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Abstract

In this paper we study a class of operator equations A(x, x) + B(x, x) = x in ordered Banach spaces,
where A,B are two mixed monotone operators. Various theorems are established to guarantee the existence
of a unique solution to the problem. In addition, associated iterative schemes have been established for
finding the approximate solution converging to the fixed point of the problem. We also study the solution
of the nonlinear eigenvalue equation A(x, x) + B(x, x) = λx and discuss its dependency to the parameter.
Our results extend and improve many known results in this field of study. We have also successfully
demonstrated the application of our results to the study of nonlinear fractional differential equations with
two-point boundary conditions. c©2016 All rights reserved.
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1. Introduction

Mixed monotone operators were introduced by Guo and Lakshmikantham in [9]. Thereafter, many
authors have investigated various kinds of nonlinear mixed monotone operators in Banach spaces such as
nonlinear operators with concave-convex (see [4]), mixed monotone operators with α-concave-convex (see
[33, 34]), nonlinear operators with φ-concave-convex (see [10, 26]), nonlinear operators with e-concave-convex

∗Corresponding author
Email addresses: mathlls@163.com (Lishan Liu), 1257368359@qq.com (Xinqiu Zhang), 872383169@qq.com (Juan Jiang),

yhwu@maths.curtin.edu.au (Yonghong Wu)

Received 2015-12-04



L. Liu, X. Zhang, J. Jiang, Y. Wu, J. Nonlinear Sci. Appl. 9 (2016), 2943–2958 2944

(see [39]), and also obtained a lot of important results on mixed monotone operators (see [1, 2, 7, 8, 11,
13, 16, 17, 21, 22, 23, 24, 27, 28, 29, 31, 32, 38]). These studies not only have theoretical significance but
also have a wide range of applications in engineering, nuclear physics, biology, chemistry, technology, etc.
Because of the crucial role played by nonlinear equations in applied science as well as mathematics, nonlinear
functional analysis has been an active area of research, and nonlinear operators with connection to nonlinear
(fractional) differential and integral equations have been extensively studied over the past several decades
(see [5, 6, 12, 14, 15, 19, 25, 29, 30, 31, 32, 35, 36, 37]).

In [7], Guo studied the existence and uniqueness of positive solutions to the following operator equation
on ordered Banach spaces E

A(x, x) = x, x ∈ P,

where P is a cone in E and A : P × P → E is an α-concave mixed monotone operator.
In [27], Zhai and Anderson considered the existence and uniqueness of positive solutions to the following

operator equation in ordered Banach spaces E

Ax+Bx+ Cx = x, x ∈ P,

where P is a cone in E and A : P → E is an increasing α-concave operator, B : P → E is an increasing
hypo-homogeneous operator and C : P → E is an homogeneous operator.

In [28], using the fixed point theorem of mixed monotone operators, Zhai and Hao studied the existence
and uniqueness of positive solutions to the following operator equation in Banach spaces E

A(x, x) +Bx = x, x ∈ P,

where P is a cone in E and A : P × P → E is an α-concave mixed monotone operator, B : P → E is an
increasing hypo-homogeneous operator.

In [21], Wang and Zhang studied a class of sum operator equations

Ax+Bx+ C(x, x) = x, x ∈ P

on a cone P of a Banach space E, where A : P → E is an increasing sub-homogeneous operator, B : P → E
is a decreasing operator, C : P ×P → E is a mixed monotone operator and satisfies the following conditions:

B(t−1y) ≥ tBy, C(tx, t−1y) ≥ tαC(x, y), for all t ∈ (0, 1), x, y ∈ P.

By using the properties of cone and fixed point theorems for mixed monotone operators, the existence and
uniqueness of a positive solution are obtained.

Motivated by the above work, this paper considers the existence and uniqueness of positive solutions to
the following operator equation in ordered Banach spaces E

A(x, x) +B(x, x) = x, x ∈ P, (1.1)

where P is a cone in E, and A,B : P × P → P are two mixed monotone operators, which satisfy the
following conditions:

(i) for all t ∈ (0, 1), there exists ψ(t) ∈ (t, 1], such that for all x, y ∈ P ,

A(tx, t−1y) ≥ ψ(t)A(x, y).

(ii) for all t ∈ (0, 1), x, y ∈ P ,
B(tx, t−1y) ≥ tB(x, y).

To our knowledge, the fixed point results for the operator equation (1.1) are still under development.
Our results in this paper will extend and improve many known results in the field and in particular those
in [2, 7, 21, 27, 28, 32]. The rest of the paper is organized as follows. In Section 2, we present some
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preliminaries and lemmas to be used to prove our main results. In Section 3, we investigate the existence
and uniqueness of positive solutions to the operator equation (1.1) in ordered Banach spaces. In Section
4, to demonstrate the applicability of our abstract results, we give an application to nonlinear fractional
differential equation two-point boundary value problems. Finally, we give an example to demonstrate the
application of our theoretical results.

2. Preliminaries and Lemmas

In this section, we state some definitions, notations and known results. For convenience of readers, we
suggest that one refer to [3, 7, 8, 17, 18] for details.

