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0. Introduction. Let X be a non-singular protective surface defined
over an algebraically closed field k of characteristic p ^ 5. X is called
unirational if there exists a generically surjective rational mapping from
the projective plane P2 to S. Since Zariski found an example of irrational
unirational algebraic surfaces in positive characteristics (cf. Zariski [26]),
many such surfaces were found and investigated by Artin (cf. [1]), Shioda
(cf. [21], [22], [23] and [24]), Miyanishi (cf. [9], [10] and [11]), Rudakov
and Shafarevich (cf. [16]), Blass (cf. [2]) and others. In the previous note
[6], we introduced the notion of a unirational elliptic surface of base
change type, and characterized irrational unirational elliptic surfaces of
base change type with sections. In that case, we considered two classes
of elliptic surfaces defined by the following equations:

( I ) y* = 4rf- t\t - l)\t - afx ,

(II) t = 4x3 - t\t - l)\t - a)\t - 0)\t - 7)5 ,

where t is a local coordinate of an affine line in P1, and a, /3, 7 are
arbitrary elements of the field k. We proved the following theorem.

THEOREM I. The elliptic surface defined by the equation (I) is uni-

rational if and only if p = 3 mod 4.

Moreover, we proved that if p = 2 mod 3, then the elliptic surface
defined by the equation (II) is unirational. In this note, we prove the
following theorem which we conjectured in [4].

THEOREM II. The elliptic surface defined by the equation (II) is

unirational if and only if p = 2 mod 3.

Next, we denote by Et the elliptic curve over kit) defined by the
equation (I) (resp. (II)), and s the number of points where Et has bad
reduction. We denote by r(Et) the rank of the abelian group of rational
points over k{t) of Et. Using these notations, as a corollary to Theorems I
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and II, we will show the following:

( i ) r(Et) = 0 if >̂ = 1 mod 4(resp. p = 1 mod 3) ,

(ii) r{Et) = 2s - 4 if p = 3 mod 4(resp. p = 2 mod 3) .

To prove Theorem II, we examine the eigenvalues of the Frobenius
mapping on the second i-adic etale cohomology group. We will show that
some eigenvalues are not powers of p if p = 1 mod 3. By this fact, we
conclude the non-unirationality. This method comes from Shioda [21] and
[22]. As for the ranks of the elliptic curves over k(t), phenomenon
similar to the above can be found in Shioda [18] and [19].

The author would like to thank Professors F. Oort, R. Hotta and
K. Ueno for their advice and useful conversations. Main part of this
work was done when the author visited University of Utrecht. The
author would like to thank Z.W.O. and University of Utrecht for giving
him the opportunity to study there.

1. Notations and some lemmas. Throughout this paper, we fix an
algebraically closed field k of characteristic p > 0. Let J b e a protective
variety of dimension n defined over k. Then, we use the following
notations:

k(X): the function field of X,

H%Xf Ox): the i-th cohomology group of the structure sheaf Ox of X,

X(OX) = £?=0(-l) 'dim f cif(X, Ox),

p(X): the Picard number of X,

Fp: an algebraic closure of the finite field Fp with p elements,
Qt: an algebraic closure of the Z-adic number field Qt for a prime

I different from p,

H%X, Qj): the i-th i-adic etale cohomology group of X,

l

Bt(X) = dimQlH%Xt Qt): the i-th Betti number of X,
c2(X): the second Chern number of X.

Let G be a finite subgroup of the automorphism group of X. We
denote by X/G the quotient variety of X by G.

LEMMA 1.1 (Harder and Narashimhan [5]). Let I be a prime number

which is prime to both p and the order of G. Then, under the above

notations, H*(X/G, Qi) is isomorphic to the subspace Hl(X, Qt)
G of G-

invariants in H^X, Q,):

(1.1) mX/G, Qi) = H\X, Ql)
G .

For the proof, see [5, Proposition 3.2.1].
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Now, let S be a non-singular protective surface defined over k.

DEFINITION 1.2. x(S) = B2(S) - p(S) is called the Lefschetz number
of S.

