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ABSTRACT

The item response function (IRF) for a polytomously scored item is defined as a

weighted sum of the item category response functions (ICRF, the probability of getting

a particular score for a randomly sampled examinee of ability 0). This paper establishes

the correspondence between an IRF and a unique set of ICRFs for two of the most com-

monly used polytomous IRT models (the partial credit models and the graded response

model). Specifically, a proof of the following assertion is provided for these models: If

two items have the same IRF, then they must have the same number of cat-

egories; moreover, they must consist of the same ICRFs. As a corollary, for the

Ranch dichotomous model, if two tests have the same test characteristic function (TCF),

then they must have the same number of items. Morover, for each item in one of the

tests, an item in the other test with an identical IRF must be exist. Theoretical as well

as practical implications of these results are discussed.

Key words: item response theory, polytomous item, partial credit model, generalized

partial credit model, graded response model, invariance, ordered categories.



1 Introduction

With the increased use of Item Response Theory (IRT) models for ordinally scored

polytomous items in educational achievement tests (e.g., essays, performance tasks, and

testlets), an important question presents itself about the correspondence between an item

response function (IRF, defined as the regression of item score on ability) and sets of item

category response functions (ICRF, defined as the probability curves for each of an item's

possible response categories). For commonly used dichotomous parametric IRT models

(like the 1-, 2-, and 3-parameter logistic model), two items with identical IRFs have iden-

tical item parameters. However, for polytomous models, like the partial credit (Masters,

1982), generalized partial credit (Muraki, 1992), and graded response (Samejima, 1969,

1972) models, the item structure of an (m -l-1)- category item is determined by m ICRFs,

each of which is determined by a set of parameters. It is not clear whether an IRF for

polytomously scored items corresponds to a unique set of ICRFs, and hence, a unique

parametric structure. Whereas in the dichotomous case, items with identical IRFs must

have identical conditional item score distributions at all levels of ability, two polytomous

items with identical IRFs could exhibit conditional item store distributions that differ

substantially beyond the first moment at one or more levels of ability.

This article investigates the relationship between IRFs ICRFs for the most com-

monly used ordinal item response models the partial credit models and the graded re-

sponse model. Specifically, we provide proofs of the following assertion for these models:

If two items have the same IRF, then they must have the same number of
score categories. Moreover, they must consist of the same ICRFs. An example

is provided to show that this uniqueness assertion does not hold in general. Lastly, some

theoretical and practical implications of t hese results are discussed.



2 The Basic Notation and Problem

Consider a test consisting of items intended to measure some unidimensional profi-

ciency of interest. Assume that examinee responses to the items can be categorized into

one of a set of (m + 1) ordered categories. Let Xj be the score for a randomly selected

examinee on the jth item; X; = k, 0 < k < m, and let 0 denote the ability for a ran-

domly chosen examinee. Let Pj,k(0) denote the probability of getting score k on item j

for a randomly sampled examinee with ability 0, that is,

In other words

.13;,k(0) Prob{X; = kle = 0}. (1)

with probability P3,0(0),

with probability P3,1(0),

with probability P;,2(0),

1, with probability Pi,,_1(0),

with probability 13;47.4(0):

(la)

Pi,k(0) is referred to as item category response function (ICRF) (Muraki, 1992). Assume

the domain of 0 to be ( oo, oo) or some subinterval of this range. Further, assume

PiA(0) = 1.
k=0

(2)

If m = 1, then X; is dichotomous and the model defined in (la) can be equivalently

written as

X; =
{0, with probability 1 P;(0),

1, with probability P;(0).

2
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where PAO) = Pi,1(0), the IRF for item j. Note that for dichotomous Xj, the P;,1(9) can

also be viewed as the regression of item score on proficiency, i:e.

P.:7,1(9) = E{Xj10}.

Analogously, one can define IRFs for items with m > 1 categories as the regression of

item score on proficiency. For an item with m + 1 score categories, the IRF is defined as

E{ Xi 10} = P,,1(9) + 2 Pi,2 (0)+, , +( m (0) + mPj,,, (0),
m

= > ICPj,k(0).
k=1

(3)

Thus, the item response function for a polytomously scored item is a weighted sum of

ICRFs.

