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THE UNIQUENESS AND STABILITY
OF THE SOLUTION OF THE RIEMANN PROBLEM

OF A SYSTEM OF CONSERVATION LAWS OF MIXED TYPE

HAITAO FAN

Abstract. We establish the uniqueness and stability of the similarity solution
of the Riemann problem for a 2x2 system of conservation laws of mixed type,
with initial data separated by the elliptic region, which satisfies the viscosity-
capillarity travelling wave admissibility criterion.

1. Introduction

The isothermal evolution of one-dimensional continuous compressible media
in the absence of body forces can be described in Lagrangian coordinates by the
quasilinear system of conservation laws

(1.1a) ut+p(w)x = 0,
(1.1b) Wi-ux = 0,       xel, i>0,

where p(w) is the pressure. Typically, for instance in ideal gases, p'(w) < 0,
so that the system (1.1a, b) is hyperbolic. For some other material models, for
example the van der Waals gas or elastic/plastic rods, p'(w) may be positive
on some range of w , as depicted in Figure 1. More precisely, we assume

p(w)£Cx(R)   and   p'(w) < 0   forw£[a,ß],
p'(w) > 0   for w £ (a, ß).

With this kind of function p(w), the system (1.1a, b) is of hyperbolic-elliptic
mixed type.

In this paper, we shall continue the program carried out in [20, 7] to study
the system ( 1.1 a, b, c) with the following Riemann initial values

(i.id, M»,e),.(x.B»-{«"""-■> 'orx<°'
[ (u+, w+)    for x > 0,

(Lie) W- < a < ß < w+.

The system (1.1) generally admits many solutions but not every one of them is
physically relevant. This raises the issue of the admissibility of these solutions.
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Figure 1

In other words, we have to develop some admissibility criterion to single out
the "physically correct" solution of (1.1), or better yet, to establish the well-
posedness for the Cauchy problem for (1.1a, b).

In the context of hyperbolic systems, many admissibility criteria have been
proposed. An early example is the Lax shock admissibility criterion [13]. A
comprehensive shock admissibility criterion was proposed by Liu [14] which
yields a satisfactory solution of the Riemann problem for strictly hyperbolic
systems when the waves are of moderate strength. Based on the premise that
admissibility should be invariant under translations and dilatations, Dafermos
presented, in his recent paper [5], the wave fan admissibility criterion. Dafer-
mos also proposed the entropy rate criterion in [1], and proved in [5] that, for
wave fans of moderate strength, the entropy rate criterion and the Liu admissi-
bility condition are equivalent.

A successful criterion for mixed type systems should not only comply with
the established criteria for hyperbolic systems for the part of solutions of ( 1.1 )
inside a connected component of the hyperbolic region, but should also satisfy
physical principles governing phase transitions, for example the Maxwell equal
area rule, as well as agree with experimental results. Slemrod [18] suggested,
in the context of (1.1a, b), the viscosity-capillarity travelling wave criterion,
or travelling wave criterion for short, which meets the above standards quite
nicely [8, 19, 22]. Based on Korteweg's theory, Slemrod's criterion states that a
shock of (1.1), (ux ,wx), (u2, w2), satisfying, of course, the Rankine-Hugoniot
condition, is admissible if

.d2w dw(Q     ^/dw(Q\2      , „,       .    ,      ?/-/«        ,
(1.2)  Ä~dT2='s~di  ~   \YC) -p(w)+p(wi)-s2(w(Q-wx),

w(—oo) = Wi,    w(+oo) = w2,    w'(±oo) = 0

has a solution, where A, D are constants and 5 is the speed of the shock. A
solution of ( 1.1 ) is admissible according to the travelling wave criterion if each
discontinuity of the solution is a jump discontinuity and is admissible by the
travelling wave criterion. For a recent survey of the travelling wave theory of
the dynamics of phase transitions, the reader is referred to [22].

The common approach for solving the Riemann problem ( 1.1 ) is to construct
the admissible shock and wave curves.  If it succeeds, this approach gives us
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centered wave solutions. Discussions using this procedure have been given by
R. James [11] and later by M. Shearer [15-17]. L. Hsiao [9, 10] also studied
this problem using other admissibility criteria. At this stage, it is natural to ask
questions about the existence, uniqueness, and stability of these solutions.

The existence of solutions of (1.1) which are admissible according to the
travelling wave criterion (1.2) when A — 1/4 and D = 0 was established
recently by Fan in [7]. Following Slemrod [20], Fan [7] constructed solutions
of ( 1.1 ) as the £ -> 0+ limit of solutions of the system

(1.3a) ut + p(w)x = etuxlxx ,

(1.3b) w, - ux = etwxx ,

{(u- , W-)   for x < 0,
, !    r(u+,w+)   forx>0.

The above "similarity viscosity" approach was pursued by Kalasnikov [ 12], Tup-
ciev [23, 24], Dafermos [2, 3, 5], Dafermos and DiPerna [4], Slemrod [20],
Slemrod and Tzavaras [21], and Fan [6, 7]. For convenience, we shall, by say-
ing that a solution of (1.1) is admissible according to the similarity viscosity
admissibility criterion, mean that this solution is constructed by the above sim-
ilarity viscosity approach. In [7], the author proved the existence of centered
wave solutions (u(x/t), w(x/t)) of (1.1) which possess one phase change and
satisfying the similarity viscosity admissibility criterion under the assumption
that

\p(w)\ -» 00.

These solutions are also admissible according to the travelling wave criterion
with A = 1/4 and D = 0 if each straight line in the (w, p) plane intersects
the graph of p(w) at at most finite points.

In this paper, we assume the following

Assumption 1. Besides (1.1c), p(w) also satisfies
(1.4a) p"(w) > 0    forw<a,

(1.4b) p"(w)<0    forw>ß.

We shall see in §2 that under Assumption 1 solutions to the Riemann problem
(1.1), satisfying the travelling wave criterion, possess one and only one phase
boundary. In the sequel of this paper, when we say solutions of ( 1.1 ) we always
refer to centered wave solutions of ( 1.1 ) which are admissible according to the
travelling wave criterion with A = 1/4, D = 0.

Under Assumption 1, we shall prove the uniqueness and stability of the so-
lution of (1.1). In §2, we study the structure of the solution. We devote §3 to
the study of phase boundaries. After this preparation, we shall prove, in §4, our
main result:

Theorem 1.1. (i) (1.1) has a unique solution within the class of centered wave
solutions satisfying the travelling wave criterion.

(ii) Let (u(i), w(i)) be the solution of (1.1). For any e > 0 and y > 0,
there is a â > 0 such that if

\u- - a_| + \u+ - a+\ + \w- - w_| + |iu+ -w+\ < S
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916 HAITAO FAN

then
meas{i £ E | \u(i) - U(i)\ + \w(i) - w(i)\ >e}<y,

where (u(i) ,w(i)) is the solution of (I.la, b) with Riemann initial values
(U- , W-) and (ü+ , w+), and 'meas' denotes the Lebesgue measure.

2. The structure of solutions
Definition 2.1. A solution of (1.1) is said to be admissible according to the
viscosity-capillarity travelling wave criterion (or travelling wave criterion for
short) if

(i) at each point xi0 of discontinuity of (u(i), w(i)), (u(io~), w(i0-))
and (u(io+),w(io+)) exist, and

(ii) the following boundary value problem has a solution:

(2.1a)      ^f- = -2£o^P + P(io~) - P(w(0) - H(ü(0 - w(io-)),

(2.1b) w(-oc) = w(i0-),    w(+oo) = w(io+),    w'(±oc) = 0.