It is easy to see that X(S) is a birational invariant of S (cf. Shioda
[21]). To make clear the situation in characteristic p, we formulate the
following lemma which is essentially stated in Brieskorn [3].

LEMMA 1.3. Let a be an automorphism of order n of S, and G the
cyclic group generated by a. Assume that G has only a finite number
of fixed points and that n is prime to p. Let P be a fixed point of a,
0 the local ring of S at P, and <7* the action of a on 0. Then, there
exists a regular system of parameters (u, v) of 0 such that

(1.2) a*(u) = r]u , 0*(v) = rfv ,

where V} and if are some primitive n-th roots of unity.

PROOF. We denote by m the maximal ideal of 0. a* acts on the
vector space m/m2. Since n is prime to p, we can find a regular system
of parameters (x, y) of O such that

(1.3) o*(x) = r]x mod m2 , o*(y) = rfy mod m2 .

We set

u = x + rj-'Cx + 7)-2o*2x + • • • + r]-n+1G^-lx ,
(1.4)

[v =

Then we have

(u = nx mod m2 , o*u = rju ,[v = ny mod m2 , a*v = rfv .

Since the number of fixed points of G are finite, both rj and rf must be
primitive w-th roots of unity. q.e.d.

Let TT: S —> S/G be the minimal resolution of singularities of S/G.
Then we have a natural mapping

(1.6) x*:H2(SIG,Ql)^H\S,Ql).

LEMMA 1.4. Under the same assumptions as in Lemma 1.2, TC* is
an injective homomorphism.

PROOF. Let D be an exceptional divisor on S which is obtained by
the minimal resolution of a singular point on S/G. Then, using Lemma
1.3, we can show that D is a connected divisor composed of rational
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curves without loops (cf. Brieskorn [3]). So, we have

(1.7) H\D, Ql) = 0

(cf. Milne [8, Chapter III, Remark 1.26]). Therefore, by the same argu-
ment as in [6, (5.24)], we can complete our proof. q.e.d.

2. The JK/fe-trace. Let f: S ->C be a relatively minimal elliptic
surface over a non-singular protective curve C defined over k. The
results in this section may be well-known. But as we cannot find
suitable references, we will give their proofs.

LEMMA 2.1. If f has at least one singular fiber composed of rational
curves, then the Albanese variety Alb (S) of S is isomorphic to the
Jacobian variety J(C) of C.

PROOF. Let P be a point on C such that f~\P) is composed of
rational curves. After choosing base points on S and C, we have the
following commutative diagram:

S -^-> Alb (S)

(2.1) f\ [e

CJU j(C),

where g> and ^ are morphisms such that the induced morphism 6 is a
homomorphism.

If dim <p(S) = 0, then we have dim Alb (S) = dim J(C) = 0, because
g>(S) (resp. -f °/(S)) must generate Alb (S) (resp. J(S)). So, we assume
dim<p(S) ̂  1. Suppose that there exists a fiber f~\Q) with QeC such
that <p(f~\Q)) is a curve. Then, there exists a hyperplane section H of
Alb (S) such that H intersects ^(/-1(Q)) and H does not contain the point
Pif'KP))* So, the effective divisor <p~\H) intersects f~\Q) and does not
intersect f~\P), which contradicts the fact that f~\P) and f~\Q) are
numerically equivalent to each other. So, under our assumption, for any
point Q on C, <p(f~\Q)) must be a point. Therefore, there exists a
morphism from C to <p(S) by the uniqueness of the Stein factorization.
Therefore, Alb(S) is isomorphic to J(C) by the universality of (Alb OS), <p)

and (J(C), ^) . q.e.d.

We denote by K the function field k(C) of the curve C, and by Et

the generic fiber of / .

PROPOSITION 2.2. Let f: S —> C be a relatively minimal elliptic
surface with sections. If f has at least one singular fiber composed of
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rational curves, then the K/k-trace of the generic fiber Et is one point.