Suppose that (E, ‖·‖) is a Banach space and we denote the zero element of E by θ. Let P be a non-empty
closed convex subset of E. We say that P is a cone in E if it satisfies

(1) x ∈ P, λ ≥ 0⇒ λx ∈ P ;

(2) x ∈ P,−x ∈ P ⇒ x = θ.

The Banach space E partially ordered by a cone P ⊂ E, i.e., x ≤ y if and only if y − x ∈ P . If x ≤ y and
x 6= y, then we denote x < y or y > x. The cone P is called normal if there exists a constant N > 0 such
that for all x, y ∈ E, θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, and the smallest N is called the normality constant of
P . If x1, x2 ∈ E, the set [x1, x2] = {x ∈ E | x1 ≤ x ≤ x2} is called the order interval between x1 and x2.

For x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0 such that λx ≤ y ≤ µx.
Clearly, ∼ is an equivalence relation. Given h > 0 , we denote by Ph the set Ph = {x ∈ P | x ∼ h}. It is

easy to see that Ph ⊂ P . A cone P is said to be solid if its interior
◦
P is non-empty. If P is a solid cone,

take any h ∈
◦
P , then Ph =

◦
P .

Definition 2.1. A : P × P → P is said to be a mixed monotone operator if A(x, y) is increasing in x, and
decreasing in y, i.e., ui, vi ∈ P (i = 1, 2), u1 ≤ u2, v1 ≥ v2 imply A(u1, v1) ≤ A(u2, v2). Element x ∈ P is
called a fixed point of A if A(x, x) = x.

Definition 2.2. An operator A : P → P is said to be α-concave if there exists α ∈ (0, 1) such that

A(tx) ≥ tαAx, for all t ∈ (0, 1), x ∈ P. (2.1)

Definition 2.3. An operator B : P → P is said to be sub-homogeneous if it satisfies

B(tx) ≥ tBx, for all t ∈ (0, 1), x ∈ P. (2.2)

Definition 2.4. An operator C : E → E is said to be homogeneous if it satisfies

C(λx) = λCx, for all λ > 0, x ∈ E. (2.3)

Remark 2.5. Obviously, a homogeneous operator is a sub-homogeneous operator.

Lemma 2.6 ([32]). Let P be a normal cone in E. Assume that T : P × P → P is a mixed monotone
operator and satisfies:

(A1) there exists h ∈ Ph with h 6= θ such that T (h, h) ∈ Ph;

(A2) for any t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1] such that

T (tu, t−1v) ≥ ϕ(t)T (u, v), for all u, v ∈ P.

Then

(1) T : Ph × Ph → Ph;
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(2) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ T (u0, v0) ≤ T (v0, u0) ≤ v0;

(3) T has a unique fixed point x∗ in Ph;

(4) for any initial values x0, y0 ∈ Ph, by constructing successively the sequences as follows

xn = T (xn−1, yn−1), yn = T (yn−1, xn−1), n = 1, 2, ..., (2.4)

we have xn → x∗ and yn → x∗ as n→∞.

3. Main results

In this section we consider the existence and uniqueness of a positive solution for the operator equation
(1.1). We always assume that E is a real Banach space with a partial order introduced by a normal cone P
of E. Take h ∈ E, h > θ, and Ph is given as in Section 2.

Theorem 3.1. Let P be a normal cone in E, and let A,B : P × P → P be two mixed monotone operators
and satisfy the following conditions:

(1) for all t ∈ (0, 1), there exists ψ(t) ∈ (t, 1] such that

A(tx, t−1y) ≥ ψ(t)A(x, y), for all x, y ∈ P ; (3.1)

(2) for all t ∈ (0, 1), x, y ∈ P ,
B(tx, t−1y) ≥ tB(x, y); (3.2)

(3) there exists h ∈ P with h > θ such that A(h, h) ∈ Ph and B(h, h) ∈ Ph;

(4) there exists a constant δ > 0, such that for all x, y ∈ P ,

A(x, y) ≥ δB(x, y). (3.3)

Then the operator equation (1.1) has a unique solution x∗ in Ph, and for any initial values x0, y0 ∈ Ph, by
constructing successively the sequences as follows

xn = A(xn−1, yn−1) +B(xn−1, yn−1),

yn = A(yn−1, xn−1) +B(yn−1, xn−1), n = 1, 2, ...,

we have xn → x∗ and yn → x∗ in E as n→∞.

Proof. Firstly, from (3.1) and (3.2), for any t ∈ (0, 1), x, y ∈ P , we have

A(t−1x, ty) ≤ (ψ(t))−1A(x, y) (3.4)

and
B(t−1x, ty) ≤ t−1B(x, y). (3.5)

Since A(h, h) ∈ Ph, B(h, h) ∈ Ph, there exist constants ai > 0, bi > 0 (i = 1, 2) such that

a1h ≤ A(h, h) ≤ b1h, (3.6)

a2h ≤ B(h, h) ≤ b2h. (3.7)

Next we show A : Ph × Ph → Ph. For any x, y ∈ Ph, we can choose two sufficiently small numbers
α1, α2 ∈ (0, 1) such that

α1h ≤ x ≤
1

α1
h, α2h ≤ y ≤

1

α2
h. (3.8)
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Let α = min{α1, α2}, then α ∈ (0, 1), by (3.1), (3.4), (3.6) and (3.8), we have

A(x, y) ≤ A
(

1

α
h, αh

)
≤ 1

ψ(α)
A(h, h) ≤ 1

ψ(α)
b1h,

A(x, y) ≥ A
(
αh,

1

α
h

)
≥ ψ(α)A(h, h) ≥ ψ(α)a1h.