We first summarize our earlier results on the existence of solutions of ( 1.1 )
in the following theorem which is a combination of Corollary 4.7 of [8] and
Theorem 4.3 of [7].

Theorem 2.1. (i) Solutions of (1.1), (u(i), w(i)), which are admissible by the
viscosity-capillarity travelling wave criterion exist which satisfy the condition that
there is a io £ R such that w(i) < a for i <io and w(i) > ß for i > £0.

Lemma 2.2. The boundary value problem (2.1 ) is equivalent to the following
system:

(2.2a) ^p = -s(û(Q - ui)-p(w(Q) +p(wx),

(2.2b) d^ = -s(w(Q-wx)-û(() + ux,

(2.2c) (û(-oo), w(-oo)) = (ux , wx),        (u(oo), w(oo)) = (u2, w2),

where (ux,wx), (u2,w2) satisfy the Rankine-Hugoniot condition at s.
Proof. Obvious.   D

In this paper, we always use the following notation:

X(w) := y/-p'(w).

Lemma 2.3. Let (u(i), w(i)) be a solution o/(l.l) admissible by the travelling
wave criterion. Then the following assertions hold:

(i) w(i) i (a,ß) forany i£R.
(ii) If io is a point of discontinuity of (u(i), w(i)) and ^(<^o±) < a (or

> ß), then either

(2.3a) Hw(i0-))>io>k(w(io+))
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or

(2.3b) -l(w(io-)) >io> -¿(w(io+)).
(hi) If there is a sequence {i„} such that i„ -> io-  (or i„ —► io+), as

« -> oo, and w(in+) ¿ w(i0-) (or w(i„-) ^ w(i0+)), then

(2.4) io = ±l(w(i0-))   (orio = ±X(w(io+))).

(iv) If w(io-) < a and w(io+) > ß, then

(2.5) ¿(w(io-)) > io > -l(w(io+)).
Proof, (i) The proof is lengthy; therefore we put it in the Appendix.

(ii)-(iv) See the proofs of Proposition 3.6 of [3] and Theorems 5.1, 5.2 of
[7], and apply Lemma 2.2.   D

We define

(2.6) f(w, wx,s) := -p(w) + p(wx) - s2(w - wx).

Lemma 2.4. Suppose (2.1) has a solution.
(i)Ifio>0, then

(2.7a) /    f(w , wx, io) dw > 0   for w £ [wx, w2].
Jwx

(ii) If io < 0, then
rw2

(2.7b) /    f(w , wx, io) dw < 0  for w £ [wx, w2].
Jw

Proof. We only prove (i) since the proof of (ii) is similar. Multiplying (2.1) by
^P and integrating it on (-00, ¿;), we obtain

In the remainder of this paper, we assume Assumption 1.

Theorem 2.5. Let io be a point of discontinuity of (u(i), w(i)).
(i) If w(io-) < a and w(i0+) > ß, then

(2.9) Hw(io-)) >io> -¿(w(io+)).
(ia) If further w(i0+) # w+ , then i0 < X(w(i0+)).
(ib) If w(i0-) ¿ w- , then io > -X(w(i0-)).
(ii) If w(io±) < a, then i0 < 0, w(io+) < w(i0-), and

(2.10) -l(w(io-)) >io> -X(w(io+)).

(iii) If w(io±) > ß, then io>0, w(i0-) > wß0+), and

(2.11) l(w(io-))>io>l(w(io+)).
Proof, (i) If
(2.12) io>l(w(io-)),
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918 HAITAOFAN

then the chord connecting w(io-) and w(i0+) lies below the graph of p(w)
which violates Lemma 2.4(i). Thus

(2.13) i0 < ¿(w(io-)).
The other half of (2.11) can be proved similarly.

Let w(io+) t¿ w+ and suppose, for contradiction, that

(2.14) io>l(w(io+)).
Then, by Lemma 2.3, (u(i), w(i)) is constant in (^0, ii) for some ix > io-
We denote the supremum of such ix by i2, and hence

(2.15) i2>io
and

(2.16) w(i2-) = w(io+).

If i2 is a point of discontinuity of (u(i), w(i)), then i2 < X(w(i2-)). If i2
is a point of continuity, then, by the definition of i2 and Lemma 2.3, i2 =
X(w(i2)). In both cases, we have

i2<X(w(i2-))=k(w(io+))<io,

which contradicts (2.15).
The proof for (ib) is similar to that of (ia).
(ii) By Lemma 2.3, we have either

(2.17a) Hw(io+))<io<Hw(io-)),
or

(2.17b) -X(w(io+)) <io< -X(w(io-)).
We claim that (2.17a) does not hold. Indeed, if otherwise, io > 0. Since
■^(^o±) < « > there is an n > <^0 > 0 such that w(n-) < a < ß < w(n+). It
follows from (i) that

tt\ < À(w(n-)).
By Lemma 2.3(hi), w(Ç) will be constant in (nx, n). We let r\2 betheinfimum
of such nx and therefore

(2.18) >i>n2>io>0.
If n2 is a point of discontinuity of (u(i), w(i)), then w(rj2±) < a and hence
>?2 > X(n2+). If 772 is a point of continuity of (u(i), w(i)), then, by the
definition of n2, r\2 = X(w(n2)). In both cases, we have

n2 > X(w(n2+)) = X(w(n-)) > n,

which contradicts (2.18). Thus only (2.17b) holds. Equality in (2.17b) cannot
hold since p(w) is convex and

,2=    p(w(io+))-p(w(Jo-))
Ç° w(io+)-w(io-)     ■

Therefore (2.10) is proved. w(io+) < w(io-) follows easily from the convexity
of p(w) and (2.10).

(hi) The proof for (hi) is similar to that of (ii).   D
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Theorem 2.6. (i) If there is a sequence {i„} such that i„ —> io-, as « —> oo,
and w(i„+) ¿ w(i0-), and

(ia) if w(io~) < a, then
(2.19a) io = -*(v)(io-));

(ib) if w(io-)>ß, then
(2.19b) io = X(w(io-)).

(ii) If there is a sequence {£„} such that i„ -» £0+, as n -* oo, a«<7 io(^„-) ^
w(¿o+). and

(iia) i/" iu(£o+) < a. *Äen

(2.20a) £0 = -A(w(£o+));
(üb) ifw(io+)>ß, then

(2.20b) & = *(«>(&+)).
Proo/. We prove (ia) only since the proofs for the rest of the theorem are similar.

In this case, io = ±X(w(io~)) as asserted by Lemma 2.3. Assume, for
contradiction, w(i0-) < a and io > 0. Then there is an n g E such that
n > io and w(n-) < a < ß < w(n+). By Theorem 2.5(i), n - i0 cannot hold
and hence n > i0. By Lemma 2.3, w(i) will be constant in (nx, n) for some
nx < n. Similar to what we did in the proof of Theorem 2.5(h), we let n2 be
the infimum of such nx and therefore

(2.21) ?>»/2>ío>0.
Theorem 2.5(h) says that n2 cannot be a point of discontinuity of (u(i), w(i))
or otherwise 172 < 0 which is prohibited by (2.21). Thus n2 is a point of
continuity of (u(i), w(i)). By the definition of n2, we can see that n2 =
X(w(n2)). Therefore,

n2 = X(w(rj2+)) = X(w(n-)) > n,

which contradicts (2.21).   D
Theorem 2.7. Let (u(i), w(i)) be a solution o/(l.l).

