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Abstract

The convolution approximation for the impact-parameter dependent energy loss is reviewed with emphasis on the

determination of the stopping force for heavy projectiles. In this method, the energy loss in different impact-parameter

regions is well determined and interpolated smoothly. The physical inputs of the model are the projectile-screening

function (in the case of dressed ions), the electron density and oscillators strengths of the target atoms. Moreover, the

convolution approximation, in the perturbative mode (called PCA), yields remarkable agreement with full semi-classical-

approximation (SCA) results for bare as well as for screened ions at all impact parameters. In the unitary mode (called

UCA), the method contains some higher-order effects (yielding in some cases rather good agreement with full coupled-

channel calculations) and approaches the classical regime similar as the Bohr model for large perturbations ðZ=v � 1Þ.
The results are then used to compare with experimental values of the non-equilibrium stopping force as a function of the

projectile charge as well as with the equilibrium energy loss under non-aligned and channeling conditions.

� 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The electronic energy loss has been studied for
many years because of its direct application in
problems concerning material damage, ion beam
analysis and plasma physics. The theoretical
treatment of the energy loss in atomic collisions
has been greatly improved over the last decades.
Calculations of the electronic energy loss have

been performed by using traditional methods
known from atomic physics investigations such as
the plane wave Born approximation (PWBA) [1],
the high-energy solution by Bethe [2] and the semi-
classical approximation (SCA) [3]. More advanced
models are the continuum distorted wave (CDW-
EIS) [4], the classical trajectory Monte Carlo
(CTMC) [5,6], the ACAM-CKLT model based on
Liouville and Wigner equations in phase space [7]
and finally the atomic orbital coupled-channel
method (AO) [8–10] that yields reliable values for
the impact-parameter dependent electronic energy
loss. These methods based on atomic physics cal-
culations offer reliable ways to obtain detailed
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information on the energy-loss processes in gases
as well as for the inner-shell electrons of solids. Of
course, other approaches have to be adopted for
conduction-band electrons of solid-state targets
[11–14] in order to obtain an accurate description
of the energy loss due to the valence electrons.
Other models such as those of [15–18] have
strongly enlarged our understanding on the phys-
ical energy loss processes.

During the last years we have investigated the
electronic energy loss of bare and screened ions for
light targets using the coupled-channel method.
This first principle calculation [8–10], based on an
expansion of the time dependent electronic wave
function in terms of atomic orbitals, has been
successfully applied to evaluate the impact-pa-
rameter and angular dependence of the electronic
energy loss and the total stopping cross-section of
ions (anti-protons, H and He) colliding with H and
He atoms at energies of 1–500 keV/amu. It has
also been applied to calculate the entrance-angle
dependence of the stopping force for He ions
channeling along the Si main crystal directions
[19].

These benchmark calculations are being used
to check simplified models that account for the
basic energy loss processes without the need of
large scale calculations [20,21]. In particular, sim-
ple models for the impact parameter dependent
energy loss are needed to be included in computer
simulation codes as well as for channeling data
analysis.

In the present work, we give a review on the
unitary convolution approximation (UCA) ap-
plied to stopping of heavy ions. This simple model
yields accurate results for the electronic energy loss
from small to large impact parameters. The phys-
ical inputs are the electron density and oscillators
strengths of the atoms. In the following, we de-
scribe in detail the UCA model, in particular the
treatment of projectile screening and charge-states,
which are very important for heavy projectiles
carrying many electrons. In Section 3, we discuss
our numerical results for the equilibrium mean
stopping cross section and recent pre-equilibrium
stopping data for carbon foils [22,23]. If not indi-
cated otherwise, atomic units (1 a:u: ¼ e ¼ m ¼ �h)
will be used throughout the paper.

2. Unitary convolution approximation

The convolution approximation method (UCA)
[24] is reviewed with full details concerning the
projectile screening and charge-states, which are
essential ingredients for stopping of heavy pro-
jectiles.