Evidently, 1
ψ(α)b1, ψ(α)a1 > 0. Thus A(x, y) ∈ Ph; that is, A : Ph × Ph → Ph.

Finally, we show B : Ph × Ph → Ph. For any x, y ∈ Ph, we can choose two sufficiently small numbers
β1, β2 ∈ (0, 1) such that

β1h ≤ x ≤
1

β1
h, β2h ≤ y ≤

1

β2
h. (3.9)

Let β = min{β1, β2}, then β ∈ (0, 1), by (3.2), (3.5), (3.7) and (3.9), we have

B(x, y) ≤ B
(

1

β
h, βh

)
≤ 1

β
B(h, h) ≤ 1

β
b2h,

B(x, y) ≥ B
(
βh,

1

β
h

)
≥ βB(h, h) ≥ βa2h.

Evidently, 1
β b2, βa2 > 0. Thus B(x, y) ∈ Ph; that is, B : Ph × Ph → Ph.

Now we define the operator T = A+B : P × P → P by

T (x, y) = A(x, y) +B(x, y), x, y ∈ P. (3.10)

Then T : P × P → P is a mixed monotone operator. Since A(h, h) ∈ Ph, B(h, h) ∈ Ph, we get
T (h, h) = A(h, h) +B(h, h) ∈ Ph.

In the following, we show that for any t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1] such that for all x, y ∈ P ,
T (tx, t−1y) ≥ ϕ(t)T (x, y). For any x, y ∈ P , by (3.3), we have

A(x, y) + δA(x, y) ≥ δB(x, y) + δA(x, y). (3.11)

It follows from (3.11) that

A(x, y) ≥ A(x, y) +B(x, y)

1 + δ−1
=
T (x, y)

1 + δ−1
. (3.12)

By (3.1), (3.2), (3.10) and (3.12), for all x, y ∈ P , we have

T (tx, t−1y)− tT (x, y) =A(tx, t−1y) +B(tx, t−1y)− t(A(x, y) +B(x, y))

≥(ψ(t)− t)A(x, y) +B(tx, t−1y)− tB(x, y)

≥(ψ(t)− t)A(x, y)

≥ψ(t)− t
1 + δ−1

T (x, y).

(3.13)

It follows from (3.13) that for all x, y ∈ P ,

T (tx, t−1y) ≥tT (x, y) +
ψ(t)− t
1 + δ−1

T (x, y)

=

(
t+

ψ(t)− t
1 + δ−1

)
T (x, y).

(3.14)

Let ϕ(t) = t+ ψ(t)−t
1+δ−1 , then ϕ(t) ∈ (t, ψ(t)) ⊂ (t, 1], t ∈ (0, 1) and

T (tx, t−1y) ≥ ϕ(t)T (x, y), for all x, y ∈ P. (3.15)

By Lemma 2.6, the conclusions of Theorem 3.1 holds.
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Remark 3.2. Theorem 3.1 extends the main results in [7, 21, 27, 28]. In fact, in Theorem 3.1 of [21],
A : P → P is an increasing sub-homogeneous operator and B : P → P is a decreasing operator which
satisfies

B(t−1y) ≥ tBy, for all t ∈ (0, 1), x, y ∈ P.

Define a mixed monotone operator D : P × P → P by D(x, y) = Ax+By, x, y,∈ P , then D satisfies

D(tx, t−1y) ≥ tD(x, y), for all t ∈ (0, 1), x, y ∈ P.

Therefore, our Theorem 3.1 generalizes and improves Theorem 3.1 of [21].

Remark 3.3. Taking ψ(t) = tα in Theorem 3.1, we get the following corollary which generalizes and improves
Theorem 3.1 of [21].

Corollary 3.4. Let P be a normal cone in E. Let A,B : P ×P → P be two mixed monotone operators and
satisfy the following conditions:

(1) there exists α ∈ (0, 1) such that for all t ∈ (0, 1), x, y ∈ P ,

A(tx, t−1y) ≥ tαA(x, y);

(2) for all t ∈ (0, 1), x, y ∈ P ,
B(tx, t−1y) ≥ tB(x, y);

(3) there exists h ∈ P with h > θ such that A(h, h) ∈ Ph and B(h, h) ∈ Ph;

(4) there exists a constant δ > 0 such that for all x, y ∈ P ,

A(x, y) ≥ δB(x, y).

Then the operator equation (1.1) has a unique solution x∗ in Ph, and for any initial values x0, y0 ∈ Ph, by
constructing successively the sequences as follows

xn = A(xn−1, yn−1) +B(xn−1, yn−1),

yn = A(yn−1, xn−1) +B(yn−1, xn−1), n = 1, 2, ...,

we have xn → x∗ and yn → x∗ in E as n→∞.

If we take B = θ in Theorem 3.1, then a restructure of the proof (without B) implies an improved version
of the main result of [7].

