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The Universal Connection of an Arbitrary System(*)(**). 

/~NTONELLA CABRAS - IVAN KOLAt~ 

Abstract. - Using the theory of smooth spaces, we generalize the notion of finite dimensional 
system of connections on a fiber bundle to the concept of arbitrary system of connec- 
tions. Then we study the universal connection of a regular system and the universal 
curvature. 

Introduction. 

The concept of a finite dimensional system of connections on a fiber bundle E-->B 
was introduced by M. MODUGN0 [8]. He also defined the universal connection of such a 
system and studied the universal curvature, which is related with an earlier idea by 
P. L. GARCIA [5]. We point out that the concept of smooth space by A. FR~LICHER [4], 
enables us to study arbitrary (i.e. infinite dimensional as a rule) systems of connections 
on E. That is why we start with a review of the FrSlicher's theory. However, since we 
do not need some technical complicated parts of the whole theory, we just present a 
simplified version of the notion of smooth space, which is sufficient for our purposes. 
Next we describe the basic properties of smooth bundles, which represent the most 
frequent type of functional spaces appearing in differential geometry. Then we study 
the system C---~B of all connections on E and its tangent bundle in the sense of [3]. A 
regular system of connections on E is a subbundle D c C such that the tangent space TD 
behaves well. We study tile universal connection A D of D in the form of lifting map, 
because it seems to be reasonable to avoid jets in the case of infinite dimensional base 
space. In order to define the curvature of A D, we develop a new approach to the 
curvature of a classical connection on E. Then we prove that the universal curvature of 
D has all basic properties of the universal curvature of a finite dimensional system. In 
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conclusion we discuss one of the most interesting infinite dimensional systems of 
connections, the system of all polynomial connections on an affine bundle. 

Acknowledgements. The authors acknowledge Prof. M. MODUGNO for several 
stimulating discussions on the subject of this paper. 

1 .  - Smooth spaces. 

We present a simplified version of a theory by A. FROLICHER [4]. Our approach is 
based on the concept of a smooth curve only, for this is sufficient for our purposes. The 
relations of our approach to the FrSlicher's theory are explained in Remark 1.2 below. 
By :9~ap (A1, A2) we denote the set of all maps between two sets Aa and Az. If M and N 
are two classical manifolds, then C = (M, N) c ~ a p  (M, N) means the set of all maps of 
class C = 

DEFINITION 1.1. - A smooth space is a set S together with a subset Csc g~ap (R, S) 
satisfying the following two conditions: 

(i) each constant map ? ~ S  belongs to Cs, 

(ii) if V e Cs and (5 e C ~ (R, R), then y o 5 e Cs. 

Each element of Cs is called a smooth curve on S. 

A trivial example of a smooth space is a classical manifold M of class C ~ with 
CM = C ~ (R, M). 

Let ($1, Cs1) and ($2, Cs2) be two smooth spaces. 

DEFINITION 1.2. - A map f:  S~ --+Sz is said to be smooth, iffo V is a smooth curve on 
$2 for every smooth curve 7 on $1. 

Thus, we have defined the category S of smooth spaces and smooth maps. Clearly, 
the meaning of the above assumption (ii) is that each smooth curve ~ on S is a smooth 
map V: R--*S. The smooth maps between two classical manifolds M and N coincide 
with the C~-maps by virtue of the following deep analytical result due to 
BOMAN [i]. 

PROPOSITION 1.1. - Let f:  M--->N be a map such that f o y  e C~(R,  N ) f o r  each 
~ C ~ (R, M). Then f is a map of class C ~ 

In other words, C ~c S is a full subcategory. 
A specific feature of the category S is that each subset Q r S of an S-object (S, Cs) is .  

an S-object, provided we define CQ as the subset of all y E Cs satisfying y(R) c Q. The 
smooth structure on the product S1 • Sz of two smooth spaces is defined by requiring 
that a smooth curve on $1 • $2 is a pair (y 1, ~ 2), ~ 1 e Cs1, ~2 ~ Cs~ (and analogously for 
a product of arbitrary many smooth spaces). 