In recent works [20,21], we have proposed a
simple formula for the impact parameter depen-
dent energy loss QðbÞ,

QðbÞ ¼
Z

d2r?Kð~bb�~rr?Þ
Z

dzqð~rr?; zÞ; ð1Þ

which describes a convolution of the electronic
density qð~rrÞ integrated along the ion path z, with a
kernel K given by

KðbeÞ ¼
2Z2

v2b2e
hð2vbe=gÞ

X
i

fig
xibe
v

� �
: ð2Þ

This kernel determines the energy gain of a
point-like electron at a distance be from the pro-
jectile path. It joins smoothly all regions of impact
parameters b for which two-body ion–electron
(small b) and dipole (large b) approximations can
be used. The function hðxÞ (see Appendix A) ap-
proaches zero for x � 1 and reaches 1 for large
values of x.

The first two terms in Eq. (2) stem from violent
binary electron–projectile collisions, namely the
scattering of a quasi-free target electron by the
projectile potential. For g ¼ 1 they corresponds
to the energy transfer in first-order perturbation
theory and vanish for relative impact parameter be
smaller than the electron de Broglie wavelength in
the projectile frame. In addition, with an appro-
priate choice of g these terms resemble the classical
energy transfer to a statistical distribution of
electrons at rest. The last term, involving the g
function (see Appendix A), the transition energies
xi and the corresponding oscillator strengths fi,
accounts for the long ranged dipole transitions.

The first integral
R
d2r?; . . . ; in Eq. (1) describes

a convolution with the initial electron density also
outside the projectile path and yields non-local
contributions to the energy loss. With the param-
eter g equal to one, this formula reproduces vir-
tually full first-order Born (SCA) calculations for
bare [20] and well as for screened projectiles [25]
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and is denoted PCA (perturbative convolution
approximation). For increasing projectile charges
there is a break-down of all first order theories (on
which PCA is based). They do not take in account,
for instance, that each electronic transition gives
rise to an increased final-state population and a
corresponding reduction of the initial state popu-
lation. It is clear that the ionization probability
cannot increase indefinitely with the strength of
the perturbation (the so-called saturation effect).
Since these excess ionization processes are related
to small impact parameters, we use a scaling pa-
rameter g in the function h to reproduce the total
stopping cross-section for bare ions as given by
the Bloch model [16]. Since the Bloch model orig-
inates from a non-perturbative solution of the
Schr€oodinger equation in the projectile frame, the
present model will also conserve unitarity. Thus,
the scaling factor g is obtained from

g ¼ exp Rewð1½ þ ijÞ � wð1Þ
 ð3Þ

¼ exp j2
X1
l¼1

1

l l2 þ j2ð Þ

" #
; ð4Þ

with j ¼ Zeff=v (Zeff is equal to the projectile nu-
clear charge Z for bare ions). The projectile
screening is taken into account for distant colli-
sions (through the g function, see Appendix A) as
well as for close collisions by using an impact-pa-
rameter dependent effective charge Zeff [26], ac-
cording to

ZeffðbÞ ¼ Z � neUðbÞ; ð5Þ

where UðrÞ is the projectile-screening function, and
ne is the number of projectile bound electrons.
With the scaling factor g (from Eq. (3)), the
stopping force turns out to be identical to the
Bloch stopping formula [16] for bare ions at high
projectile speed. Further, KðbeÞ in Eq. (2) resem-
bles the impact parameter dependent Bohr energy
loss formula for j � 1. In this way, for bare ions
the present energy-loss model Eqs. (1)–(4) is the
impact-parameter realization of the Bethe–Bloch
formula.