Corollary 3.5. Let P be a normal cone in E. Let A : P × P → P be a mixed monotone operator and
satisfies the following conditions:

(1) for all t ∈ (0, 1), there exists ψ(t) ∈ (t, 1] such that

A(tx, t−1y) ≥ ψ(t)A(x, y), for all x, y ∈ P ;

(2) there is h ∈ P with h > θ such that A(h, h) ∈ Ph.

Then the operator equation A(x, x) = x has a unique solution x∗ in Ph, and for any initial values x0, y0 ∈ Ph,
by constructing successively the sequences as follows

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1, 2, ...,

we have xn → x∗ and yn → x∗ in E as n→∞.
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Corollary 3.6. Let P be a normal cone in E, and let A,B : P × P → P be two mixed monotone operators
and satisfy the following conditions:

(1) for all t ∈ (0, 1), there exists ψ(t) ∈ (t, 1] such that

A(tx, t−1y) ≥ ψ(t)A(x, y), for all x, y ∈ P ;

(2) for all t ∈ (0, 1), x, y ∈ P ,
B(tx, t−1y) ≥ tB(x, y);

(3) there is h ∈ P with h > θ such that A(h, h) ∈ Ph and B(h, h) ∈ Ph;

(4) there exists a constant δ > 0 such that for all x, y ∈ P ,

A(x, y) ≥ δB(x, y).

Then the operator equation A(x, x) + B(x, x) = λx has a unique solution xλ in Ph for any λ > 0, and for
any initial values x0, y0 ∈ Ph, by constructing successively the sequences as follows

xn =
1

λ
[A(xn−1, yn−1) +B(xn−1, yn−1)],

yn =
1

λ
[A(yn−1, xn−1) +B(yn−1, xn−1)], n = 1, 2, ...,

we have xn → xλ and yn → xλ in E as n→∞.

Proof. It is obvious that the operator λ−1(A+B)(λ > 0) in Corollary 3.5 satisfies the conditions of Theorem
3.1, thus it follows from Theorem 3.1 that the conclusion of Corollary 3.5 holds.

Corollary 3.7. Let P be a normal cone in E. Let h > θ, and A,B : Ph×Ph → Ph be two mixed monotone
operators and satisfy the following conditions:

(1) there exists α ∈ (0, 1) such that for all t ∈ (0, 1), x, y ∈ Ph,

A(tx, t−1y) ≥ tαA(x, y);

(2) for all t ∈ (0, 1), x, y ∈ Ph,
B(tx, t−1y) ≥ tB(x, y);

(3) there exists a constant δ > 0 such that for all x, y ∈ Ph,

A(x, y) ≥ δB(x, y).

Then the operator equation A(x, x) +B(x, x) = x has a unique solution x∗ in Ph, and for any initial values
x0, y0 ∈ Ph, by constructing successively the sequences as follows

xn = A(xn−1, yn−1) +B(xn−1, yn−1),

yn = A(yn−1, xn−1) +B(yn−1, xn−1), n = 1, 2, ...,

we have xn → x∗ and yn → x∗ in E as n→∞.

Remark 3.8. If P is a solid cone, take h ∈
◦
P , then Ph =

◦
P . If A,B : Ph × Ph → Ph or

◦
P ×

◦
P →

◦
P , then

A(h, h) ∈ Ph and B(h, h) ∈ Ph are automatically satisfied in Corollary 3.6.
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Theorem 3.9. Suppose that all the conditions of Theorem 3.1 are satisfied. Then the operator equation

A(x, x) +B(x, x) = λx, λ > 0 (3.16)

has a unique solution xλ which satisfies

(1) if there exists β ∈ (0, 1) such that ψ(t) ≥ tβ−t
δ + tβ for t ∈ (0, 1), then xλ is continuous in λ ∈ (0,∞),

that is λ→ λ0 (λ0 > 0) implies ‖xλ − xλ0‖ → 0;

(2) if ψ(t) > t
1
2−t
δ + t

1
2 for t ∈ (0, 1), then xλ is strictly decreasing in λ, that is, 0 < λ1 < λ2 implies

xλ1 > xλ2;

(3) if there exists β ∈ (0, 12) such that ψ(t) ≥ tβ−t
δ + tβ for t ∈ (0, 1), then lim

λ→∞
‖xλ‖ = 0, lim

λ→0+
‖xλ‖ =∞.

Proof. It is obvious that the operator λ−1(A + B)(λ > 0) satisfies the conditions of Theorem 3.1, thus it
follows from Theorem 3.1 that the operator equation (3.16) has a unique solution xλ in P . For convenience
of proof, we let

α(t) =
ln(t+ δψ(t))− ln(1 + δ)

ln t
, for all t ∈ (0, 1).

Then α(t) ∈ (0, 1) and tα(t) = t+ ψ(t)−t
1+δ−1 .