In the dichotomous context, there is no distinction between an item's IRF and its

parametric structure. In the polytomous context, however, an item's parametric structure

corresponds to a set of ICRFs and the IRF is a weighted sum of these ICRFs. The IRF

may not be uniquely determined. There may exist n ICRFs Qi,i (0), Q i,2(0), Q i,(0),

which are different from those in (3), but produce an equivalent IRF. Specifically, it could

be the case that

m n

E{x.do} E ki),,k(o) E lQ 0(0), for all 9, (4)
k=1 1=1

where n is not necessarily equal to m. Hence, investigations of the relationship between

the IRF and the ICRFs are important.

3
8



3 The Basic Results

In the following section we will investigate the correspondence between IRFs and

ICRFs for the most commonly used polytomous models: (a) the partial credit. models

of Masters (1982) and Muraki (1992), and (b) the graded response model of Samejima

(the homogeneous case in Samejima, 1969 and 1972). Specifically, we will provide proofs

that, for each model, if (4) holds under the definition of (3), then

n = in and Pi,k(0) = Q,,k(0) for all 0, k = 0, ...,m.

Thus, the item structure (i.e., all ICRFs) is uniquely identified by the IRF.

(5)

Before going through the major proofs, we will include some explanations and back-

ground information about these models. For convenience, the item subscripts are sup-

pressed.

3.1 Partial Credit Models

A partial credit model was proposed by Masters (Masters, 1982) for items with scores

that have m 1 ordered levels, 0,1, ..., m (m may vary froM item to item). Let X be the

item score. The general expression of the ICRF, the probability of a randomly sampled

examinee with ability 0 obtaining score k, is given by

exp E!`....0(0 bi)
Pk(19) EL0(0 bi)'

0,1,...,m (6)

where EZ=0(0 bi) = 0 for notational convenience. The parameter b is referred to as

step difficulty (Masters, 1982) and it governs how likely it is that a person with ability 0

will reach level k rather than level k 1, for k = 1,...,m.

A generalized partial credit model was obtained from the partial credit model by

Muraki (Muraki, 1992) by incorporating a slope parameter for each item. The ICRF for

4



an item can be expressed:

Pk (0)
exp V.=0 a(0 bi)

=
Ei"lo exP ELo (1(0 bi)

k 0 ,1, ...,m (7)

where a is a slope parameter, which may vary from item to item, and the b-parameters

have the same meaning as those in the partial credit model (6). It should be evident

that Masters' partial credit model is a special case of the generalized partial credit model

with a = 1. Note that when m = 1, the generalized partial credit model is equivalent

to the 2-parameter logistic (2PL) model. If, in addition, a = 1, the generalized partial

credit model is equivalent to the Rasch model for dichotomously scored items. It should

also be noted that the partial credit models are actually special versions of the nominal

model proposed by Bock. (See Bock, 1972, and also see Thissen & Steinberg, 1986.)

Since the IRF is the expected value of X conditioning on 0, according to (3) and (7),

the IRF for the generalized partial credit model can be expressed as

E {X10}
kexp{Mi a(0 bi)}

1 -I- a(0 bill*
(8)

Suppose that E {X10} can be expressed by another set of ICRFs, i.e., there exist ai,...,a,
and f3 such that

k exp{E;ci f3(0 ai)}
E {X101 =

1
(9)+ EZ,1 expIE L 13 (0 ai)}

As shown in Theorem 1, if the expressions on the right-hand side of (8) and (9) are equal,

then the number of categories must be the same and the two sets of parameters must be

identical.

First, we consider the restricted case where a = 13 = 1 (i.e., Masters' partial credit

model).

5 1 0



Lemma 1 Let m,n > 1 and a1,..,an,

an=i k exP{EL1(0 b1)}

1 + exP{Vi (0 bi)}

..,b be constants. If

kexp{ EL1(0 ai)}

1 + E'L1 exP{Vic=1(0 ai)}

for all 0, then n = m and a, = b,. i = 1, ...,m.

Proof. Note that

and

E(0 bi) k0 E bi
:=1

V`i (0-11 k Ek 1(0b1)4-11 = e
di)

Therefore, (10) can be rewritteti

(10)

m k n
cieflog[l + >2 explE(0 b.) }]} = flog[l + >2 exp{ E(e ai)}] }. (11)

k=1 s=1 k=1 i=1

Equation (11) implies

m

log[1 + E exp{k0 >2 bi}] = log[l + >2 exp{k0 >2 ai }] + C (12)
k=1 1=1 k=1 i=1

for some constant C that does not depend on 0. Letting 0 -4 -o0, we see that

log(1) = log(1) + C, or C = 0.