PROOF. Let E be the iT/fe-trace of Et (cf. Lang [7]). Suppose
dimkE = 1. Then E is an elliptic curve defined over fc, and there exists
an isogeny g defined over K from E to Et. Since E (resp. Et) has a
rational point over k (resp. over K), we have the canonical isomorphism
E = Pic° (E) (resp. Et = Pic° (Et)). So, considering the dual of g, we
have an isogeny:

(2.2) g:Et-^E

defined over K. This means that there exists a generically surjective
rational mapping h from S to E x C. Therefore, we have a surjective
homomorphism from Alb (S) to Alb (E x C) by the universality of
Albanese varieties. On the other hand, by the assumption on S, we
have Alb (S) = J{C) by Lemma 2.1, which contradicts dim Alb (S) ^
dim Alb (E x C). q.e.d.

Let Pt {i = 1, • • •, s) be all points such that f~\Pt) are singular fibers
of / . Let mt be the number of components of f~\P%), and r(Et) the
rank of the abelian group of rational points over K of the generic fiber
Et. Using Lemma 2.2, we have the following:

LEMMA 2.3 (Ogg [14] and Shafarevich [17]). Let f:S-+C be a rela-

tively minimal elliptic surface with sections. Assume that f has at

least one singular fiber composed of rational curves. Then, the Picard

number p(S) of S is given by

(2.3) p(S) = r(Et) + 2 + S (m, - 1) .

3. Representation of a cyclic group on etale cohomology groups.
In this section, we assume char, k = p ^ 5, and we consider the non-
singular projective model C of the curve defined by the equation:

where t and z are variables, /,(*) (i = 1, •••,5) are polynomials of t

which have only simple zeros and which are prime to each other. We
set

(3.2) nt = degree of /,(«) (i = 1, • • •, 5) .

We assume that among the nt's there exists a relation:

(3.3) nx + 2n2 + Sn5 + 4n4 + 5n5 = 6n ,

where n is a suitable positive integer. Considering C as a covering of
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P1 of degree six, and using Hurwitz's theorem, we can calculate the
genus g(C) of C as follows:

(3.4) g(C) = 3n + 2nx + n2 - 5 .

Now, we consider the automorphism a of C defined by

(3.5) a:t-+t 9 z->& ,

where C is a primitive sixth root of unity. We denote by (a) the group
generated by a, and by a* the action induced by a on H\C, Qt).

PROPOSITION 3.1. The eigenvalues of <7* on H\C, Qi) are given by
{J (j = 1, • • •, 5) with multiplicities

nt + n2 + nB + w4 + n5 — 2 if j = 1 or 5 ,

n± + n2 + n4 + nh — 2 if j = 2 or 4 ,

nx + n3 + % — 2 i / j = 3 .

PROOF. We consider the quotient curves Ca of C by the groups <<7a>
(a = 2 or 3):

(3.6) Ca = CKo*) (a = 2, 3) .

We have natural morphisms:

(3.7) 7ra:C^Ca (a = 2,3).

By Hurwitz's theorem, we can calculate the genus g(Ca) of Ca as follows:

(3.8) g(C2) = (TI, + wa + % - 2)/2 ,

(3.9) fir(C3) = % + w2 + ^4 + n5 - 2 .

We denote by aa the automorphism induced by a on Ca. We have the
following commutative diagram:

(3.10)

where the vertical arrows are injective homomorphisms induced by 7ca.

Since az is an automorphism of order 3 of C3, the eigenvalues of of on
H\C5, Qi) are 1, Q or CV Since Cs/(a3) is the rational curve, we have

(3.11) HXCJ((7z), Qt) = 0 .

So, by Lemma 1.1, the eigenvalues of of on H\C3, Qi) must be C2 or C4.
Since the trace of af is an integer, the multiplicities of eigenvalues C2

and C4 must be equal to each other. Therefore, by (3.9), the multiplied
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ties of eigenvalues of of are equal to g(C9) = nx + n2 + w4 + n5 — 2. Using
(3.10) and Lemma 1.1, we conclude that for a*

(3.12) the multiplicities of eigenvalues Q and C4 are equal to nt + n2 +
W4 + W5 — 2 .