(1) For any given 0 < λ1 < λ2, by Theorem 3.1, the operator equation (3.16) has unique solutions
xλ1 , xλ2 ∈ Ph respectively, so xλ1 ∼ xλ2 . Thus there exists a positive number d > 0, such that 1

dxλ2 ≤ xλ1 ≤
dxλ2 . So, {t > 0 | xλ1 ≥ txλ2 , xλ2 ≥ txλ1} 6= ∅. Let t0 = sup{t > 0 | xλ1 ≥ txλ2 , xλ2 ≥ txλ1}. It is obvious
that 0 < t0 ≤ 1 and

xλ1 ≥ t0xλ2 , xλ2 ≥ t0xλ1 . (3.17)

If t0 = 1, then by (3.17), xλ1 = xλ2 . By Theorem 3.1, for fixed λ > 0, the operator equation (3.16) has a

unique solution. which is a contradiction with λ1 < λ2, thus 0 < t0 < 1. Note that tα(t) = t + ψ(t)−t
1+δ−1 , thus

we have

λ1xλ1 = A (xλ1 , xλ1) +B (xλ1 , xλ1)

≥ A
(
t0xλ2 , t

−1
0 xλ2

)
+B

(
t0xλ2 , t

−1
0 xλ2

)
≥ ψ(t0)A(xλ2 , xλ2) + t0B(xλ2 , xλ2)

≥
[(
t0 +

ψ(t0)− t0
1 + δ−1

)
+

[
ψ(t0)−

(
t0 +

ψ(t0)− t0
1 + δ−1

)]]
A(xλ2 , xλ2) + t0B(xλ2 , xλ2)

≥
(
t0 +

ψ(t0)− t0
1 + δ−1

)
A(xλ2 , xλ2) +

[
ψ(t0)−

(
t0 +

ψ(t0)− t0
1 + δ−1

)]
A(xλ2 , xλ2) + t0B(xλ2 , xλ2)

≥ tα(t0)0 A(xλ2 , xλ2) +
ψ(t0)− t0

1 + δ
A(xλ2 , xλ2) + t0B(xλ2 , xλ2)

≥ tα(t0)0 A(xλ2 , xλ2) +
δ (ψ(t0)− t0)

1 + δ
B(xλ2 , xλ2) + t0B(xλ2 , xλ2)

= t
α(t0)
0 A(xλ2 , xλ2) +

(
δ (ψ(t0)− t0)

1 + δ
+ t0

)
B(xλ2 , xλ2)

= t
α(t0)
0 [A(xλ2 , xλ2) +B(xλ2 , xλ2)]

= t
α(t0)
0 λ2xλ2 ,
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where α(t0) = ln(t0+δψ(t0))−ln(1+δ)
ln t0

∈ (0, 1). In a similar way, we have

λ2xλ2 = A (xλ2 , xλ2) +B (xλ2 , xλ2)

≥ A
(
t0xλ1 , t

−1
0 xλ1

)
+B

(
t0xλ1 , t

−1
0 xλ1

)
≥ ψ(t0)A(xλ1 , xλ1) + t0B(xλ1 , xλ1)

≥
[(
t0 +

ψ(t0)− t0
1 + δ−1

)
+

[
ψ(t0)−

(
t0 +

ψ(t0)− t0
1 + δ−1

)]]
A(xλ1 , xλ1) + t0B(xλ1 , xλ1)

≥
(
t0 +

ψ(t0)− t0
1 + δ−1

)
A(xλ1 , xλ1) +

[
ψ(t0)−

(
t0 +

ψ(t0)− t0
1 + δ−1

)]
A(xλ1 , xλ1) + t0B(xλ1 , xλ1)

≥ tα(t0)0 A(xλ1 , xλ1) +
ψ(t0)− t0

1 + δ
A(xλ1 , xλ1) + t0B(xλ1 , xλ1)

≥ tα(t0)0 A(xλ1 , xλ1) +
δ (ψ(t0)− t0)

1 + δ
B(xλ1 , xλ1) + t0B(xλ1 , xλ1)

= t
α(t0)
0 A(xλ1 , xλ1) +

(
δ (ψ(t0)− t0)

1 + δ
+ t0

)
B(xλ1 , xλ1)

= t
α(t0)
0 [A(xλ1 , xλ1) +B(xλ1 , xλ1)]

= t
α(t0)
0 λ1xλ1 .

Thus,

xλ1 ≥ λ
−1
1 λ2t

α(t0)
0 xλ2 , xλ2 ≥ λ

−1
2 λ1t

α(t0)
0 xλ1 . (3.18)

Noting that λ−11 λ2t
α(t0)
0 > λ−11 λ2t0 > t0, by (3.18) and the definition of t0, we have λ−12 λ1t

α(t0)
0 ≤ t0, that is

t0 ≥
(
λ1
λ2

) 1
1−α(t0)

. (3.19)

Since ψ(t) ≥ tβ−t
δ + tβ for all t ∈ (0, 1), we have tα(t) = t + ψ(t)−t

1+δ−1 ≥ tβ for all t ∈ (0, 1). Thus α(t) =
ln(t+δψ(t))−ln(1+δ)

ln t ≤ β for all t ∈ (0, 1). From (3.18) and (3.19), we have(
λ1
λ2

) 1
1−β

xλ2 ≤
(
λ1
λ2

) 1
1−α(t0) xλ2 ≤ xλ1 ≤

(
λ2
λ1

) 1
1−α(t0) xλ2 ≤

(
λ2
λ1

) 1
1−β

xλ2 ,(
λ1
λ2

) 1
1−β

xλ1 ≤
(
λ1
λ2

) 1
1−α(t0) xλ1 ≤ xλ2 ≤

(
λ2
λ1

) 1
1−α(t0) xλ1 ≤

(
λ2
λ1

) 1
1−β

xλ1 .