Fig. 1 shows the product ansatz from Eq. (2)
that interpolates smoothly between small and large
impact-parameter solutions, represented by dotted
and dashed lines respectively for collisions of

1.2 MeV Li3þ ions on Si M-shell electrons. For
comparison a rather different interpolation schema
is used in the binary model [18] that contains po-
larization effects (Barkas term) for Li, dash-dot-
dotted line, and anti-Li, dash-double-dotted line.
It is pointed out, that the present UCA interpo-
lation does not contain any polarization effects
[27]. As a consequence, energy-loss results for
particles and anti-particles are the same. Indeed,
this fact has allowed for a clear separation of the
Barkas effect for He and Li ions under channeling
conditions [27]. Nevertheless, for heavier projec-
tiles the Barkas effect strongly saturates and
should be of minor importance [28].

2.1. Projectile screening

In the present model for heavy projectiles, the
screened projectile potential Vp has been deter-
mined by the expression

Vpð~rrÞ ¼ � Z
r
þ
Xne
j

Z
d3r0

j/jð~rr0Þj
2

j~rr �~rr0j ; ð6Þ

where /j are the projectile–electron wave func-
tions. In principle, exchange and correlation po-
tentials have to be added, but these contributions
vanish in the high-velocity limit. The numerical
wave functions /j for each electron j of the pro-
jectile are obtained according to the Hartree–
Fock–Slater (HFS) procedure [29]. The potential

Fig. 1. Interpolation between close collisions, h function ð� � �Þ,
and distant collisions, g function (- - -). Solid line: present

UCA method according to the product ansatz in Eq. (2). Dash-

double-dotted lines: binary model for bare Li ions and anti-Li

[18] (see text).
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has been fitted using a general expression consist-
ing of sum of generalized single-zeta potentials
according to

Vpð~rrÞ ¼ � Z � ne
r

�
þ ne

r
UðrÞ

�
; ð7Þ

with

UðrÞ ¼
Xnmax

n¼1

ðAn þ BnrÞ expð�CnrÞ; ð8Þ

where the coefficients An, Bn and Cn are fitting
parameters. The number of generalized single-zeta
potentials, nmax, usually corresponds to the num-
ber of electronic sub-shells of projectile.

A much simpler method, that gives very similar
results for the projectile screening function, is just
to consider the scaled projectile function

UðrÞ ¼ Uneutralðr=aÞ ð9Þ

with an approximate screening length a ¼ 1� q=Z
or (a ¼ ne=Z) (taken from [30]), where q is the
projectile charge-state and Uneutral is the screening
function for the corresponding neutral projectile.
It has been tabulated for all elements, for instance
using Dirac–Hartree–Fock–Slater (DHFS) calcu-
lations, in [31], as a sum of exponentials functions.

It is important to point out that the projectile
electrons screen the projectile nucleus as spectators
of the target excitation, i.e. the projectile electrons
remain in the ground-state when the target is
excited. Thus, we also neglect the so-called anti-
screening effect, where the electron–electron in-
teraction between the bound projectile electrons
and the target electrons results in an enhancement
of the ionization and excitation cross sections at
intermediate to high energies [32]. For the case of
charge-state equilibrium the bound projectile
electrons are at least as fast as the projectile ac-
cording to the stripping Bohr criterion. On the
other hand, there is a kinematical suppression of
the anti-screening for projectiles slower than the
mean orbital velocity. In this way, the anti-
screening effect is generally of minor importance
for energy loss calculations (see also [30]).

The UCA model in the perturbative mode
(g ¼ 1) reproduces the results of first-order Born
SCA [20]. Only for very small impact parameters

(b � rshell, rshell is the shell radius), some deviations
may be found, being more significant for projectile
velocities at or below the mean orbital velocity for
a given shell [25]. The reason is the influence of the
initial momentum distribution of the target elec-
trons (shell corrections), which is not fully in-
cluded in the present model and leads to an
overestimated innershell contribution to the cal-
culations. This reflects the limitation of the UCA
model that is strictly valid for projectile speeds
exceeding the mean electron orbital velocity by far.
Concerning higher-order effects, comparisons with
coupled-channel calculations show that the UCA
model provides reliable energy loss values for
small as well as for large perturbations, as shown
in [21,26]. Nevertheless, higher-order effects re-
lated to polarization (Barkas effect) or to the
Fermi–Shuttle effects (electron-energy diffusion
due to multiple interactions [6]) are not accounted
in the present model.