The following definition points out the most important difference between the 
categories C ~ and S, which consists in the fact that the set S(S1, $2) of all smooth maps 
between two smooth spaces $1, $2 is a smooth space as well. 
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DEFINITION 1.3. - A curve 7: R-~S(S1, $2) is said to be smooth, if the associated 
map ~: R • $1-~$2, ~(t, x) = y(t)(x), is smooth. 

One verifies easily that both requirements from Definition 1.1 are fulfilled. More 
generally, one deduces easily the following assertion. Let $3 be a third smooth 
space. 

PROPOSITION 1.2. - A map f: $3---->S($1, $2) is smooth, iff the associated map 
}: S 3 x $1-->$2, }(z, x) -~j~z)(x), is smooth. 

REMARK 1.1. - In the sequel, we shall need the smooth structure on different spaces 
of C ~-maps. But we find it interesting to present another example of an infinite 
dimensional smooth space, which is closely related with the classical differential 
geometry. The set J ~ (M, N) of jets of order :r between two manifolds M, N is the 
projective limit of the infinite sequence 

JI(M, N) +- J2(M, N) +-... +-- J~'(M, N) +-- ... 

with respect to the jet projections J~r_l: J~(M, N)-~J~-I(M,  N). Hence a curve 
~: R-->J~(M, N) is a sequence of curves y~: R--)J~(M, N) satisfying z~- i  oy~= 
= y r-1. One can define a smooth curve y by requiring that each y~ belongs to 
C ~ (~, J~(M, N)). Then J~(M, N) becomes a smooth space. 

In some cases the smooth curves on a set S can be defined by using certain real 
valued functions on S. 

DEFINITION 1.4. - Let F c : ~ a p  (S, R) be a non-empty subset. Then we define 
C(F)cggcap (R, S) to be the set of all 7: R--)S satisfying r  R) for all 
q~eF. 

One verifies easily that C(F) endows S with the structure of a smooth space, which 
is said to be generated by F. For example, the C ~-curves on R m are generated by 
linear functions on R m. 

If we have a smooth space (S, Cs), then the smooth functions on S are defined as the 
elements of S(S, R). By definition, Cs is a subset of C(S(S, R)). 

" D E F I N I T I O N  1 . 5 .  - A smooth space (S, Cs) is said to be closed with respect to smooth 
functions, if Cs = C(S(S, R) ). 

In other words, a curve y: R - ~ S  is smooth, iff its composition with every smooth 
function belongs to C ~ (R, R). 

Consider two smooth spaces ($1, Cs1) and ($2, Cs~). 

PROPOSITION 1.3. - I f  ($2, Cs~) is closed with respect to smooth functions, then a 
map f: $1-->$2 is smooth, iff ~ ofe S(S1, R ) f o r  all 0 ~ S($2, R). 

PROOF. - Since S is a category, feS(S1, $2) and q) eSiS2, R) imply ~ ofeS(S1, R). 
Conversely, let f :  $1-~$2 be a map such that q~ ofeS(S1, R) for all q~ ~S($2, R). For 
every y e Cs~ we have q~ o (fo 7) = (q~ of) o ~, so that the composition of fo ~ with all 
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smooth functions on $2 is smooth. Since $2 is closed with respect to smooth functions, 
fo y belongs to Cs2- Hence f is smooth. 

Thus, if we consider the smooth spaces closed with respect to smooth functions, 
then the smooth maps can be characterized in terms of smooth functions as well. 

REMARK 1.2. - Our concept of a smooth spaces closed with respect to smooth 
functions is equivalent to the definition of smooth space by A. FROLICHER [4]. His 
approach has several advantages of general character. However, the characterization 
of smooth functions in terms of smooth curves is usually a complicated problem, and we 
do not need it. That is why we decided to avoid smooth functions in this paper. 

We conclude this section by introducing the concept of finite dimensional 
submanifold of a smooth space S. 