(i) There is one and only one phase boundary in the solution, i.e., there is a
io £ E such that w(i) > ß for £, > £0, and w(Ç) < a for £, < £0

(ii) 7« the region w < a, solutions 0/(1.1), (u(i), w(i)), consist of either a
constant state (w_ , u>_) or two constant states («_ , W-) and (ux, wx) joined
by a shock with speed sx < 0 or a backward rarefaction wave with («_ , W-) on
its left.

(hi) 7« the region w > ß, solutions o/(l.l), (u(i), w(i)), consist of either a
constant state (u+ , w+) or two constant states (u+ , w+) and (u2, w2) joined
by a shock with speed s-¡ > 0 or a forward rarefaction wave with (u+ , w+) on
its right.

(iv) (ux, wx) and (u2, w2) are joined by a shock, i.e., the phase boundary.
Proof. We prove (i) and (ii) only since that of (hi) is similar, and (iv) follows
immediately.

(i) Suppose that there are more than one phase boundaries in a solution
(u(i), w(i)). Then there are at least three phase boundaries because u;_ <
a < ß < w+ . More precisely, there are points of discontinuity i0, ix, i2 £ E
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of (u(i), w(i)) suchthat w(ij-) < a < ß < w(ij+), j = 0, 2, and u>(¿;i+) <
a < ß < w(ii—). Without loss of generality, we assume io <ii < Í2 and that
there are no other points of dicontinuity of (u(i),w(i)) between io and i2.
At least two of ij■, j = 0, 1, 2, are nonnegative or nonpositive. We consider
the case 0 < ix <i2 only, since the proof for the other cases are similar. For
the point £, , we know from (2.8) in the proof of Lemma 2.4 that

fW((l-)
(2.22) / f(w,w(ix+),ix)dw<0.

Jw(£i+)

Theorems 2.5(h) and 2.6(h) imply that (u(i), w(i)) is constant for i £ (ix, if)
since ix > 0. Thus w(i2-) - w(ix+). Lemma 2.4 then leads to

(2.23) / f(w,w(ix+),i2)dw>0.

From (2.22) and (2.23), we know, by an inspection on the graph of p(w), that
ix > ii > 0, which is a contradiction.

(ii) Suppose (u(i), w(i)) has a point io of discontinuity with w(io±) < a .
By Theorem 2.5, io <0. We define a subset of E by

(2.24) A:={i>io\ w(i) ¿ w(i0+), w(i±) < a}.

We claim that A is empty. Indeed, if otherwise, we can define

(2.25) n := inf A > i0.

If n = io, then there is a sequence i„ —> n+ = i0+ such that w(i„+) ^
w(io+). By Theorem 2.6,

io = -X(w(i0+)),

which is impossible in view of Theorem 2.5. If r¡ > io , then w(n-) = w(io+).
If, further, w(n-) ± w(n+), then, by Theorem 2.5,

t] < -X(w(n-)) = -X(w(io+)) < io,

which contradicts the definition of n in (2.25). If w(n-) = w(n+), then there
is a sequence in —> n+ as « —> oo such that w(i„+) / w(n+). Again by
Theorem 2.6, we obtain

n = -X(w(rj±)) = -X(w(io+)) < io,

which is also impossible. Thus, A is empty, which simply says that (u(i), w(i))
must be constant for i £ (i0, s2) for some s2 such that w(s2+) > ß .

Similarly, we can prove that (u(i), w(i)) is constant for i £ (-oo, i0).   ü

From the above results, we can see that a solution (u(i), w(i)) of (1.1)
consists of a shock i = s2, such that wx := w(s2-) < a < ß < w(s2+) =:
w2, and two constant states (w_ , w_) and (u+ , w+). (w_ , W-) is joined to
(u(s2-), w(s2-)) by either a backward shock i = sx < 0 if w(s2-) < w-
or a backward rarefaction wave if w(s2-) > W- . (u+ , w+) is connected to
(u(s2+), w(s2+)) by either a forward shock i = 53 > 0 if w(s2+) > w+ or a
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forward rarefaction wave if w(s2+) < w+ . Thus, we can denote a solution of
(1.1), for simplicity, by {wx, w2, s2}.

3. The phase boundary

Let i = s be a point of discontinuity of (u(i), w(i)). For notational sim-
plicity, we denote (ux, wx) := (u(s-), w(s-)), (u2, w2) := (u(s+), w(s+)).
Then we have the Rankine-Hugoniot conditions:

(3.1) -s(u2 - ux) + p(w2) -p(wx) = 0,

(3.2) -s(w2-wx) - (u2-'ux) = 0.

The speed s of the shock is determined by

(3.3) ,2 = _^2)-^'),w2 - Wi

We call wx —> w2 a connection if (2.1) has a solution. In this section, we
devote ourselves to connections wx —> w2, where wx < a < ß < w2, which are
called phase boundaries.

Lemma 3.1. Let a > wx -> w2> ß be a connection with speed s.
(i) If s — 0, then wx = m and w2 = M, where m < a and M > ß are

Maxwell constants defined by

¡■M(3.4) p(m)=p(M),        j    (p(w) - p(m)) dw = 0.
J m

(ii) If s > 0,  then wx < m.
(hi) If s < 0, then w2> M.

Proof, (i) is proved in [15]. (ii) and (hi) follow from Lemma 2.4.   D

Lemma 3.2. Let s >0 in (2.1). Then the connected component of the unstable
manifold of (wx, 0) in the upper half phase plane containing (wx, 0) is unique
and is denoted by Yx (wx, w2).

The connected component of the stable manifold of (w2, 0) in the upper half
phase plane containing (w2, 0) is unique and is denoted by Y2(wx, w2).
Proof. We can rewrite (2.1) as

dv
(3.5a) v-pr =-2sv + f(w , wx, s),

,<s   n  X dW(3-5b) ^ = v,

where f(w , wx, s) := -p(w) + p(wx) - s2(w - wx). Along the trajectories of
(3.5) which are in the upper half phase plane, w'(Q = v > 0. Thus, we can
parametrize this part of the trajectories by v(w).

Suppose (3.5) has two unstable manifolds leaving (wx, 0) into the upper half
phase plane. We denote these two manifolds by v(w) and v(w) respectively.
If v(wo) - v(wo) > 0 for some w0 > wx, then the uniqueness of (3.5) in half
plane v > 0 implies v(w) = v(w). Thus, without loss of generality, we can
assume
(3.6) v(w) > v(w)
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for w £ (wx, wx + p) for some p > 0. Then it follows from (3.5) that

ti n\ dv     _dv(3.7) v-.-v-T— = -2s(v -v).dw       dw
Integrating (3.7) from wx to w , we obtain, by virtue of (3.6) and s >0, that

fW
0 < v2(w) -v2(w) = -2s /   (v(w) -v(w))dw < 0

Jwx
for w £ (wx, wx + p), which is the desired contradiction.