Exponentiating both sides of (12) and subtracting 1 from each side gives

m k n

E exp{ E bi}[exp(0)]k = >2 exp( E CLO[eXp(0)]k
k=1 1=1 k=1 i=1

Setting uk = exp( E bi), vk = exp(E'f_i ai) and x = exp(0), (13) becomes

Enksk E vkxk
k=1 k=1

for x > 0.

6
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But if two polynomials are equal on a common interval, then n = m and uk =

k = 1,...,rn. Thus
k k

Ebi = E ai, k = 1,....m
t=i

or equivalently ai = bi. i = m.

We now consider the general case where a and /3 are not constrained (i.e.. the gener-

alized partial credit model).

Theorem 1 Let m, n > 1 and n. b( constants. If

Einc1.1 kexplY2 , foal 101 kexp{E,k=113(0 (4)}

1+ an--1 expr7 , 4110 b1)} 1 +EZ=I exP{V=.1i3(0 a1))

for all 6, then n = = . and a, = bi.,i = 1,...,m.

(14)

Proof: If a = 13, then (14) can be rewritten as (10) by replacing a, with a: = a,a and

bi with .1/7 = bia, and 0 with 0' = 0/a. By Lemma 1, we must have in = n, and a; = b7.

which implies ai = bi, = So to prove Theorem 1, it is sufficient to prove that

if (14) holds, we must have a. = Q. Suppose a # 0, say, a < 3. (14) can be equivalently

written as

m k n k

{E kexp{ >a(0 bi)}{1 + E exp{ E /3(0 a,)} =
k=1 i=1 k=1 1=1

k eXp{ E ai)} {1 + E exp{E a(0 bi)} }:
k=1 i=1 k=1 1=1

Letting x = e9, (15) becomes

(Aix' + A2x2 ...,+Anix")(1 Bi? + , ....+13na"1) =

(Ci? C2x2a-1-,...,+Cnxna)(1 D1e-1-,...,+Anxm°). for x.> 0.

where

Ai = je`)E.:=Ib8 D3 E) 19,1=1 = 1, rn

7
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and

Bk = Ck = k = 1, n.

After multiplying the two "polynomials" on both sides of the equation, we have

Aixa+, +Amxma + iliB1xa÷13 + A2131x2c(+4, -FA.B,x"+'16 =

Cix°+,..., +Cnxn/3 + CiDif+a + C2D1x"+2Q+,...,+CDmx"4'13. (16)

Notice that the coefficients are all > 0, and the power function xa only appears on the

left hand side (1.h.s.) of (16). Subtracting the right from the left and collecting terms

where appropriate, we have

ci,ox"+,..., +cm,oxmc' + c0,is(3+, +co,nxn° ci,ixa+r3+, +cm,nx"+ni3 = 0 (17)

for all x > 0. The l.h.s. of (17) is a linear combination of (m + 1)(n + 1) 1 power

functions of x. Since a < 0, the smallest exponent among all possible exponents in (16)

is a. Since sa only appears on the 1.h.s of (16), after we subtract the r.h.s., the coefficient

of s° must remain unchanged. It is not difficult to verify that

C1,0 = Al = Cabi > 0. (18)

If the (m + 1)(n + 1) 1 exponents in (17) are all different,

a ma (3 ni3 rm-FP mot-Fn/3X ,...,x ,x ,X



are linearly independent. I Thus, (17) holds if and only if for all the cid's are 0. This

contradicts (18), and therefore, a must equal Q.

If, on the other hand, some of the terms in (17) share a common exponent, by ap-

propriate algebraic operations (additions or subtractions to those terms with common

exponents of x), for some ki < m and k2 < n, (17) can be reduced to

Cie+, ..., +Cki,k2Xklot+k2,3 (19)

where all the exponents are different. Since a is still the smallest exponent in (17), we still

have C1 = c1,0 = e-cthi > 0, and (19) is still impossible by virtue of the same argument

concerning the linear independence of power functions. Therefore a must equal Q.