Using the same method for C2, we conclude that for a*

(3.13) the multiplicities of eigenvalues C are equal to 2g(C2) = nx +

n3 + n5 — 2 .

Finally, again using Lemma 1.1, the other eigenvalues of a* must be C
or C5. Since the trace of <r* on H\C, Qt) is an integer, the multiplicities
of eigenvalues C and C5 must be equal to each other. Therefore, using
(3.4), (3.12) and (3.13), we conclude that for <7*

(3.14) the multiplicities of eigenvalues C and C5 are equal to g(C) —

(9(C2) + g(C3)) = % + n2 + n3 + nA + n5 — 2 . q.e.d.

REMARK 3.2. Let C be the non-singular protective model of the
curve defined by the equation:

(3.15) s4 - mmmity,
where z and t are variables, /<(£) (i — 1, 2, 3) are polynomials of t which
have only simple zeros and which are prime to each other. We set

(3.16) nt = degree of fit) ,

and we assume that there exists an integer n such that

(3.17) n, + 2n2 + 3w3 = An .

Then we can calculate the genus g(C) of C as follows:

(3.18) g{C) = 2n + n, - 3 .

Let G be an automorphism of C defined by

(3.19) a:t^t, z-+gz,

where f is a primitive fourth root of unity. Then, by the same method
as in Proposition 3.1, we have the following:

PROPOSITION 3.3. Under the same notations as above, the eigenvalues
of (7* on H\C, Qi) are given by %j (j = 1, 2, 3) with multiplicities nY +
n2 + nz — 2 if j — 1 or 3, and n^ + n% — 2 if j — 2.

4. Structure of some elliptic surfaces. In this section, we assume
char, k = p ^ 5, and we consider the relatively minimal elliptic surface

(4.1) f.S-^P1
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defined by the equation:

(4.2) t = 4z
3

where t is a local coordinate of an affine line in P1, and /i(i),
satisfy the same assumptions as in (3.1), (3.2) and (3.3). We see that
under these assumptions f: S-^P1 has a regular fiber over the point of
t = oo and has at least one singular fiber composed of rational curves.
We denote by Et the generic fiber of / , and by r(Et) the rank of the
abelian group of rational points over kit) of Et. We denote by s the
number of singular fibers of / . Then we have

(4.3) s = ny + n2 + n3 + n4 + n6 .

LEMMA 4.1. Under the same notations as above, r(Et) is given by

(4.4) r(Et) = 2s - 4 - B2(S) + p(S) .

In particular, the following inequality holds:

(4.5) X(S) = B2(S) - p(S) ̂  2s - 4 .

PROOF. The discriminant A(t) of the Weierstrass minimal model of
the equation (4.2) is given by

(4.6) A{t) - fMfMfMmmtr.
Therefore, we have

(4.7) c2(t) = 2 ordP A{t) = 2n, + in2 + 6n3 + Sn4 + 10n5

(cf. Ogg [15]). By Lemma 2.1, we have BX(S) = 2 dim Alb (S) = 0.
Therefore, we have

(4.8) B2(S) = c2(S) + 2BL(S) - 2 = 2nx + An2 + 6n, + Sn4 + 10n5 - 2 .

In our case, by Neron [13], the number of the singular fibers of /
according to the types is as follows:

(4.9) Wi(type Cl) , w2(type C3) , w3(type C4) ,

Therefore, using Lemma 2.3, we have

(4.10) p(S) = r(Et) + 2 + 2n2 + 4n3 + 6n4 + 8n5 .

By (4.8), (4.10) and (4.3), we have

(4.11) B2(S) - p(S) = 2 s - 4 - r(Et) ^ 2s - 4 . q.e.d.

Now, we consider the non-singular projective model C of the curve
defined by the equation:
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(4.12) z* = fmmrmrumM.
As in Section 3, C has the automorphism a defined by

(4.13) a:t-*t, z -> Cz ,

where C is a primitive sixth root of unity. For the coordinate (x, y) in
(4.2), we set

(4.14) X = x/z2 , Y = y/z3 .