The proof for the uniqueness of the stable manifold entering (w2, 0) is
similar.   D
Lemma 3.3. Let wx <a, w2> ß satisfy
(3.8) s<X(w2),
where s2 is determined by (3.2). Then wx —» w2 is a connection with s > 0 if
and only ifYx(wx, w2) — Y2(wx, w2).
Proof. It is clear that if ri(uji, w2) = Y2(wx, w2), then wx —> w2 is a connec-
tion.

Conversely, if wx —*w2 is a connection, then the connecting trajectory w(Q
has to cross the w-axis at some (wo, 0) for some wo > w2. On the other
hand (3.8) and Assumption 1 together with (2.1) imply that Wo < w2. Thus
ri(iüi,tü2) = r2(«;i,ti;2).   □

We denote the manifolds Yx(wx,w2) and Y2(wx, w2) by vx(w, s) and
v2(w , s) respectively to specify the dependence of vx, v2 on 5.

The proof of the following lemma was first given by M. Shearer [16]:

Lemma 3.4. (i)
— (w,s )<0.
OS

(¡i)

Proof, (i) It follows from (3.5) that

(3.9) ^ = -2s + f{W'Wx>S).
dw v

As w —» wx  or w2, f(w, wx, s) -* 0 and v —> 0.  A simple computation
based on (3.9) shows that

dv
<3-10» ». = -s + X(wx),

w=wx

and hence

(3.11)
d2vx

dsdw
dv,

= -l.
w=wx

Since vx(wx) = 0 and thus ^-\w=wx = 0,

(3.12) ^l{w,s)<0

for w > wx and near wx .
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On the other hand, by integrating (3.5) from wx to some w , we obtain

v2(w)

923

(3.13)

(3.14)

rW

/   [-2svx(d) + f(6,wx,s)]d6,
Jwx

vx(w)^-(w,s) = 2J \-vx(e)-s^(e,s)-s(e-wx] dd s 2g(w).

Now, we claim ^-(w , s) < 0. Indeed, if otherwise, there is w* > wx such
that ^(w*, s) — 0 and ^-(w , s) < 0 for all w g (w,, w*). In other words,
g(wi) = g(w*) - 0 and g(w) < 0 for all w £ (wx, w*). Thus

(3.15) g'(w*)>0.

However,

(3.16) g'(w*) = -vx(w*)-s(w* - wx) < 0,

which contradicts (3.15). Thus %fc(w , s) < 0.
(ii) The proof is similar to that of (i).   D

We define

(3.17a) w2(wx, 5) := max{u; > ß\ p(w) = p(wx) - s2(w - wx)},

(3.17b) ^3(^1, s) := min{w > ß\ p(w) = p(wx) - s2(w - wx)}.

Theorem 3.5. Let a > wx -> w2> ß be a connection with speed X(w2) > s > 0.
Then any w* £ [w^(wx, s), w2) cannot be connected to wx ■

p  À

Figure 2

Proof. Assume the contrary, i.e. there is a w* £ [wt,(wx , s), w2)  such that
wx -> w* is a connection. An inspection on the graph of p(w) tells us that

(3.18) s*2 _      P(W*)-P(WX)  < s2
w* - wx
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By Lemma 2.4, 0 < s* < s. Lemma 3.3 implies that

(3.19) vx(w , s*) > vx(w , s) > 0

for w £ [w3(wx, s), w2). It is clear from (3.18) that f(w , wx, s*) > 0 for
w > w2 and hence vx(w, j3) > 0 for w > Wo(s). That is, wx -> w* is not a
connection.   D

Theorem 3.6. Let a > wx —* w2 > ß be a connection with speed 0 < s < X(w2).
If a >wx —> ÜT2 > ß is a connection with speed s > 0 and if wx < wx, then
s > s.
Proof. Consider the unstable manifold r,(Wi , ÜJ2) leaving (wx,0) into the
upper half phase plane which we shall denote by v(w). We have

(3.20) c-j— = -2sw -p(w) +p(wx) -s2(w -wx).

Since wx -^w2 is a connection, Yx(wx, w2) must cross the w-axis at (w0, 0)
for some w0 < w2(wx, s), where the unstable manifold ri(w;i, w2(wx, s)),
parametrized by v(w) satisfies

(3.21) vfr~ = ~^v ~p(w) + p(w0 - s2(w ~w\)-

Subtracting (3.20) from (3.21), we obtain
(l 11 rV7?

(3.22) v-z-Ü-J— = -2s(v -v) +p(wx) -p(wx) -s2(wx - wx).

If s > X(wx), then there is nothing to be proved since s < X(wx) by Theorem
2.5. Thus, without loss of generality, we assume s2 < -p'(wx). Then

-2 _:_,   _/,^ ï      -//„.« ^    p(wx)-p(wx)(3.23) sz < min(-p'(wx), -p'(wx)) <
wx - wx

The last inequality comes from the convexity of p(w) in the region w < a.
Applying (3.23) to (3.22), we get
/-, -^ dv        dv(3.24) v-,-v-r- < -2s(v -v).dw       dw
Now, we claim that v(w), v(w) do not intersect. Since v(wx) > v(wx) = 0,
if the contrary of our claim holds, there will be w* > wx such that V(w) >
v(w) for w £ [wx, w*) and v(w*) = v(w*). Thus, v'(w*) > v'(w*), which
contradicts the consequence of (3.24)

11 ->^ 1   *^d(v-v)(3.25) v(w )- dw <0
W = W

and hence our claim. Therefore, v(w) must meet the iw-axis at some (wo, 0),
where wq £ (wi, w2(wx ,s)). If s > s, then, by Lemma 3.3, Yx(wx, w2)
will meet the v-axis at some w g (wx , w2(wx, s)) and hence cannot join
^2(^1, s) > w2(wx, s). This simply says that wx -> w2 is not a connection
with 0 < s < X(w2). This contradiction completes our proof.   □

For connections a > wx —> w2 > ß with s < 0, we have the following
similar results.
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Theorem 3.7. (i) Let wx —» w2 be a connection with -X(wx) < s < 0. Then
any w* £ (wx, wo(w2, s)) cannot be connected to w2, where

Wo(w2, s) := max{u; < a | p(w) = p(w2) - s2(w - w2)}.

(ii) Let a > wx -* w2 > ß be a connection with speed 0 > s > -X(w2). If
a > wx —> w2 > ß is a connection with speed s < 0 and if w2 > w2, then
s < s.
Proof. Assume wx ^> w2 is a connection with s < 0. Then (2.1) has a solu-
tion. We can replace wx in (2.1) by w2 , since we have the Rankine-Hugoniot
conditions (3.1), to obtain

d2w       „ dw(Q       ..,       .    .      7/ „
(3 26) IC2 =       ~dl- +Piw2) - s¿(w - w2),

w(-oo) = Wi,    w(+oo) = w2,    w'(±oo) = 0.