3.2 The Graded Response Model

The graded response model was proposed by Samejima (the homogeneous case in

Samejima, 1969, 1972). Let X be the score of an item which has m + 1 category levels,

0,1, m. Suppose there are m boundaries

bi <b2 < < bm

on the 0 scale. According to Samejima's graded response model, the probability that a

randomly sampled person with ability 6 produces a performance that is scored at or above

the k-th level is determined by the boundary bk and an item discrimination parameter,

1Let h(x), f2(x), .., fn(x) be n functions in (a, b). Assuming there exist n constants el , c2,..., en, not
all zero, such that

fi(x)+ c2f2(x)+, ...,+cnfn(x) = 0 for every x in (a, b), (**)

then fi(x),...,f(x) are said to be linearly dependent on (a ,b). If (**) holds if and only if all Cl, are
zeros, then fi(x), fn(x) are linearly independent on (a, b). Of course, a set of power functions with
different exponents are linearly independent on any given interval.

14



say a. Let
{1, if X > k,

Yk =
0, otherwise.

Define
exp(a(0 bk))

P:(0) = Prob{lfk = 110} = (20)
1 + exp(a(0 bk))

where bk is referred to as Vie category boundary parameter and a is the discrimination

parameter, and 11(9) is the probability of the event "score > k" for randomly sampled

examinee with ability O. Note that for 1 < k < m, Pj:(0) is given by the 2PL model. By

convention, PV0) 1 and /3,41 (0) = 0.

The ICRF (i.e., P {X = kl0}) can be obtained by subtracting the 2PL item response

functions:

Pk(0) = P:(0) P41(0),

Equations (3), (21) and (20) can be used to get

k = 0,1, ...,m.

E{XIO} = E kPk(9),
k=1

= MO) P;(0)+,
m exp(a(0 bk))

k=1 1 + exp(a(0 bk)).
(22)

The above expression indicates that the item response function from the graded response

model is the sum of m 2PL dichctomous item response functions, in which the difficulty

parameters are all different and the discrimination parameters are the same. Now we can

state our assertion about Saraijim's graded response model:

If two items satisfy the graded response model, and if they have the same

IRF, then they must have the same number of categories; moreover, they
must consist of the same ICRFs.

The mathematical description of the above assertion is given by the following theorem.

1015



Theorem 2 Let a, ,6, al,...,an, b1,...,b, be constants, and al < a2 <...< an and

h1 < b2 < < b,n. If

exp(a(0 bi))

1 + exp(a(0 bi))

n exp(P(0 ai))
1 + exp(13(0 ai))

fpr all 0, then n = m, a = /3 and ai = bi, = 1, ...,m.

Proof: First we consider a special case a = Q = 1. Rewrite (23) as

Thus

d d{E log[1 + exp(9 bi)} } d0{E log[1 + exp(9 ai)] }.
dO i=1

(23)

log{fi [1 + exp(9 bi)]} = log{11[1 + exp(9 ai)] + C (24)

for some constant C that does not depend on 0. Letting 0 * co, we see that

log(1) = log(1) + C, or C = 0.

Exponentiating both sides of (24) gives

m n

ll[l + exp(9 bi)] = n[i +exp(9 _ ai)]. (25)
i=1 i=1

Set x = exp(9), exp(-1/i), and di = exp(ai). Then (25) becomes

ti[1 + c,r] = dix]. (26)
i=i t=i

Each side of (26) is a non-reducible factorization of the same polynomial. Note that

c1 > c2 > > e7y) and di > d2 > . > dn.



According to the polynomial factorization law2, n = m and ci = di, i = 1, m, or

equivalently

ai = bi, i = 1, ..., rn.

Now we consider a 0 /3, say, a < /3. Rewrite (23) as

ci)x" + 2(EiKi cie7)x2a + + m(ci...cm)x"
1 + c)xc` + Mk; eici)x2c` + c,)xnic'

+ 2(Ei; didAs24, +
1 + (E7_idi)x13 + (Ei; didi)x213 +, + (di ...d,i)xno

(27)

where ci = exp(abi; and di = exp(-13ai). Multiplying the numerator on each side with

the other side's denominator, and then subtracting the right from the left, we have

+Cni,oxina + Coo. x13+, , +Come° + C11e+13+, , = 0 (28)

for all x > 0. Except for coefficient differences, (28) is the same as (17). It is obvious

that a is the smallest exponent in (28) and C1,0 = exp(abi) > 0. By the same

discussion given for the generalized partial credit model, a must equal /3.