3. Comparison with measurements

In order to provide a comparison with experi-
mental data the impact-parameter-dependent en-
ergy loss QðbÞ from Eq. (1) has to be integrated
over all impact parameters according to the ion
flux distribution. In the case of random materials
or non-aligned directions in crystals, the ion flux
distribution is uniform, but along a crystal axis or
plane it has to be calculated by solving Newton’s
equations for an ensemble of ions. Furthermore,
depending on the experimental conditions, the
energy loss can be determined in an pre-equilib-
rium stage, for a frozen projectile charge state and
without any charge-changing process [22,23,33,
34].

However, most of the energy loss data have
been determined for charge-state equilibrium. This
means that the measured energy loss corresponds
to an average value over all projectile charge-states
according to the charge-state fractions fq. In ad-
dition, for this case, the energy loss due to pro-
jectile electron-loss processes has to be also
included. In general, the mean equilibrium stop-
ping force is given by
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dE
dx

� �
equilibrium

¼
X
q

fq
dE
dx

� �
target

ðqÞ
 

þ dE
dx

� �
projectile

ðqÞ
!
;

ð10Þ

where the first term above in the sum corresponds
to the stopping force for target ionization/excita-
tion and capture due to a projectile with a well
defined initial charge-state q (note that we have
excluded capture processes in this work). The
second term ðdE=dxÞprojectile represents the stopping
force due projectile ionization and excitation. In
some energy-loss approaches, this last term is not
taken into account and the stopping force evalu-
ated for the mean-charge state replaces the sum
over the charge-state distribution. As we will ob-
serve, this may lead to wrong energy loss predic-
tions.

It should be stressed that the fractions fq rep-
resent the projectile charge-states that have been
measured far behind foil targets. These fractions
are affected by projectile inner-shell vacancies and
multiply excited states that lead to Auger-transi-
tions outside the target. On the other hand, excited
projectiles inside the solid will be less screened. In
this work, this effect is partially accounted for by
taking the external charge-state distributions (after
all Auger decays). In what follows we will compare
the UCA calculations with experimental equilib-
rium and non-equilibrium (frozen charge-state)
stopping data.

3.1. Equilibrium stopping

Fig. 2 shows experimental data of different
groups [35] for the equilibrium total stopping force
of oxygen in Al, in comparison with UCA cal-
culations discussed above. The solid line corre-
sponds to calculations according to Eq. (10), with
the charge-state fractions estimated from [36] by
considering a gauss distribution around the mean
charge-state qmean with standard deviation ob-
tained from a fitting formula given in [36]. The
oscillator strengths for Al were calculated using
the procedure stated in [20] to deliver the ICRU I

value. In the case of projectile excitation/ioniza-
tion, the stopping force values have been calcu-
lated by exchanging the role of projectile and
target and by using the HFS procedure to deter-
mine electron density, binding energies and oscil-
lator strengths for all projectile charge-states. For
the present case the correct use of three-body
collision kinematics for the projectile ionization
leads to small corrections only (less than 1% for
the total stopping force). Except for intermediate
incident energies, there is a very good agreement
between experimental and theoretical data. At
energies around 1 MeV/u the model predictions
underestimate the experimental data by up to 10%.

