. Decomposable Metric Formulas 

From Theorem 6.2 we derive a second set of  inclusion-exclusion formulas for LIB. 

In contrast  to Theorem 6.2, the new formulas have terms that express the contribu- 

tion of  individual simplices of .~. This is useful in situations where only a part of 

LIB or  its complement  is to be measured.  Another  advantage of the second set of 

formulas is that its terms correspond to intersections of at most d d-balls, rather  

than d + 1 as in Theorem 6.2. 

Inclusion-Exclusion with Angle Weights 

We first make the relat ion in Theorem 6.2 more complicated, and then replace or 

eliminate large parts using Theorem 7.3. It is convenient to cover the part  of UB 

outside I-~1 with simplices. This can be done by adding d + 1 points (degenerate 

d-balls), whose convex hull contains UB, to B. Consider  Theorem 6.2(i) and 

decompose O T into the parts defined by the d-simplices incident to crr. That is, use 

n n 

where the sum is taken over all S ___ T, card S = d + 1, so that o- s ~ -~. We need 

some notation. For  subsets . ~  and . Y  of a simplicial complex in R d let S rid1 = . ~ d )  

_ . ~ d - 1 )  be the collection of d-simplices o- s ~ . ~ ,  and let [ . ~ ' , . ~ ]  denote  the 

collection of  pairs (err, o" s) so that o-r ~ . f e '  is a face of ~r s ~ - o  cdd]. With this 

notation, Theorem 6.2(i) becomes 

'll'd( U B) = E (--1)cardT-lqgT, S" ]s N Z). 
(err, ~rs) e [~, ~ ]  

Now we make a substitution using Theorem 7.3(i) whenever ~r s ~ ~ ,  and get the 

final result stated as Theorem 8.1(i). The same derivation works also for txt(OB), 

0 < l < d - 1. In this case the substitution uses Theorem 7.3(ii) and is, in fact, an 

elimination. We state the resulting second set of formulas for LIB and note that the 

remark  after Theorem 6.2 also applies to Theorem 8.1. 
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Theorem 8.1. 

(i) 

/'i'd( U B)= E "d(~ E (--1)cardT-lq~T,S'~d( n ~). 
%,~3; "<di (~r, ~s) e [-~, .@" -.iq 

(ii) For  O < l < d - 1, 

,,(u.): z 
(~T, ~s)E[ "~e', ~ -,~r 

How can we interpret Theorem 8.10) in ~27 It says the area of UB can be 

computed as follows. First, take the triangles in ~ and compute their total area. 

Second, for each vertex cr T of 5:,  T = {b}, compute the angle, q~T, around tr T 

outside 5 ~, and add q~T times the area of n T = b to the total area. Third, for each 

edge tr r of 5:,  T = {b,b'}, subtract half the area of n T = b N b' if there is one 

triangle in 2 - ~7( incident to tr r,  and subtract the entire area if there are two such 

triangles. Similar interpretations apply to Theorem 8.1(ii) and in higher dimensions. 

Measur ing  a Void  

Note that Theorem 8.1(i) consists of two sums. The first measures the d-dimensional 

part of J ,  and the second measures the fr inge,  U B - S : .  This relates to the 

considerations in Section 3, where the fringe is deformed in a continuous manner  

until it disappears. We can also measure the fringe simply by dropping the first sum 

in Theorem 8.1(i). This suggests it should be possible to measure a void,  that is, a 

bounded component of R d - UB. In IR 3, measuring voids is of some significance in 

the study of proteins [3], [22]. 

Let V o be a void of UB. As proved in Section 3, there is a void ~0  of S :  that 

contains V 0. Moreover, ~'~0 contains no other void of UB, that is, V 0 =5~0 - UB. It 

thus seems natural to collect all simplices cr ~ ~ -~g( with int ~ - - -~0  using the 

ideas described in Section 4. Call this set ~0  and note that o,~/0 is not a simplicial 

complex, but ~ - ~ 0  is one. To measure V 0 we adapt the formulas in Theorem 8.1. 

Recall that ~ d l  is the collection of d-simplices tr s ~ ~o .  

Theorem 8.2. 