After applying the following transformations

(3.27) C^-C,       w h-> -w
in (2.1), (3.26) becomes

(3.28) W = ~2{'S)^JT ~ P{Ú,) + P{~Wz) ~ S2{Ú1 " {~W2)) '

w(-oo) = -w2,     w(+oo) = -wx,     w'(±oo) = 0,

where P(w) := -p(-w) also satisfies Assumption 1. Now we can apply Theo-
rems 3.5, 3.6 to (3.28) to complete the proof of our theorem.   D

4. The uniqueness and stability of the solution of (1.1)

Lemma 4.1. (1.1) has a solution {wx, w2, s2} if and only if the following con-
ditions hold:
(4.1) F(wi, w2, s2) = u+ - u- ,
where wx —> w2 is a connection with speed s2 and wx < a < ß < w2,

F(wx, w2, s2) := -sx(wx-W-)H(w-- wx)

/wx X(w)dw
(4.2) -52(^2 -wx) - H(w2 - w+)s-$(w+ - w2)

+ H(w+-w2+)        X(w)dw,
Jw+

where H(w) is the Heaviside function and

(4.3) 2 ;= _/>("*)-*»("*-.) k= 1,2,3,
wk-wk_x

Wo := w- , w3 := w+ ;

(4.4a) 5i < 0,    53 > 0,    sx < s2 < s3,

(4.4b) -X(wx) < sx <-X(w-),        X(w+) < 53 < X(w2),
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(4.4c) -X(w2) <s2 <X(wx),

(4.4d) s2 < X(w2)     ifw2 ¿ w+ ,

(4.4e) s2 > -X(wx)     ifwx ^ W-.
Proof. Suppose (1.1) has a solution, denoted by {wx ,w2, s2} . From the dis-
cussion following Theorem 2.7, {wx, w2, s2} has the following structure: When
wx := w(s2-) < w-, the solution (u(i), w(i)), for i < s2, consists of a
shock of speed sx < 0 joining constant states (w_ , tü_) and (ux, wx). When
wx > W- , the solution (u(i), w(i)), for i < s2, consists of a backward rar-
efaction wave connecting (w_ , tv_) and (ux,wx). Therefore,

l-Wx

(4.5) ux-u-=-H(w--wx)sx(wx-W-) + H(wx-W-)       X(w)dw ,
JlV-

where

(4.6) sx = _^0-^-).ioi - u>_
Similarly, we have

(4.7) u2-ux = -s2(w2-wx)

and
rW2

(4.8)      w+ - u2 = -H(w2 - w+)s-¡(w+ - w2) + H(w+ - w2) /    X(w) dw ,
Jw+

P(wk) -p(wk_x)
where

(4.9) jfc wk-wk_x
k = 2,3, and tu3 := it.'+ . (4.2) follows easily from (4.5), (4.7), and (4.9). The
constraints (4.4) follow from Theorems 2.5 and Lemma 2.4. The necessity is
proved.

By Theorem 3.3 of [8], the shock solution (w_ ,W-),(ux,wx) ((u2, w2),
(u+, w+)) is admissible if wx < w_ (w2 > w+). Thus, conditions in Lemma
4.1 simply say that {wx, w2, s2} satisfies the initial conditions (1.1c, d), is ad-
missible, and hence is a solution of ( 1.1 ). Thus the sufficiency is also proved.   D

In view of Theorems 3.4 and 3.8, we can also write F(wx, w2, s2) as
G(wx, s2) for s2 > 0 and J(w2, s2) for the case s2 < 0.

Remark 4.1. When we consider (4.1) as a necessary condition for (1.1) to have
a solution, it will be more convenient to extend the domain of definition of
G(wx, s2) (J(w2, s2)) to include s2 = s3 (s2 = sx). If a solution {wx, w2, 52}
satisfies 0 < 52 < ¿(w^), then w2 = w2(wx, s2). If 52 > ^(^2), then w2 =
w+ = w^(wx, s2) and

u+-U- = F(wx, w+ , s2) = F(wx, w2(wx, s2), s2).

Thus, we can always take the w2 in expression (4.2) for G(wx, 52) to be
w2(wi, s2). Therefore, we can always assume 0 < s2 < X(w2) in G(wx, s2)
since 5 < X(w2(wx, s)) due to the concavity of p(w) in the region w > ß.
Similar things can be said for J(w2, s2).
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Lemma 4.2. (i) If 0 < s2, then
dG

927

(4.10a)
dwx

(ii) If0<s2 <X(w2), then

(wx,s2) >X(wx)+s2.

(4.10b) dG_
ds2 (wx,s2)<0.

The equality holds only if s2 = X(w2).
Proof. In this proof, we treat wx, s2 as variables. A straightforward computa-
tion based on (4.3) shows that

dsx        X2(wx)-s2
(4.11)

(4.12)

(4.13)

(4.14)

dwx      2sx(wx - W-) '

dw2 _ X2(wx) -s2
dwx      X2(w2)-sl'

dw2 _ 2s2(w2 -wx)
Ö52~~   X2(W2)-S¡   '

ds3 _    s2-X2(w2)
dw2     2si(w+-w2)'

With these preparations, we can compute -gß- as follows:

(4.15)
dG
dwx = H(w- - wx) + H(wx - W-+)X(wx) + s2

+
dw2
dw~x

-s2 - H(w2 - w+)   (w+ - w2) S3
dSj
dw2

+ H(w+ - w2+)X(w2)

= H(w- -wx) X2(wx) - 2sxs2 + s2
-2s\

+ X2(wx)-s2
X2(w2) - s2

H(w2 - w+

+ H(wx - w-+)(X(wi) + s2)

X2(w2) - 2s2sj + sj
2sí

+ H(w+ - w2+)(X(w2) - s2)\ .

Applying the inequality X2(wx) + s2 > -2sxX(wx), sx < 0, we can prove that

TT,             ^X (wx) — 2sxs2 + sx     TT/ \/i/\.    n^i/    \H(w- -wx)    K    ' -X- + H(wx -w-+)(X(wx)+s2) >X(wx)+s2.

Recalling constraints (4.4), we can see easily that the sum of the last two terms
on the right-hand side of (4.15) is positive. This completes the proof of (i).
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(ii) After a computation similar to those in (i), we obtain
dG        wx - w2

H(w2 - w+) — (Si - s2)(X(w2)2 - s2s3)dS2       X(w2)2-S2  [    V +/53

+ H(w+ - w2+)(X(w2) - s2f

An analysis similar to that for (4.15) yields our result.   D

Lemma 4.3. (i) If s2 < 0, then

(4.17a) —(w2,s2)>X(w2)-s2.

(ii)IfO>s2>X(wx), then

(4.17b) ^L{W2,S2)<o.

The equality holds only if s2 — -X(wx ).
Proof. The proof is almost the same as that of Lemma 4.2. For completeness,
we list some of the intermediate results in the following:

ÔJ   _X2(w2)-s¡
dwx      X2(wx)-s2

H(w- - wx)X2(wx) - 2sxs2 + s2
—2si

+ H(wx - W-+)(X(wx) + s2)

. X2(w2) -2s2s} +s2     WT. ....    ,       ,   dJ
+ H(w2 - w+) 2^2  -3- + H(w+ - w2+)(X(w2) -s2),Qf

wx - w2
X(wx)2-s2 2   L

1 -
H(w- -wx) — (sx - s2)(X(wx)¿ - s2sx)■*i

+ H(wx -W-+)(X(wx)+s2y D

Lemma 4.4. (i) (1.1) has at most one solution {wx, w2, s2} with s2 > 0.
(ii) (1.1) has at most one solution {wx, w2, s2} with s2 < 0.