(3.20)

By (3.20) and the normality of P , we have

‖xλ1 − xλ2‖ → 0, λ1 → λ−2 ,

‖xλ2 − xλ1‖ → 0, λ2 → λ+1 .

So the conclusion (1) holds.
(2) By (3.18) and (3.19), we get

xλ1 ≥
(
λ2
λ1

) 1−2α(t0)
1−α(t0)

xλ2 . (3.21)
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Noting that ψ(t0) >
t
1
2
0 −t0
δ + t

1
2
0 , we get α(t0) ∈ (0, 12), and consequently we have

(
λ2
λ1

) 1−2α(t0)
1−α(t0)

> 1,

and by (3.21) the conclusion (2) holds.

(3) Since ψ(t) ≥ tβ−t
δ + tβ for t ∈ (0, 1), we have tα(t) = t + ψ(t)−t

1+δ−1 ≥ tβ for t ∈ (0, 1), thus we have

α(t) ≤ β < 1
2 for t ∈ (0, 1). Let λ1 = 1, λ2 = λ in (3.21), then we have

x1 ≥ λ
1−2α(t0)
1−α(t0) xλ ≥ λ

1−2β
1−β xλ, for all λ > 1.

Thus
‖xλ‖ ≤ Nλ−

1−2β
1−β ‖x1‖, for all λ > 1,

where N is the normality constant. Let λ→∞, then ‖xλ‖ → 0. Let λ1 = λ, λ2 = 1 in (3.21), we have

xλ ≥ λ
− 1−2α(t0)

1−α(t0) x1 ≥ λ−
1−2β
1−β x1, for all 0 < λ < 1.

Thus
‖xλ‖ ≥ N−1λ−

1−2β
1−β ‖x1‖, for all 0 < λ < 1,

where N is the normality constant. Let λ→ 0+, then ‖xλ‖ → ∞. So the conclusion (3) holds.

Remark 3.10. If δ > 3, then t < t
1
2−t
δ + t

1
2 < t

1
3−t
δ + t

1
3 < t

1
4−t
δ + t

1
4 < 1, for all t ∈ (0, 1). Taking

ψ(t) = t
1
4−t
δ + t

1
4 , t ∈ (0, 1), we get that ψ satisfies the conditions of Theorem 3.9.

4. Application

In this section, we apply the results in Section 3 to study nonlinear fractional differential equations with
two-point boundary conditions. We here consider the existence and uniqueness of positive solutions for the
following fractional boundary value problem (FBVP for short):

−Dα
0+u(t) = F (t, u(t)) +G(t, u(t)), 0 < t < 1, n− 1 < α ≤ n,

ui(0) = 0, 0 ≤ i ≤ n− 2,

[Dβ
0+u(t)]t=1 = 0, 1 ≤ β ≤ n− 2,

(4.1)

where Dα
0+u(t) is the Riemann-Liouville fractional derivative of order α, n > 2, n ∈ N.

Fractional differential equations have been of great interest recently. This is because of both the intensive
development of the theory of fractional calculus itself and the wide range of applications of such kind of
equations in various scientific fields such as physics, mechanics, chemistry, economics, engineering and
biological sciences, etc., see [18, 20, 21, 28]. In recent years, the study of positive solutions for fractional
differential equation boundary value problems has attracted considerable attention, and many results have
been achieved, and here we refer the reader to [5, 6, 12, 14, 15, 19, 25, 29, 30, 31, 32, 35, 36, 37] and the
references therein for details.

However, not much work has been done to utilize the fixed point results on mixed monotone opera-
tors with perturbation to study the existence and uniqueness of positive solutions for nonlinear fractional
differential equation boundary value problems. This motivates us to investigate FBVP (4.1) by using our
new fixed point theorems presented in Section 3. It will be shown that our results not only can guarantee
the existence of a unique positive solution, but also can be applied to construct an iterative scheme for
approximating the solution.
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Definition 4.1 ([18]). Let α > 0 with α ∈ R. Suppose that u : (0,+∞)→ R. Then the Riemann-Liouville
fractional derivative of order α is defined as

Dα
0+u(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

u(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of the number α.

Lemma 4.2 ([6]). Let u ∈ C[0, 1], then the fractional boundary value problem
−Dα

0+u(t) = g(t), 0 < t < 1, n− 1 < α ≤ n,

ui(0) = 0, 0 ≤ i ≤ n− 2,

[Dβ
0+u(t)]t=1 = 0, 1 ≤ β ≤ n− 2

has a unique positive solution

u(t) =

∫ 1

0
G(t, s)g(s)ds,

where

G(t, s) =
1

Γ(α)

{
tα−1(1− s)α−β−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1− s)α−β−1, 0 ≤ t ≤ s ≤ 1.

Lemma 4.3 ([6, 29]). The Green function G(t, s) in Lemma 4.2 has the following properties:

(1) G(t, s) is continuous on [0, 1]× [0, 1];

(2) for all (t, s) ∈ [0, 1]× [0, 1], we have G(t, s) ≥ 0;

(3) for all t, s ∈ [0, 1], we have

[1− (1− s)β](1− s)α−β−1tα−1 ≤ Γ(α)G(t, s) ≤ (1− s)α−β−1tα−1.