Then, (4.2) becomes an elliptic curve E defined by

(4.15) Y2 = 4Z3 - 1 .

We consider the automorphism x of this elliptic curve defined by

(4.16) r:X->(l/M, Y->-Y,

and we set

(4.17) g = G x r .

Then, # is an automorphism of order six of C x E. We denote by G

the cyclic group generated by g. Then, the quotient surface (C x
is birationally equivalent to the original elliptic surface S.

Now, we consider the automorphism gr of C x E defined by

(4.18) g' = a5 x r ,

and denote by G' the cyclic group generated by g'. Then, by (4.13) and
(4.18), g' is given by

We set

(4.20)

We see that x' and T/' are G'-invariant. By (4.15) and (4.20), we have

We denote by f:Sf —> P1 the relatively minimal elliptic surface defined
by (4.21). Then we can show that (C x E)/G' is birationally equivalent
to S'. Summing up these results, we have the following:

PROPOSITION 4.2. Under the same notations as above, there exists

the following diagram:



226 T. KATSURA

C X E S'

(4.22) V y V'
S (Cx E)jG (C x E)/G' S',

where K: S -* (C x E)/G (resp. TT': S' -+(C X E)jGf) is the minimal resolu-

tion of singularities of (C x E)/G (resp. (C x E)/G')f h and ti are projec-

tions, and vertical arrows are birational morphisms.

REMARK 4.3. Let / : S -> P1 be the relatively minimal elliptic surface
defined by the equation:

(4.23) t = 4z3 - f(t)fMMtfx ,

where t is a local coordinate of an affine line in P\ and f(t), fit), f(t)

satisfy the same assumptions as in (3.15), (3.16) and (3.17). Let C be
the non-singular protective model of the curve defined by the equation

(4.24) z* = f(t)f(tyfM.

C has the automorphism o defined by

(4.25) o:t->t , z -> %z ,

where £ is a primitive fourth root of unity. Let E be the elliptic curve
defined by the equation:

(4.26) Y2 = 4X3 - X .

E has the automorphism r defined by

(4.27) r : X - * - X , Y-*-$Y.

Let / ':S'->PL be the relatively minimal elliptic surface defined by the
equation:

(4.28) t = 4z3 - f(tff(t)2f(t)x .

We set

(4.29) g = a x z , g' = oz x z .

Then, g and #' are two automorphisms of C x E. We denote by G

(resp. G') the cyclic group generated by g (resp. #')• Then we can prove
that (C x E)/G (resp. (C x E)jGf) is birationally equivalent to S (resp. S'),
and we have the diagram which is similar to (4.22).

5. Proof of Theorem II. In this section, we again assume char, k =
p ^ 5, and we first prove the following theorem.

THEOREM 5.1. Let f: S —• P1 be the relatively "minimal elliptic surface
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defined by the equation (II). Let s be the number of singular fibers, and

assume p = 1 mod 3. Then, the Picard number p(S) of S is given by

(5.1) B2(S) - p(S) = 2s - 4 .

PROOF. Taking a suitable coordinate t of an affine line in P\ we
can rewrite the equation (II) as follows:

(ID t = 4z3 - tit - l)%t + 1)B(« - a)%t - b)\t - c)5 ,

with suitable elements a, b and c of k. Then, over the point t = °o, f

has a regular fiber. For some special values of a, b and c, the equation
(IF) is not a minimal Weierstrass model (cf. Ogg [15]). So, taking the
minimal Weierstrass model of the equation (II'), we can write the equation
defining this elliptic surface / : S —> P1 as in the form (4.2), where in our
case fi(t) (i = 1, • • •, 5) are polynomials of t which have only simple zeros
at— 1, 0, 1, a, b or c, and which are prime to each other. Moreover,
in (3.3), we have 2 ^ n ^ 5 for any specialization of a, b and c. More-
over, we can check that for any specialization of a, b and c, we have

(5.2) 5n, + 4n2 + 3n3 + 2n, + n5 = 6 , n, = 0 .