4 Additional Results

The test characteristic function (TCF) for a set of items is commonly defined as the

expected score on the item set conditioning on 0. For dichotomous IRT models, the TCF

is defined as the sum of the IRFs for each of the items in the set. It is apparent from

2This is a general result in algebra: If polynomial f(x) can be expressed:

f(z) Pi

algebra:

/ = qi(x)q2(x)...q(x)

where pi(x) and qi(x) are non-reducible polynomials, then n = in, and after some possible order changes,

Pi(x) = eiqi(x), i = 1, m

where ei 0 0. (Note: In equation (26) pi(x) = 1 + cix and qi(x) = 1 + dix, hence ei = 1, i = 1, m).

12
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(22) that the IRF for the graded response model can be expressed as the sum of a set

of dichotomous logistic IRF with a common slope. Thus, as a by-product, Theorem 2

implies the following corollary:

Corollary 1 For the Rasch dichotomous model, if two tests have the same test charac-

teristic function (TCF), then they must have the same number of items. Moreover, for

each item in one of the tests, an item in the other test with an identical IRF must exist.

The two theorems in Section 3 are based on the assumption that the score sequence

for the item category levels is a sequence of integers

0,1, ..., m. (29)

As a matter of fact these theorems will also hold if the scores in (29) are replaced with

any given ordered sequence

ko < < < km.. (30)

Note that, ki in (30) can be viewed as an increasing function of i, i.e.,

ki = G(i), i

Therefore, the score sequence in (30) is viewed as a monotone transformation of (29).

Let X and Y be the scores for two items, where X is scored 0,1, ..., m and Y is scored

0,1, ...,n. Let Pk(0), k = 0,..,m, and Qk(0), k = be the ICRFs of X and Y

respectively. For the partial credit model, the generalized partial credit model, and the

graded response model, we have the following theorem:

Theorem 3 If

E{G(X)10} = E {G(Y)I9} for all 0, (31)



where G is any monotone transformation of the sequence 0,1,2,..,max{n,m}, then

m = n, and Pk(0) = Qk(0), k = 0, ...,m.

Pro,)f: Analogous to the proofs of Theorem 1 2, and omitted.

If one defined a monotone function G as

G(x) = xi, for 1> 1,

then condition (31) in Theorem 3 becomes

E{X110} = E{Y110}, for all 0. (32)

Since (32) clearly implies

E{X10} = E {YI0 }, for all 0,

the immediate conclusion is that Theorem 3 includes Theorem 1 2 as special cases.

5 A Limitation on the Uniqueness Results

It should be noted that the uniqueness assertions proved in section 3 do not hold in

general. If Qk(0) is not restricted to follow the parametric models considered here, one

can construct Pk(0) and Qk(0) such that (4) holds but (5) does not hold. The following

example illustrates this fact.

Example 1 Let Pk(0), k = 0,1,2,3, satisfy the partial credit model defined in (6). De-

fine Qk(0) as following:

Q0(0) = P0(0)+ Pi(0)/4, (33)

14
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Q1(0) = P1(0)/2,

Q2(0) = P1(0)/41 PAO),

Q3(0) = P3(8).

The reader can readily verify that in the above example,

despite the fact that

Pk(0) Qk(0), k = 0,1,2,

3 3

E kPk(0) E kQk(e).
k=1 k=1

For certain choices of bis, the shapes of Qh(0)s defined in (33) satisfy the usual assump-

tions of ICRFs for polytomous IRT models (i.e., uni-modal functions of 0 or strictly

monotone functions of 0, etc., see Samejima, 1972). For example, if the Pk(0)s are de-

fined as (6) with b1 = 0.91, b2 = 0.98, and, b3 = 0.19, the resulting Qk(0)s from (33)

look much like ICRFs that arise in the partial credit model (see Figure 1). However, it

should be particularly indicated that for many choices of b1, b2, and b3, WO) and Q2(0)

will not be either strictly monotone or uni-rr. ,dal, thus, the Qk(9) is not a member of the

IRT parametric models family. The Qk(0)s were explicitly constructed to demonstrate

that one can obtain two different sets of ICRFs which have identical IRFs (see Figure 1).

Are there sufficient conditions under which the uniqueness assertion will hold for

all polytomous IRT models? The following is a very restrictive case where X and Y

are scored by 0,1, ...,772 and their 1-st to m-th moments are all equal (a very strong

condition). That is, if

then

EIX1101 = E{Y110}, for 1 = 1, 2, ..., m, and for all 0, (34)

Pk(0) = Qk(0), k = 0, ...,m.