Let E = C[0, 1], ‖u‖ = sup{u(t) | t ∈ [0, 1]}, P = {u ∈ C[0, 1] | u(t) ≥ 0, t ∈ [0, 1]}. It is clear that E is
a Banach space and P is a normal cone of E.

Theorem 4.4. Assume that F (t, x) = f(t, x, x), G(t, x) = g(t, x, x) and satisfying the following conditions
(H1)– (H4):

(H1) f, g : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) are continuous, and for all t ∈ [0, 1], g(t, 0, 1) 6≡ 0;

(H2) for fixed t ∈ [0, 1] and y ∈ [0,+∞), f(t, x, y), g(t, x, y) are increasing in x ∈ [0,+∞); for fixed t ∈ [0, 1]
and x ∈ [0,+∞), f(t, x, y), g(t, x, y) are decreasing in y ∈ [0,+∞);

(H3) for all λ ∈ (0, 1), there exists ψ(λ) ∈ (λ, 1) such that for all t ∈ [0, 1], x, y ∈ [0,+∞), f(t, λx, λ−1y) ≥
ψ(λ)f(t, x, y), g(t, λx, λ−1y) ≥ λg(t, x, y);

(H4) there exists a constant δ > 0, such that for all t ∈ [0, 1], x, y ∈ [0,+∞), f(t, x, y) ≥ δg(t, x, y).

Then the problem (4.1) has a unique positive solution u∗ in Ph, where h(t) = tα−1, t ∈ [0, 1], and for any
u0, v0 ∈ Ph, by constructing successively the sequences as follows

un+1(t) =

∫ 1

0
G(t, s)[f(s, un(s), vn(s)) + g(s, un(s), vn(s))]ds, n = 0, 1, 2, . . . ,

vn+1(t) =

∫ 1

0
G(t, s)[f(s, vn(s), un(s)) + g(s, vn(s), un(s))]ds, n = 0, 1, 2, . . . ,

we have un(t) ⇒ u∗(t), t ∈ [0, 1] and vn(t) ⇒ u∗(t), t ∈ [0, 1], that is, {un(t)} and {vn(t)} both converges to
u∗(t) uniformly for all t ∈ [0, 1].
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Proof. From [25], the problem (4.1) has an integral formulation given by

u(t) =

∫ 1

0
G(t, s) [f (s, u(s), u(s)) + g (s, u(s), u(s))] ds,

where G(t, s) is as given in Lemma 4.3.
Define two operators A,B : P × P → E by

A(u, v)(t) =

∫ 1

0
G(t, s)f (s, u(s), v(s)) ds,

B(u, v)(t) =

∫ 1

0
G(t, s)g (s, u(s), v(s)) ds.

It is easy to prove that u is the solution of the problem (4.1) if and only if u = A(u, u) + B(u, u). From
(H1), we know that A,B : P × P → P .

(1) Firstly, we prove that A, B are two mixed monotone operators. In fact, for all ui, vi ∈ P (i = 1, 2)
with u1 ≥ u2, v1 ≤ v2, by (H2) we get that u1(t) ≥ u2(t), v1(t) ≤ v2(t), t ∈ [0, 1] and it follows from (H2)
that

A(u1, v1)(t) =

∫ 1

0
G(t, s)f (s, u1(s), v1(s)) ds

≥
∫ 1

0
G(t, s)f (s, u2(s), v2(s)) ds

= A(u2, v2)(t).

That is A(u1, v1) ≥ A(u2, v2). In a similar way we get B(u1, v1) ≥ B(u2, v2).

(2) From (H3), for any λ ∈ (0, 1), t ∈ [0, 1] and u, v ∈ P , we have

A(λu, λ−1v)(t) =

∫ 1

0
G(t, s)f

(
s, λu(s), λ−1v(s)

)
ds

≥ ψ(λ)

∫ 1

0
G(t, s)f (s, u(s), v(s)) ds

= ψ(λ)A(u, v)(t),

B(λu, λ−1v)(t) =

∫ 1

0
G(t, s)g

(
s, λu(s), λ−1v(s)

)
ds

≥ λ
∫ 1

0
G(t, s)g (s, u(s), v(s)) ds

= λB(u, v)(t).

That is, for any λ ∈ (0, 1), u, v ∈ P , A(λu, λ−1v) ≥ ψ(λ)A(u, v), B(λu, λ−1v) ≥ λB(u, v).

(3) Next we show that A(h, h) ∈ Ph, B(h, h) ∈ Ph. In fact, from Lemma 4.3 and (H2), we have

A(h, h)(t) =

∫ 1

0
G(t, s)f(s, h(s), h(s))ds

≤
∫ 1

0
G(t, s)f(s, 1, 0)ds

≤ 1

Γ(α)
h(t)

∫ 1

0
(1− s)α−β−1f(s, 1, 0)ds.
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On the other hand, by the property (3) of Green function in Lemma 4.3 and (H2), we have

A(h, h)(t) =

∫ 1

0
G(t, s)f(s, h(s), h(s))ds

≥
∫ 1

0
G(t, s)f(s, 0, 1)ds

≥ 1

Γ(α)
h(t)

∫ 1

0
[1− (1− s)β](1− s)α−β−1f(s, 0, 1)ds.