Most likely, the deviations between experi-
mental and theoretical results corresponds to a
sum of all effects that are not considered in the
present UCA calculations such as polarization
(Barkas effect), the Compton profile of the inner-
shell electrons (shell corrections), or electron cap-
ture into bound projectile states. For much lower
energies, around 0.1 MeV/u, the agreement might
be accidental due to a compensation of some of the
effects cited above. An inspection of this figure also
shows how important is the role of the charge-state
distribution on the determination of the total
stopping force. A model (dashed line) that uses

Fig. 2. Mean equilibrium stopping force for oxygen in alu-

minium. Experimental data compilation from [35]. Lines indi-

cate the present UCA calculations for the total stopping

according to Eq. (10) (––), stopping due to target electrons only

using the charge-state fractions (� � �), the mean-charge-state

approximation (- - -) and the stopping due to projectile ioniza-

tion/excitation (� � � � ��).
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just a fixed mean charge state of the projectile for
ðdE=dxÞtarget, (without averaging over the charge-
state distribution) and ðdE=dxÞprojectile ¼ 0 (in Eq.
(10)) predicts reliable stopping values only for
energies higher than 2 MeV/u, and for lower en-
ergies very strong deviations are observed. Un-
certainties of about 20% (between dashed and
dotted lines) result from the replacement of the
charge-state distribution by a mean charge state
for the target ionization/excitation. Finally it is
also observed that the energy loss contribution due
to projectile ionization/excitation reaches about
30% at energies around 0.04 MeV/u.

Similar results are shown in Fig. 3 for the ran-
dom stopping force in equilibrium for oxygen ions
in silicon. The overall agreement is even better for
energies higher than 3000 keV (about 0.2 MeV/u).
For this case, we have taken the experimental
charge-state fractions from [38]. But also in this
case the good agreement is expected to be acci-
dental due to a partial compensation of polariza-
tion effects and capture processes, which would
increase the stopping and shell corrections, which
would decrease the stopping.

In order to better clarify this issue we compare
the stopping under channeling conditions, namely

for O ions channeling along Si h100i directions. In
contrast to the random stopping case, the UCA
calculations do not agree with the experimental
channeling data (the deviations are much larger
for channeling Li ions [27]). This comes from the
fact that under channeling conditions, all energy-
transfer processes arising from the Si inner elec-
trons are strongly suppressed. Thus, capture and
shell corrections play only a minor role and the
difference between the experimental channeling
data and the UCA calculations is attributed to the
Barkas effect only [27].

For oxygen channeling along the Si h100i di-
rection the Barkas effect amounts to 10% [28] of
the total stopping whereas for Li ions, also in Si,
much larger relative values have been found. For
light ions (up to Li) around 0.5 MeV/u pertur-
bative treatments of the polarization effect work
quite well, but for O ions only non-perturbative
methods can be used to explain the strong satu-
ration observed [28].

It should be stressed that similar agreement for
the random stopping force is also obtained by the
recently developed binary model [18]. In fact, this
model includes shell corrections and contains po-
larization effects, and thus, it can be used for much
lower energies compared to the UCA model.
However, a proper representation of the spatial
distribution of the target electrons in their undis-
turbed state is missing in the binary theory. On the
other hand, the main feature of the UCA model is
its impact-parameter dependence prediction, and
as a consequence, its improved description of the
stopping under channeling conditions. In fact, both
theories are incomplete but complementary when it
comes to application in channeling.

3.2. Pre-equilibrium stopping

Experimental data for the energy loss without
charge-changing processes have been recently de-
termined and provide the best check for theoretical
models. In Fig. 4 the experimental stopping data
[22] are displayed as a function of the square of the
projectile-charge for 2 MeV/u Ne ions in carbon
foils. Special experimental procedures have been
used to isolate the energy loss for a pure charge-
state q [22]. The UCA calculations are in good

Fig. 3. Mean equilibrium stopping force for oxygen in silicon

under non-aligned and under channeling conditions. Experi-

mental data taken from [28,37–39] (symbols). Lines represent

the values for the total stopping according to the SRIM code

[40] (� � �) and the UCA method for random (––) and channeling

h100i direction (- - -).
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agreement with experimental data. On the average,
the theoretical results are slightly below the data
points, which is attributed to a small influence of
the Barkas effect. Here we also show by open
squares the UCA calculations using the scaled
projectile screening from Eq. (9). As can be ob-
served, the use of both projectile screening func-
tions (from Eqs. (6) and (7) provides nearly the
same energy loss results.