We are now in the same situation as in Section 4 with some additional
conditions. So, we use the notations in Section 4.

First, we assume that a, b, c are contained in a finite field Fq with
q = p8 for some integer 8. Replacing 8 by a large enough integer, we
can assume that the automorphisms g, gf are defined over Fq with q = p8,

and that the subspace generated by algebraic cycles in H\C x E, Qt) has
a basis consisting of elements which are represented by Fg-rational
algebraic cycles on C x E. Let Fx in general be the Frobenius morphism
of an algebraic variety X relative to Fq. We denote by F* the homo-
morphism induced by Fx on the etale cohomology groups. We denote
by ex and e2 the eigenvectors of r* in H\E, Q,). Using Lemma 1.1 and
the same method as in Section 3, we see that the eigenvalues of r* are
C and C5, where C is a primitive sixth root of unity. Since r*of j =
FE°T*, we have the following:

(5.3)
(^{e,) = axex , F^e2) = a2e2 .

where at and a2 are eigenvalues of F%. Since p = Imod3, the elliptic
curve E defined by (4.15) is not supersingular (cf. Deuring [4]). Therefore,
any powers of at (i = 1, 2) are not powers of p, and axa2 is equal to q (cf.
Mumford [12], for instance). As for the action of #* on H\C, Qt), since
o*oF* = F*o<7*, using Proposition 3.1 and (4.3), we have the following:
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(5.4) **(/</) = C'/«y , Fg(fti) = ffijfn ,

where fi5 (1 <̂  i <̂  s — 2 if i = 1 or 5, 1 ̂  i ^ ^ + n2 + w3 + w4 — 2 if
i = 2 or 3, and 1 ̂  i ^ nt + n3 + n5 — 2 if j = 3) are common eigenvec-
tors in -ffXC, Q,) of ex* and JP ,̂ and /3ti are eigenvalues of .F<?. We
consider the following canonical isomorphism (Kiinneth formula):

(5.5) H\C x E, Qi) = H\C, Qt) 0 H\E, Qt) 0 {H\C9 Q.) ®^z if
 J(^, Qt)} .

The group G = (g) in (4.17) acts on this space. Using Lemmas 1.1, 1.4
and Proposition 4.2, we have the natural injection:

(5.6) H2(C, Ql) 0 H\E, Qt) 0 {H\C, Qt) ®Ql H\E, Qt)}
G

s H2(C x E/G, Qi) ̂  H\S, Qt) .

By (5.3) and (5.4), the basis of {H\C, Q,) ®^z H
1 ^ , Qi)}0 are given by

(5.7) ftl 0 e2 , U®e, (1 ̂  i ^ s - 2) .

We have

(5.8) F$XE(ftl (g) e2) = /3tla2(fiiL ® e2) , F$XE(fi5 (x) e j = ^a^U <g) e j

(1 ^ i ^ 8 - 2) .

Suppose that there exists an £tt such that fitl = a1B Then we consider
the group G' = <#'> in (4.18). As was shown in Section 4, the quotient
surface (C x J5)/G' is birationally equivalent to the surface S' defined
by (4.21). The discriminant A'(t) of the Weierstrass minimal model (4.21)
is given by

(5.9) A\t) = fMjMmrmrfM.

Using (5.2), we have

(5.10) c2(S') = £ ordP4'(«) - 12
PePl

(cf. Ogg [15]). Therefore, S' is a rational surface (cf. Katsura [6], for
instance). Hence H\S\ Q,) must be spanned by algebraic cycles, that
is, we have

(5.11) MS') = 0 .

On the other hand, using Lemmas 1.1 and 1.4, we have the natural
injection:

(5.12) H\C, Qt) 0 H\E, Qt) 0 {H\C, Q,) ®Ql H\E, Ql)f
t

= H\C x E/G', Qi) ̂  H\§', Qi) .
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We also have the element ftl (x) e, in H\C, Q,) ®^ H\E, Qt), such that

(5.13) g'*(ftl ® ei) = /« ® ^ , 2^x*(/« ® e1) = aj/,i ® ex .