By (H2) and (H4), we have
f(s, 1, 0) ≥ f(s, 0, 1) ≥ δg(s, 0, 1).

It follows from g(t, 0, 1) 6≡ 0 for all t ∈ [0, 1] that∫ 1

0
f(s, 1, 0)ds ≥

∫ 1

0
f(s, 0, 1)ds ≥

∫ 1

0
δg(s, 0, 1)ds > 0.

Let

l1 =
1

Γ(α)

∫ 1

0
(1− s)α−β−1f(s, 1, 0)ds > 0,

l2 =
1

Γ(α)

∫ 1

0
[1− (1− s)β](1− s)α−β−1f(s, 0, 1)ds > 0.

Thus, l2h(t) ≤ A(h, h)(t) ≤ l1h(t), t ∈ [0, 1], and we have A(h, h) ∈ Ph. In a similar way, we get

B(h, h)(t) =

∫ 1

0
G(t, s)g(s, h(s), h(s))ds

≤
∫ 1

0
G(t, s)g(s, 1, 0)ds

≤ 1

Γ(α)
h(t)

∫ 1

0
(1− s)α−β−1g(s, 1, 0)ds,

B(h, h)(t) =

∫ 1

0
G(t, s)g(s, h(s), h(s))ds

≥
∫ 1

0
G(t, s)g(s, 0, 1)ds

≥ 1

Γ(α)
h(t)

∫ 1

0
[1− (1− s)β](1− s)α−β−1g(s, 0, 1)ds.

Let

l3 =
1

Γ(α)

∫ 1

0
(1− s)α−β−1g(s, 1, 0)ds > 0,

l4 =
1

Γ(α)

∫ 1

0
[1− (1− s)β](1− s)α−β−1g(s, 0, 1)ds > 0.

Thus, l4h(t) ≤ B(h, h)(t) ≤ l3h(t), t ∈ [0, 1], and we have B(h, h) ∈ Ph.

(4) For any u, v ∈ P , t ∈ [0, 1], from (H4) we know that

A(u, v)(t) =

∫ 1

0
G(t, s)f(s, u(s), v(s))ds

≥ δ
∫ 1

0
G(t, s)g(s, u(s), v(s))ds

= δB(u, v)(t).
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So we get A(u, v) ≥ δB(u, v). Hence all the conditions of Theorem 3.1 are satisfied, and the conclusion of
Theorem 4.4 holds.

Example 4.5. Consider the following two-point boundary value problem
−Dα

0+u(t) = 2t+
√
u+1

3√u+1
+
√
u+1√
u+1

, 0 < t < 1, n− 1 < α ≤ n,

ui(0) = 0, 0 ≤ i ≤ n− 2,

[Dβ
0+u(t)]t=1 = 0, 1 ≤ β ≤ n− 2.

(4.2)

The above equations can be written in the form of (4.1) with the functions f, g : [0, 1]×[0,+∞)×[0,+∞)→
[0,+∞) defined by

f(t, x, y) = t+

√
x+ 1

3
√
y + 1

, t ∈ [0, 1], x, y ≥ 0,

g(t, x, y) = t+

√
x+ 1√
y + 1

, t ∈ [0, 1], x, y ≥ 0.

Now we show in the following that all the conditions of Theorem 4.4 are satisfied.

(1) Clearly, the functions f, g : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) are continuous with g(t, 0, 1) 6≡ 0.

(2) We observe that for fixed t ∈ [0, 1] and y ∈ [0,+∞), f(t, x, y), g(t, x, y) are increasing in x ∈ [0,+∞);
for fixed t ∈ [0, 1] and x ∈ [0,+∞), f(t, x, y), g(t, x, y) are decreasing in y ∈ [0,+∞).

(3) For all λ ∈ (0, 1), t ∈ [0, 1] and x ≥ 0, y ≥ 0, taking ψ(λ) = λ
5
6 ∈ (0, 1), we have

f(t, λx, λ−1y) = t+

√
λx+ 1

3
√
λ−1y + 1

≥ t+

√
λx+ λ

3
√
λ−1y + λ−1

= t+
λ

1
2
√
x+ 1

λ−
1
3 3
√
y + 1

≥ λ
5
6 t+ λ

5
6

√
x+ 1

3
√
y + 1

= ψ(λ)f(t, x, y).

For all λ ∈ (0, 1), t ∈ [0, 1] and x ≥ 0, y ≥ 0, we have

g(t, λx, λ−1y) = t+

√
λx+ 1√
λ−1y + 1

≥ t+

√
λx+ λ√

λ−1y + λ−1

= t+
λ

1
2
√
x+ 1

λ−
1
2
√
y + 1

≥ λt+ λ

√
x+ 1√
y + 1

= λg(t, x, y).

(4) Taking δ = 1, for all t ∈ [0, 1] and x ≥ 0, y ≥ 0, we have

f(t, x, y) = t+

√
x+ 1

3
√
y + 1

≥ t+

√
x+ 1√
y + 1

= g(t, x, y).

Thus we have proved that all the conditions of Theorem 4.4 are satisfied. Hence we deduce that (4.2) has
one and only one positive solution x∗ ∈ Ph, where h(t) = tα−1, t ∈ [0, 1].
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