(i) 

: 

"s EY74J l ('~r, ~s)~ [ 3 L ~ ]  

(ii) F o r  O < l < d - 1, 

Id'l(Vo ) = E (--1)cardT-d+l  T,S " "( n 
(o':~, O's) ~ [,~,~o] 

Proof .  We cover the void V 0 with finitely many d-balls and consider the difference 
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in measure before and after adding the d-balls. Let B'  be the set of d-balls that 

cover V0, and consider U(B U B')  and J~f" =.Y/~(B U B'). We require that (i) B' is 

finite, (ii) ~(  is a subcomplex of  ~(', and (iii) V 0 = l iB '  - UB. 

We argue that such a set B'  exists. Choose e > 0 small enough so that ~ = 

~ ( B )  = ~ ( B , ) ,  where 

Note that ~ ( B )  = ~'(B~), by definition of ~ ,  and therefore _~ =..~(B) = .~(B, ) .  

Since general position of the d-balls in B is assumed, we can find e small enough so 

that also the subcomplexes ~ ( B )  c . ~  and oT((B,) c__~ coincide. Now let B'  be a 

sufficiently large set of d-balls b' = (z' ,  e), with z' ~ V o, so that V o c UB'. Since V 0 

is bounded and e > 0 we can certainly choose B' finite. We show that (ii) and (iii) 

are also satisfied. Define B'~ the same way as B e before. The balls of this set are 

degenerate, that is, B'~ is a finite point set. Therefore, . ~ (B ,  U B'~) is just oT(B,)  

together with finitely many isolated 0-simplices. Hence, 97 = ~ ( B , )  cSe'(B~ U B'~). 

From this (ii) follows because ~ ( B ~  u B',) ___J~(B u B')  = ~ ' .  If tyr is a simplex in 

.Y'{' -.Yf, then T N B' ~ Q. So 5 ~' - S a c ~ 0 ,  where ~ '  = 1o76'1. In fact, 5 a' - S~ = 5~o 

because V 0 ___ UB'. Condition (iii) follows because the correspondence between 

S '~' and UB'  expressed in Lemma 2.2 gurantees that l iB '  and UB coincide out- 

side V 0 . 

So we have I~d(V o) = /~d(UB') - tXd(UB) and tzt(V o) = / z t ( U B )  - / x l ( U B ' )  for 

0 < l < d - 1. Note that the first sum in (i) is equal to the first sum of Theorem 

8.1(i) for LIB' minus the first sum of Theorem 8.1(i) for liB. Similarly, the second 

sum in (i) is equal to the second sum of Theorem 8.1(i) for UB'  minus the second 

sum of Theorem 8.1(i) for LIB. The sum in (ii) is Theorem 8.1(ii) for l i b  minus 

Theorem 8.1(ii) for LIB'. []  

9. Discussion 

This paper studies the union of finitely many d-balls in ~d. It is demonstrated that 

many properties can be computed without explicit construction of the union. 

Instead, the nerve of the balls intersected with their respective (weighted) Voronoi 

cells is constructed. This is a simplicial complex that can be derived directly from the 

(weighted) Delaunay simplicial complex of the balls. For constant d, the size of this 

complex is no more than some constant times n [d/2], where n is the number of balls, 

and for most distributions it is much less than that. 

Specific algorithms are discussed that compute topological, combinatorial, and 

metric properties of the union of balls directly from the complex. The advantage of 

this complex, obtained by clipping balls to within their Voronoi cells, over the nerve 

of the set of unclipped balls is the significantly reduced size, see also [21]. It leads to 

much improved running times which make computations practical also for fairly 

large data sets. This is relevant to computational problems in biology, where proteins 

are modeled as unions of  hundreds or thousands of 3-balls in R 3. For further 

applications it would be interesting to extend the inclusion-exclusion formulas of 
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T h e o r e m s  6.2, 8.1, and 8.2 to physical forces associated with a molecule .  The  most  

demanding  step in obtaining running implementa t ions  of  the a lgor i thms in this 

paper  is the const ruct ion of  ~ Software for d = 3 is descr ibed in [13] and for 

d = 2, 3 it is available via ftp f rom f tp .ncsa .u iuc . edu .  Algor i thms  in dimensions  

beyond three  are  descr ibed [9], [14]. The  t ime-complexi ty  of  these algori thms 

depends  on the distr ibution of  the  balls, and is of ten roughly of  the same order  as 

the number  of  simplices in .q~. A n  implementa t ion  of  the formulas  in T h e o r e m s  6.2, 

8.1, and 8.2 for ~3 is also available and descr ibed in [10]. 
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