Proof, (i) We claim that (1.1) can have at most one solution {wx, w2, s2} with

(4.18) 0<52<^(^2)-
Indeed, if we have two solutions of (1.1),  {wx, w2, 52} and {wx, w2, s2} ,
with (4.18) and
(4.19) 0<s2<X(w2)
and (wx, s2) ¿ (wx, s2), then we have, by Lemma 4.1,

(4.20) G(wx, s2) = G(wx, s2) = u+ - u-.
(4.20) shows, with help from Lemma 4.2(i), that wx ^ wx .  Without loss of
generality, we assume that

(4.21) Wi > wx.
Then, by Theorem 3.6,
(4.22) s2 < s2.
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Consider the difference

G(Wi, s2) - G(wx, s2)
= G(wx, s2) - G(wx, s2) + G(wx, s2) - G(wx, s2)

(wx -wx)(4.23) =^K^2)

dG,—     .x
w"=w0e(wx ,wx)

(S2-S2).
<S"=S0e(S2,S2)

Applying Remark 4.1, (4.21), (4.22), and Lemma 4.2, we find that

(4.24) G(wx, s2) > G(wx, s2) = u+ - U- ,

which contradicts (4.20). Thus, our claim holds.
Now, we claim that (1.1) has at most one solution {wx, w2, s2} with

(4.25) 52 > ¿(w2).

In this case, w2 = w+, and hence it is necessary, in view of Lemma 4.1, that

(4.26) F(wx, w+ , s2) — u+ - U-.

After some computation, we obtain

- H(w--wx)-(s2-sx)   1 -
(4.27) dWx 2 V S2Sx

+ H(wi-w_+){^ + S2)2>0
ls2

if (4.25) holds. Thus, (4.26) has at most one solution wx and our claim is
proven.

It remains to show that (1.1) cannot have a solution satisfying (4.18) and
a solution satisfying (4.25) simultaneously. Suppose, for contradiction, that
(1.1) has a solution {wx, w2 , s2} satisfying (4.18) and a solution {wx ,w2,s2}
satisfying (4.25) and hence w2 = w+ .

We define

(4.28a) w2(wx, s) := max{w > ß \ p(w) = p(wx) - s2(w - wx)},

(4.28b) w3(wx, 5) := min{w > ß | p(w) = p(wx) - s2(w - wx)}.

Case 1.  wx > wx . In this case, by Theorem 3.6,

(4.29) s2>s2.

If, further, ^3(101, 52) > w+, then an inspection of the graph of p(w) will
tell us that 53 < 52, which is unacceptable by (4.4). If, on the other hand,
w3(wx, s2) <w+ , then, by Lemma 4.2,

(4.30) G(wx, s2) > G(wx, 52) > G(wx, s2) = F(wx, w+, s2) = u+ - u-.

(4.30) implies, by virtue of Lemma 4.1, that {^i, w2, s2} is not a solution of
(1.1), which contradicts our assumption.
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Case 2. wx <wx. For the same reason as for Case 1, we can assume, without
loss of generality, that w3(wx, s2) < w+ . A calculation of

d   (   p(w)-p(u)\
dw V       w - u     J

shows that 52 > 52 Then, by virtue of Lemma 4.2,
(4.31) G(wx, s2) < G(wx, s2) < G(wx, 52) = F(wx, w+ , s2) = u+ - U-.
Thus, {wx,w2,s2} is not a solution of (1.1). We again get a contradiction.

Case 3. wx =wx . Theorem 3.5 states that, in this case, 103(10,, 52) > w+ and
hence {to,, w2, 52} is not a solution of (1.1).

Our discussion of the above three cases proves assertion (i).
(ii) The proof of (ii) is similar to that of (i).   D

Theorem 4.5. (1.1) has a unique centered wave solution which is admissible ac-
cording to the viscosity-capillarity travelling wave criterion.
Proof. The existence part of our theorem is given by Theorem 2.1.

To prove the uniqueness of the solution of ( 1.1 ), it suffices to show that cases
(i) and (ii) in Lemma 4.4 are mutually exclusive. Assume the contrary, i.e.,
there are solutions of (1.1), {wx,w2,s2} and {wx ,w2,s2}, with 52 > 0 and
52 < 0. Then
(4.32) G(wx, s2) = J(w2, s2) = u+ - U-.
By Lemma 3.6,
(4.33) wx<m,        w2> M,
where m and M are the Maxwell constants defined by (3.4). Similar to what
we did in the proof of Theorem 4.4, we can show that

u+-U- = G(wx, s2) < G(m, 0) = J(M, 0) < J(w2, s2) = u+ - u_ ,
which is impossible.   D

The uniqueness of the solution {wx,w2,s2} of (1.1) enables us to think of
Wi, W2, 52 as functions of u± , w± :

wk = wk(u- , u+, w- , w+),        k = 1, 2,
52 = S2(U- , U+,W-, W+).

For convenience, we shall denote the solution of ( 1.1 ) by {wx,w2,s2,u±, w± }
in the rest of this paper.
Lemma4.6. (i) Let {wi, w2, S2, u± , w±} and [wx ,w2,s2,u±, w±} be two
solutions of (I. la, b) with s2 > 0, s2 > 0. For any e > 0, there exists a Ô > 0
such that if
(4.34) \u- -ü-\+ \u+ -ïï+| + \w- - W-\ + \w+ -w+\ < ô
then \wk -wk\<e, k = 1, 2, \s2 - s2\ < e.

(ii) Let {wx, w2, s2, u± , w±} and {wx ,w2,s2,u±, w±} be two solutions
o/(l. la, b) with s2 <0,s2 <0. For any e > 0, there exists a S > 0 such that
if(4.34) Í5 satisfied then \w¡ - w¡\ < e, k = 1, 2, |52 - 52| < e .
Proof. We define an auxiliary function as follows:
(4.35) K(wx ,s2,u±, w±) := G(wx, s2) - u+ - w_.
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By Lemma 4.1, a necessary condition for {wx, w2, s2, u± , w±} to be a solu-
tion of (1.1a, b) is
(4.36a) K(wx, s2, u±, w±) = 0.
We also have
(4.36b) K(wi,s2,u±,w±)-0.
Without loss of generality, we assume

(4.37) wx < wx.
Case 1.
(4.38) 52 > s2.

Consider the following equation:
K(wx ,s2,u±, w±) - K(wx ,s2,u±, w±)

(4.39) = K(wx ,s2,u±, w±) - K(wx ,s2,u±, w±)
+ K(wx ,s2,U±, w±) - K(wx ,s2,U±, w±).

Note that all the variables in (4.39) are in the domain of definition (4.4) of
G(wx, s2) and hence that of K(-■■). Since the function K(-• • ) is continuous
in u± and w±, for any given e' > 0, there is 6X > 0 such that if (4.34) is
satisfied with ô = öx then
(4.40) \K(wx ,s2,u±, w±) - K(wi ,s2,U±, w±)\ < e'.
Then we have, by Remark 4.1, Lemma 4.2, and (4.37), as well as (4.38), that

K(wi ,s2,u±, w±) - K(wi ,s2,u±, w±)

(4.41)

and

(4.42)

= dXiWuS2) (S2 - 52) > 0
S'€{S2,S2)

K(wi ,s2,u±, w±) - K(w\ ,s2,U±, w±)
dG
dw *(W¡,S2) (wi -lOi) > 0.

w'e(wx ,wx)

Thus, (4.39) and (4.40) imply
(4.43a) 0 < K(wx, s2,u±, w±) - K(wx ,s2,u±, w±) < e',

dG(4.43b) dw ■(w¡,s2) < e(Wi -Wi)
w"€(wx ,wx)

Lemma 3.1, Lemma 4.2, and (4.43b) yield
(4.44) \w\ - vl\\ < e'/X(m).