Using (5.12), we can regard fn ® ex as an element of iI2(S', Qz). Since
any power of ô  is not a power of p, ftl ® ^ is not an algebraic cycle
(cf. Tate [25]). Therefore we have

(5.14) \(S') = MS') ^ 1 >

which contradicts (5.11). Therefore, we have

(5.15) /3a =£ a, for 1 <: i <; s - 2 .

By the same method, we have

(5.16) £iB =£ a2 for 1 ^ i ^ s - 2 .

Using axa2 = q, (5.15) and (5.16), we have

(5.17) pixat ^ q , /3,5a! ^ « (1 ^ i ^ s - 2) .

Regarding / t t ® e2 and /<5 (g) ex as elements of H2(S, Q,) by (5.6), we
conclude that neither / t t (g) e2 nor /« ® ^ (1 ^ i ^ s — 2) are algebraic
cycles in H2(S, Q,) by (5.8) and (5.17). Therefore, we have

(5.18) B2(S) - p(S) = MS) = ^(S) ^ 2s - 4 .

Hence, using Lemma 4.1, we have J52(S) — p(S) = 2s — 4.
Finally, we consider the case where some of a, 6, c in the equation

(II') are not contained in Fp. Let /0: So —> P1 be a specialization of
/ : S -> P1 such that /0: So -> P1 is defined over a finite field and the types
of singular fibers of f0 are the same as those of / . Since B2(S) = 2?2(S0)
and /o(S) ^ |O(S0), we have

(5.19) B2(S) - /o(S) ^ B2(S0) - p(S0) .

We have now B2(S0) — p(S0) = 2s — 4 as above. Therefore, using Lemma
4.1, we get B2(S) - p(S) = 2 8 - 4 . q.e.d.

Now we prove Theorem II. To prove the "only if" part, we assume
p = Imod3. Suppose that there exists a unirational surface fiS-^P1

in Class (II). Then, by Shioda [21], S is a super singular surface, that
is, B2(S) = p(S). On the other hand, by Theorem 5.1, we have B2(S) —
p(S) = 2s — 4, where s is the number of singular fibers of / : S —> P1.
In our case, we have at least three singular fibers, that is, singular
fibers over the points of t = 0, 1 and °o. Therefore, we have B2(S) —
p(S) ^ 2, which contradicts the supersingularity of S. The "if" part is
proved in Katsura [6]. By the base change by a purely inseparable
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morphism of degree p, we get a rational elliptic surface which has a
generically surjective rational mapping to S. q.e.d.

COROLLARY 5.2. Let f-.S-^P1 be an elliptic surface in Class (II),
and Et the generic fiber of f. Then, the following six conditions are

equivalent:

( i ) S is unirational elliptic surface of base change type.

(ii) p = 2mod3.
(iii) Et is a super singular elliptic curve over k(t).

(iv) S is a super singular surface.

(v) S is a Zariski surface.

(vi) S is a unirational surface.

PROOF. This follows from Theorems 5.1 and II. For the details,
see Katsura [6]. q.e.d.

REMARK 5.3. Let / : S —> P1 be the relatively minimal elliptic surface
defined by the equation (I). Using Proposition 3.3 and Remark 4.3, we
can prove the following theorem by the same method as in Theorem 5.1.

THEOREM 5.4. Let s be the number of singular fibers. Assume

p = 1 mod 4. Then the Picard number p(S) of S is given by

(5.20) B2(S) - p(S) - 2s - 4 .

Using this theorem, we can give another proof of Theorem I by the
same method as above. As a corollary to Theorems I and II, using
Lemma 4.1, we have the following:

COROLLARY 5.5. Let Et be the elliptic curve defined by the equation

(I) (resp. (II)). Then, the rank r{Et) of the abelian group of rational

points over k(t) of Et is given by

( i ) r(Et) = 0 if p = 1 mod 4 (resp. p = 1 mod 3),
(ii) r{Et) = 2s — 4 if p = 3 mod 4 (resp. p = 2 mod 3),

where s is the number of points at which Et has bad reduction.
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