15 20



The proof is rather straightforward. Equation (34) implies

nt. kn[Pk(0) Qk(0)] = 0, n = 1, ..,m. (35)
k=i

Since the coefficient matrix of the set equations defined in (35) is full rank, (35) holds if

and only if Pk(0) = Qk(0) for k = 1, ...m.

It may seem desirable to specify general and less-restrictive nonparametric conditions

under which the uniqueness as.ert ions would hold for all polytomous IRT models. But,

Example 1 suggests that it nay not be possible to identify such a set of conditions. Never-

theless, the theorems est abli.lied in the preceding sections do provide sufficient evidence

for all well-defined ordinally scored parametric IRT models that an item's structure (i.e.,

all ICRFs) is uniquely identified by its IRF.

6 Conclusion

The main theorems of this paper establish the unique correspondence between an

IRF and a set of ICRFs for the most commonly used ordinal polytomous IRT models, the

restricted and generalized versions of the partial credit model and the graded response

model. The results of this paper indicate that if both members of a pair of items follow

one of the models stated above and have identical IRFs. then they also have identical

ICRFs. An additional theorem established that, for any monotonically increasing func-

tion of item score, identity across items of the regression of this function on ability implies

identity of ICRFs across items. It should be noted that the uniqueness assertions estab-

lished in this article are applicable to other well defined parametric polytomous models,

such as Andrich's (1978) rating scale model, and Bock's nominal model (some special

cases), etc.



There are a number of potential uses of these results in both theoretical and practical

work with the polytomous IRT models discussed here. One potential area is in test as-

sembly. Many testing programs have sets of statistical specifications designed to ensure

the construction of multiple interchangeable parallel test forms. The results reported

here imply that two items following the above models can be treated as equivalent, pro-

vided that their IRFs coincide. From a psychometric point of view, this equivalence

entails identical information functions as well as identical conditional (on 9) item score

distributions. Thus, for tests using items that follow one of the models discussed here, it

is sufficient of express statistical specifications for the assembly of test forms in terms of

a set of target IRFs. Computer-based test assembly methods, in conjunction with graph-

ical procedures to evaluate the match of estimated IRFs to target IRFs may provide

an effective (and user-friendly) procedure for ensuring psychometric equivalence across

alternate forms. Corollary 1 implies that for tests constructed using items that follow

the Rasch dichotomous model, it is sufficient to express statistical specifications in terms

of a target TCF. Test assembly procedures which involve the matching of actual TCFs

to target TCFs may be particularly easy for test assemblers to work with.

The results presented here may also be helpful in providing a parsimonious conceptu-

alization of item-parameter invariance assumptions for ordinally scored polytomous items

that follow one of the models discussed here. Within the context of IRT for dichotomous

items, assumptions concerning the invariance of IRFs are equivalent to assumptions of

parametric invariance and are fundamental to many lir:. applications. T example, as-

sumptions about IRF invariance across different contexts are fundamental to the study

of item context effects. As a second example, assumptions about IRF invariance across

groups of students are fundamental to study of differential item functioning (DIF). The

results presented above establish this same identity between an item's IRF and its para-

metric structure for ordinally scored polytomous items following commonly used IRT

models. Consequently, a straightforward generalization from dichotomous IRT applica-

tions based on IRF invariance assumptions to situations that involve ordinally scored
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polytomous items may be possible.

The results presented here may be particularly useful with regard to the modeling and

detection of D1F. A natural generalization of an IRT model-based definition of null DIF

for an ordinally scored polytomous item would be to require that the regression of ordinal

item score on ability be identical for two groups under study. Such a generalization would

allow the extension of available dichotomous DIF methodologies, such as Shealy-Stout's

(Shealy,& Stout, 1993) DIF analysis methods, to ordinally scored polytomous items in a

fairly straightforward way (see Chang, Mazzeo, & Roussos, 1993).
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Item I with ICRFs P0(0), P1(0), P2(0), and P3(0).
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Item 2 with ICRFs Q0(0), Qi(9), Q2(0), and Q3(0).
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Figure 1: An example of two items with different ICRFs but identical IRFs. In other
words, ELI kPk(0) = EL.1 kQk(0) but Pk(0) # Qk(0) , k = 0,1,2
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