We claim that 52 < 52 + e if (4.34) is satisfied for some ô > 0. To this end,
we assume the contrary, i.e., 52 > 52 + e . We rewrite (4.43) as

e' > K(wi ,s2,u±, w±) - K(wi ,s2,u±, w±)
K(wi ,s2,u±, w±) - K(wx, 52 + e/2, u± , w±)
+ K(wx, s2 + e/2, u±,w±) - K(wx, s2 + e, u± , w±)
+ K(wx, s2 + e, u±, w±) - K(wx ,s2,u±, w±).

(4.45)
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In the same way as we proceeded to get (4.43), we can derive from (4.45) that

e' > K(wx, s2 + e/2, u± , w±) - K(wx, s2 + e, u± , w±)

e/2.
s^€{S2+e/2,S2+e)

From the definition of w2(wi, s), (4.28a), we can see that

52 < X(W2(WX , ft)).

By the concavity of p(w) in the region w > ß , we have

(4.47a) 5 < X(w2(wx, s))     for s £ [s2, +e/2, s2 + e].

Since ¿(102(101, 5)) is continuous in 5, there is p(s2, e) > 0 such that

(4.47b) s <X(w2(wx, s))-p(s2,e).

By the same reason, we can further choose p(s2, e) > 0 such that

(4.48)     si(w2(wx, s), w+)-s > p(s2, e) >0    for 5 G [s2, +e/2, s2 + e],
where

. ,        p(w2)-p(w+)
53 to2,10+  := —i— •

w2-w+
With the help of (4.47), (4.48), and (4.4b), we can estimate (4.16) as follows:

101 -102dG.
ds-2{Wl>S2) X2(w2)-s2

1 ,
77(io2 - w+) — (53 - S2)(Xl(W2) - s2s3)

+ H(w+ - w2+)(X(w2) - s2)

>(ß-a) H(w2 - w+){4^4 + H(w+ - w2+)XM - S22X(w2) v   +       L   '   2A(w2)

> C(wx, 52, e) > 0.

Recalling (4.46), we obtain

(4.49) e' > C(wi, s2, e)e/2.  .
However, e' can be chosen independently of e . For example, we can choose

(4.50) e' <C(wx,s2,e)s/2.
Then there exists a ô2 > 0 such that if (4.34) is satisfied with ô = ôx, then (4.46)
and hence (4.49) hold, which contradicts our choice of e'. This contradiction
proves our claim.

The fact that \w2 -w2\ < e if (4.34) holds for some ô = S} > 0 is a
consequence of the fact that 102 depends on wx and 52 continuously. Now,
we choose

e' < min(eX(m), C(wx, 52, e)e/2)
and then ô = min^ , ô2, ô3) is the one needed by our assertion.

Case 2. 0 < s2 < s2. In this case, by Theorem 3.5, 101 —► 103(101, 52) rather
than wx —» 102(101, 52) is a connection. An inspection of the graph of p(w)
tells us that

w+ > 103(101, 52) =: ÏO3 > 103 := 103(10], 52) = w+
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or

(4.51) |u>3 -w3\ < \w+ — w+\.
From (4.3), we have

(4.52a) s¡(w3 - wx) =-p(w3) + p(wx)

and

(4.52b) sj(w3-wx) = -p(w3)+p(wx).

In the following part of our proof, we shall assume, without loss of generality,
that ô < 1. After subtracting (4.52a) from (4.52b) and some manipulations on
the difference, we obtain

(X2(w\) - s22)(wx -wx) + (w3- wx)(s¡ - s¡)
= (p'(w3*)-s22)(w3-w3)

(aw <(    max_  \p'(w)\+sj)\w3-w3\

max      \p'(w)\+s¡)\w+

:= C2(w+,s2)\w+-w+\,

where w* £ (w~i, wx) and 10 j* g (io3,103). Each term on the left-hand side of
(4.53) is nonnegative; hence

(4.54a) 0<wx-wx < ^¿W+'S2\\w+-w+\
X2(wx)-s2

and

(4.54b) 0<S2-s2<^+>s*l\w+-W+\.
252(A - a)

Thus, our assertion holds for this case.
(ii) The proof for (ii) is almost similar to that of (i) except that we have to

work on the auxiliary function

(4.55) L(w2, s2,u±, w±) := J(w2, s2) - u+ -U-

instead of K(wx, s2, u±, w±).   D

Theorem 4.7. wk(u- , u+ , W- , w+), k = 1, 2, and s2(u- , u+ , io_ , w+) are
continuous functions for w_ < a < ß <w+ .
Proof. Let {101, w2, s2, u± , w±} and {wx ,w2,s2, U±, w±} be two solu-
tions of (l.la,b). Our assertion is equivalent to: for any e > 0, there exists a
ô > 0 such that if

(4.56) \u- - 8_| + \u+ - s+l + |io_ -W-\ + Iio+ -w+\ < S,
then \wk -wk\ < e, k — 1, 2, \s2 -s2\ < e . To this end, since we have Lemma
4.6, it suffices to show our assertion for the case when s2 > 0 and 52 < 0. By
Lemma 4.1, we have

(4.57a) K(wx,s2,u±,w±) = 0,
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(4.57b) L(w2,s2,ü±, w±) = 0.
It follows from above that

K(m, 0, u± , w±) - K(m,0,u±, w±)
= K(m,0,u±,w±)-L(M,0,a±,w±)
= K(m,0,u±, w±) - K(wx ,s2,u±, w±)

+ L(w2, s2, ü±, w±) - L(M, 0, ïï±, w±).
It is clear from Lemma 4.2 that the sum of the first two terms on the right-hand
side of (4.58) and that of the last two terms are nonnegative. Thus

0 < K(m ,0,u±,w±)- K(wx ,s2,u±, w±)
<\K(m,0,u±,w±)-K(m,0,U±,w±)\,

<a cm., ° ^ L(w2,s2, U±,w±)-L(M, 0, ü±,w±)(4.59b)
< \K(m, 0, u±, w±) -K(m, 0, u±, w±)\.

Applying Lemma 4.6 to (4.59), we find that for any e > 0, there is a ô > 0
such that if (4.56) is satisfied then

\wi — m\<e/2,        \w2-M\<e/2,

\s2\ < e/2,       |s2| < e/2,
\w~i — m\ < e/2,        \w2 - M\ < e/2.

These inequalities imply our theorem.   D

Theorem 4.8. Let (u(i), w(i)) be the solution o/(l.l). For any e > 0 and
y > 0, there is a ô > 0 such that if
(4.60) \u- - U-\ + \u+ - S+l + \w- —w-\ + |to+ — w+\ < ô
then
(4.61) meas{i £ E| \u(i) - U(i)\ + \w(i)-w(i)\ > e} < y,
where (u(i),w(i)) is the solution o/(l.la, b) with Riemann initial values
(ü- , W-) and (S+, w+).
Proof. Solutions (u(i), w(i)) and (ü(i),w(i)) can be written as {101,102,
s2, u±, w±} and {ïôi ,w2,s2,ü±, w±} respectively. We know from Theo-
rem 4.7 that wx,w2,sx,S2, s3 are continuous functions of u±, w± . Thus
there is a 1 > ôo > 0 such that

3 i-w+l
(4.62) Y*(\uk-Uk\ + \wk-wk\)+        max /       X(n)dn<e

^                                        we[w--i,w++i] Jw

if (4.60) is satisfied with ô = ¿o, where («o, Wo) '■= (u-, W-), (u3, w3) :—
(u+,w+).

