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THE UNIT GROUPS OF AFFINE

ALGEBRAIC MONOIDS1

WILLIAM C. WATERHOUSE

Abstract. An affine algebraic group can be embedded as a proper dense subgroup

of an affine algebraic monoid iff it has a homomorphism onto the multiplicative

group.

Consider affine algebraic monoids over an algebraically closed field. Such mon-

oids have been studied in a series of papers by M. S. Putcha [3, 4, 5, 6, 7, 8], who has

shown (among other things) that the idempotents and other features of the monoid

may strikingly reflect nontrivial properties of the group of units. But he has not

analyzed what restrictions there are on these unit groups—or, to put in another way,

what groups might be studied by embedding them in monoids. That question is

answered here.

Theorem. Let G be a connected affine algebraic group over an algebraically closed

field. The following are equivalent:

(1) G is the group of units of an affine algebraic monoid that is a connected set and is

not equal to G.

(2) G is the group of units of a nontrivial affine algebraic monoid that is an

irreducible set and has a zero.

(3) G has a nontrivial character (homomorphism to Gm).

Proof. Clearly (2) implies (1). Assume (1), and let S be the monoid. By [1, II, 2,

3.3, p. 183] we may embed S as a closed submonoid of some matrix monoid Mn(k).

[This holds for monoids by the same proof as for groups: a finite set of algebra

generators for k[S] will be contained in a finite-dimensional subcomodule, which

gives a faithful linear representation.] Then S n GL„(A:) is a closed submonoid of

GLn(k), and hence it is a subgroup [1, II, 2, 3.5], so G = S D GL„(A:), and G is open

in S. The determinant here gives a homomorphism G -» Gm. If it is trivial on G, then

G = S Pi SL„(k), and G is closed in S. Since S is connected and not equal to G, this

is impossible. Hence G has a nontrivial character.

Assume now (3), and let <p: G -» Gm be a nontrivial character. As G is connected,

<p(G) = Gm, and hence by [2, p. 136] there is a maximal torus T = Gsm of G mapping

onto Gm. Therefore there is a closed subgroup H of G isomorphic to Gm on which œ
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is non trivial. If i/V: Gm=*H is am isomorphism, then <p\p(a) = ar for some r ¥" 0;

replacing i/> by its reciprocal if necessary, we may assume r > 0.

Embed G as a closed subgroup of some GL„(A:). As H is a diagonalizable group,

we can choose coordinates so as to have a basis {e,} of k" for which ^(a)e¡ = am(i)e¡

for various integers m(i). They may not all be positive, and to remedy that we look

at the action of G on k" © k given by

g-(x,\) = {<p(g)Ng(x),<p(g)N\)

for some large positive integer 7Y. It is easy to check that this is indeed a

representation of G. If g acts trivially, then from the second component we see

(p(g)N = 1; from the first component then we see g(x) = x for all x, so g is trivial.

Thus the representation is faithful, and hence it embeds G as a closed subgroup of

GL„+1(/c).

An element 4/(a) of H in this embedding becomes the diagonal matrix

diag(am0)+Nr,... ,am(n)+Nr, aNr).

As N is large and r is positive, all the exponents here are strictly positive. Hence the

map extends to a = 0, and the matrix identically zero in Mn+ ,(/c) is in the closure of

H. Take then the closure 5 of G in Mn+l(k). It is automatically an algebraic monoid

with G as group of units; it is irreducible, since G is; and it contains a zero, the zero

of Mn+,(k).    D

Corollary (Putcha [7, Theorem 3]). // G satisfies condition (2) of the theorem

and its maximal torus has dimension 1, then G is solvable.

Proof. The condition on the torus implies that G modulo its unipotent radical

must be Gm or SL2. In the first case it is solvable, and in the second case it has no

characters.    D

Remarks on generalizations. (1) In the theorem we have followed Putcha in

assuming that the base field is algebraically closed, but actually the result is true for

algebraic matrix groups over any infinite field k. The only step in the argument that

needs to be modified is the-proof that there is an H — Gm on which <p is non trivial.

For this we recall [2, p. 220] that the algebraic group has a maximal torus T defined

over k. All other maximal tori are conjugate to T over k, so T cannot be in the kernel

of (p. Up to isogeny T is a product of split and anisotropic subtori, and the split

torus factor then contains a copy of Gm on which <p is nontrivial.

(2) Carrying over the language familiar for groups, Putcha calls an affine algebraic

monoid "connected" only when as a space it is actually irreducible. For monoids,

unlike groups, this is an abus de langage: the closed set {(x, y) \ x = ±y} in k2, for

instance, is a monoid under coordinatewise multiplication and (for char(£) ¥= 2) is

connected but reducible. The advantage of Putcha's terminology is that irreducibility

forces the group of units to be connected, while (as the above example shows)

connectedness of the monoid does not. In our theorem we got the same groups either

way because we assumed G connected to begin with. If we drop that assumption, we

get the following result.
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Theorem. Let G be an affine algebraic group over an algebraically closed field. The

following are equivalent:

(1) G is a dense subgroup of an affine algebraic monoid that is not equal to G.

(2) G is the group of units of a nontrivial affine algebraic monoid that is a connected

set and has a zero.

(3) G has a character of infinite order (homomorphism onto Gm).

The argument for this is quite parallel to that for our original theorem. For

(1) => (3) we observe that the matrices with determinants in a finite subgroup of Gm

are a closed set in Mn(k), and hence det must be of infinite order on G. For (3) =» (2)

we note that any g in G lies in the connected set gH, which has g ■ 0 = 0 in its

closure in Mn+i(k); thus all elements of G are connected to zero, and the closure of

G is connected.

Note that this theorem may rule out G even when G° can occur; if for instance G

is the semidirect product of Gm and («> with « of order two acting on Gm by

inversion, then G modulo its commutator subgroup is finite.
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