Fig. 5 presents the experimental data of Ogawa
et al. [23] for the pre-equilibrium stopping force at
high projectile energies (10.6 MeV/u) in compari-
son with UCA calculations for H, He, Li, C and O
with different charge states. As in Fig. 4 full os-
cillator strengths for each C sub-shell have been
taken into account. Again, rather good agreement
between the experimental data and the UCA cal-
culations is observed. These measurements provide
the best scenario of applicability of the UCA
method, which is, high projectile speeds (in com-
parison with the mean electron one) and frozen
charge-states. Furthermore, at this projectile en-
ergy, the Barkas effect is of minor importance [28].
An inspection of this figure also shows a general
trend that simplifies the treatment for much
heavier projectiles. The higher the projectile
charge-state q, the smaller is the difference among

the stopping forces for distinct projectile nuclear
charges. Thus, the stopping for highly charged
projectiles will depend on q only, if the projectile
screening radius is small compared to all target
shell radii.

4. Conclusions

We have described calculations of the electronic
energy loss using the UCA model. This non-
perturbative method provides full information of
the impact-parameter dependent energy loss of bare
and screened particles for each target-subshell.
Furthermore, it relies on simple formulas, allowing
for a computer realization many orders of mag-
nitude faster than the full numerical solution of
the time-dependent Schr€oodinger equation. Thus, it
allows for energy loss calculations for each target-
subshell and each projectile charge-state sepa-
rately.

Experimental data for pre-equilibrium and
equilibrium stopping are in very good overall
agreement with the UCA model, even at low en-
ergies where the present model is not applicable. In
such cases the good agreement is ascribed to be
accidental due to cancellation of effects that are
not included in the calculations, such as capture,
polarization and shell corrections.

Fig. 4. Pre-equilibrium stopping for pure charge-states q of 2

MeV/u Ne in carbon. Two projectile screening functions have

been used in the UCA calculations: HFS screening functions for

each charge-state (j) and scaled neutral DHFS potentials as

defined by Eq. (9) and [31] (�).

Fig. 5. Pre-equilibrium stopping for H0, Hþ, He0, Heþ, He2þ,

Li2þ, Li3þ, C4þ, C5þ, C6þ, O5þ, O6þ, O7þ, O8þ at 10.6 MeV/u on

carbon. The symbols correspond to measurements of Ogawa

et al. [23] and the dashed curves to UCA calculations.
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Appendix A

The functions hðxÞ and gðxÞ correspond to an-
alytical solutions for the energy transfer at small
and large impact parameters and read

hðxÞ ¼ x2

2

Z 1

0

dy y K0ðxy2ÞJ0ðxy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
Þ: ðA:1Þ

and

gðxÞ ¼ f 2
k ðxÞ þ f 2

?ðxÞ; ðA:2Þ

with

fkðxÞ ¼ ne=Z
X
i

AiK1ðxdiÞxdi

�
þ x2biciK0ðxdiÞ


þ ð1� ne=ZÞxK1ðxÞ; ðA:3Þ

f?ðxÞ ¼ ne=Z
X
i

AixK0ðxdiÞ
�

þ x3biciK1ðxdiÞ=xdi


þ ð1� ne=ZÞxK0ðxÞ: ðA:4Þ

In the above equations, K0 and K1 are the modified
Bessel functions, bi ¼ Biv=x, ci ¼ Civ=x,di ¼ ð1 þ
c2i Þ

1=2
(Ai, Bi and Ci are the fitting constants from

Eq. (8)), x is the transition energy. A similar ex-
pression for the distant collision function g was
derived previously in [30] for the case Bi ¼ 0 (Bohr
or Yukawa potential).
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