We define
Ae := {i £ E I w(i) < a or w(i) < a, such that

4.63a) ~ ~
\u(i)-ü(i)\ + \w(i)-w(i)\>e},

Be := {i £ E I w(i) > a or w(i) > a,  such that(4.63b ~ ~
V ^ \u(i)-u(i)\ + \w(i)-w(i)\>e}.
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The solution (u(i), w(i)) consists of at most two continuous pieces in the
region {i g E | w(i) < a}. From the results in §2, we can express {wx ,w2,s2,
u±,w±} as follows: If wx < io_ , then

tA£A\ t  ts\      t*\\      /("-.*"_)    for^G (-00,5!),4.64a (u(i),w(i)) = \((ux,wx)      for£G(5i,52).

If wx >w- , then
(4.64b)

'(u-,W-)   for i £ (-oo, -X(w-),
(ux,wx)     for i £ (-X(wx),s2),
for i £ (-A(io_), -X(wx)), (u(i), w(i)) is determined

by i2 = -p'(w(i)) and u(i) = u_ + /¿°X(n)dn.

In the rest of our proof, we assume that S < ôo and (4.60) holds.

Case 1.  wx <W- and wx < W_ . In this case,

AE c (min(5i,sx), max(5j, sx)) U (min(52, 52), max(52, s2))

and hence
(4.65) meaSi4e < |ji-S"i| + |s2-S2I.

Case 2. wx >w- and wx > W_ . For this case,
Ae c (min(-A(io_), -A(îô_)), max(-A(io_), -X(w-)))

U (min(-A(iOi), -^(10!)), max(-A(iOi), -^(lôi)))
u (min(52, 52), max(52, s2))

and thus

(4.66) meas,4£ < \X(w-) -X(w-)\ + \X(wx) -X(wx)\ + \s2 -s2\.

For both cases, since 101, 5i, io2 are continuous functions of u± , w± , we
can find a ôx > 0 such that the right-hand sides of (4.65) and (4.66) are less
than 7/2 if (4.60) holds for ô = ôx .
Case 3.

(4.67) 101 < W-,        wx>W-.

In this case,
Ae c (min(5i , -X(w-)), max(5i, -X(W-)))

U(min(5i, -X(wx)), max(5i, -X(wx)))U(min(s2, s2), max(52, 52))

and thus
Í4 68) mCaS Ae - '5l ~ ^W~ ■* ' + 'Sl ~ ^Wl ^ ' + 'S2 ~ ^2 '
('    ' =\X(w*)-X(w-)\+X(w*)-X(wx)\ + \s2-s2\,
where w* £ (wx, io_). There exists a ô2 > 0 such that if (4.60) holds with
ô = ô2 and if \w* - W- \ < S2 and \w* - wx \ < 52, then the right-hand side of
(4.68) is less than y/2. We can further choose 0 < 53 < S2 such that

(4.69) \w- -W-\ + \wx -wx\ < ô2/2
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if (4.60) is satisfied with ô = S3. Recalling (4.67), we find that
0 < io_ - ioi = io_ - w- + W_ -wx+wx-wx

(4.70a) < W- -W- + wx - wx
< \W- - W- I + \wx - wx I < ¿2/2.

Similarly, we can prove that

(4.70b) 0 < Wi - W- < \w- - W-1 + |Wi - iO[ I < ô2/2.
It follows immediately from (4.60) and (4.70) that

|lOi -W-\ < Ô2, \W- -WX\ <ô2

and hence

(4.71) \w* -W-\ <S2,        \w* — w~i\ < S2
for w* £ (wx, W-). Therefore, by virtue of (4.68), meas^£ < y/2 if (4.60)
holds for S — ô3.
Case 4. wx > io_ ,wx < W- . We claim that meas^l£ < y/2 if (4.60) holds for
some f5 = r54 > 0. The proof is similar to that of Case 3.

Also, we can show that measT^ < y/2 if (4.60) is satisfied with some ô = ¿5.
Now, we take 3 = min(r50, Sx, ô3, ¿4, ô$) in (4.60), Then

meas{i G E | \u(i) - ü(i)\ + \w(i) - w(i)\ > e}
< meas Ae + meas Be < y.   G

Appendix. The Proof of Lemma 2(i)

Proof. Assume, for comtradiction, that w(io~) £ (a, ß) for some £0 G E. We
claim that w(i+) = w(i0-) for i £ (io - ô, io) for some ô > 0. Indeed, if
otherwise, one of the following two cases will occur:
Case (i). w(i) is continuous on (io - S, io) for some ô > 0 and there is a
sequence {i„} c (io- ô, io) such that i„ —► io- as « —> 00 and w(i„+) ^
w(io~) •
Case (ii). There is a sequence of points of discontinuity of (u(i), w(i)) such
that in —» io~ as « -» 00.

Case (ii) cannot occur because w(i„±) £ (a, ß) forlarge « and the Rankine-
Hugoniot conditions at i = i„ cannot hold.

We claim that Case (i) is also impossible. Indeed, we can integrate (1.4) over
(in. io), to get

(Ala) &££=1,'(ö)-J_/0  (u(i)-u(in+))dÇ,

<Alb»       es=-í°-¿£"[»<í"+>-M'<«W'
where A„io := w(i0-) - w(Çn+) > 0, A„w := u(i0-) - u(i„+) and 6 £
(w(in+), w(io-)). It follows from Lemma 7.4.1 that

tlolim^-=p'(w(io-)), lim^- = -io.
n—00 A„10 n^oo A„10
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Then we arrive at the contradiction
2

flim^)   =-p'(w(io-))<0.
\n—>oo A„W )

It follows that there exists ix and i2 which are points of discontinuity of
(u(i), w(i)) such that ix < io < Í2 and

w(i) = w(io-)£(a,ß)   for i £ (ii, if).
Therefore, according to the travelling wave criterion, both boundary value prob-
lems

(A2a)    ^ = -2ix^p- -i2x(w(Q -w(ix+)) - (p(w(Q)-p(w(ix+))),

(A2b) lô(-oo) = w(ix-),        w(+oo) = w(ii+),

(A2c) t&'(±oo) = 0,

and

(A3a)     ^ = -2i2^jp- - H(w(Q - w(i2-)) - (p(w(Q) - p(w(i2-))),

(A3b) iô(-oo) = w(i2-),        w(+oo) = w(i2+),

(A3c) ú)'(±oo) = 0

have solutions. A straightforward calculation shows that the eigenvalue for the
linearized (near w(Q = w(ix+)) problem of (A2) is X = -ix ±y/-p'(w(ix+)).
It is clear that w(ix+) = w(i2-) is a node of (A2). Thus, in order for (A2) to
have a solution, it is necessary that ix > 0. On the other hand, however, the
same analysis shows that the solvability of (A3) implies 0 > i2 > ix > 0. This
contradiction proves our assertion.
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