DEFINITION 1 . 6 .  - A finite dimensional submanifold of S is a subset Wc S together 
with a classical manifold M and a bijection i: M---~W such that the classical smooth 
curves on M correspond to the smooth curves on W. 

Clearly, the pair (M, i) is determinated up to a C ~-isomorphism. Indeed, if i: M--) 
--~ W is another bijection with the property from Definition 1.6, then ~- 1 o i: M-- )M is a 
bijection preserving the smooth curves. Hence ~-1 o i is a C~-isomorphism by the 
Boman theorem. 

2. - Smooth bundles. 

Let Pl: E1--> B and P2: E2--~ B be two classical fiber bundles with standard fibers 
Q1 and Q2. The set 5~(E1, E2) = [J C ~ (Elx, E2x) of all C~-maps from a fiber of E1 into 

x ~ B  

the fiber of E.~ over the same base point is endowed with a canonical projection 
p: #(E1, E2) --> B. The structure of a smooth space on 5~(E1, E2) can be introduced by a 
simple modification of Definition 1.3. In general, if M is a manifold and f:  M--> 
--> 5~(E~, E2) is a map such that p of: M --~ B is of class C ~, we can construct the induced 
bundle (p o f ) * E  1 and the associated map f: (p of)* E 1-->E2, f (x ,  y) =f(x)(y), (x, y ) e  
e (poJ~*E1, [3]. 

DEFINITION 2.1. - A curve y: R-->5~(E1, E2) is said to be smooth, ifpoy: R--~B 
and ~: (poJ)*E1-->E2 are C~-maps. 

The following assertion is direct consequence of Proposition 1.1. 

PROPOSITION 2.1. - A map f: M--*~(E1, E2) is smooth, iff  poy  and f are 
C ~-maps. 

The smooth space p: ~(E1, E2)--->B is the simplest example of a functional space 
derived from classical fiber bundles. In general, let S and Q be smooth spaces, let B a 
classical manifold and p: S--~B be a surjective smooth map. The following definition 
modifies the standard requirement of local triviality to such a situation. 
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DEFINITION 2.2. - We say that  S is a smooth bundle with standard fiber Q, if for 
every x e B there  exists a neighbourhood U and an S-isomorphism ~ : p - 1 (U) --> U X Q 
satisfying prl o ~ = p I P - 1 (U). 

Clearly, p: 5~(E1, E2) - - )B  is a smooth bundle with standard fiber C~(Q1, Q2). If  
~: S -~ B is another smooth bundle, a morphism S --~ S is a pair of smooth maps f :  S --) 
---> S, f0: B---> B satisfying ~ o f  = f0 ~ P. We denote by 5~S the category of smooth bundles 
and their  morphisms. 

A subbundle of a smooth bundle p: S -o  B is a subset D c S such that  p I D: D ~ B is 
a smooth bundle. 

In particular, a finite dimensional subbundle of S is a finite dimensional submanifold 
W c S ,  which is a classical fiber bundle over B. 

3.  - S y s t e m s  o f  c o n n e c t i o n s .  

In the theory of finite dimensional systems of connections by MODUGNO [8], a 
connection on a fiber bundle p: E--* B is interpreted as section F: E--* J 1E of the first 
je t  prolongation of E .  However, for our theory of arbi t rary  systems of connections we 
find it more suitable to study a connection in the form of its lifting map F: E • B TB ---) 

TE,  which is linear in the second factor and satisfies (ZE, Tp) o F = idE • provided 
ZE: T E - - ) E  is the bundle projection of the tangent  bundle. Under such an approach, 
an element of connection on E over x e B is a section c: Ex • TxB ---) (TE)~ linear in the 
second factor, 

DEFINITION 3 .1 .  - The set q: C-->B of all elements of connection on E will be called 
the sys tem of  all connections on E .  

The inclusion C c  # ( E  z B TB--~B,  T E - - ) B )  defines the structure of a smooth space 
on C. One sees easily that C--->B is a smooth bundle, the standard fiber of which is a 
subset H r C ~ (Q • R "~, TQ), m = dim B, Q = the standard fiber of E .  An element c e H 
is characterized by ZQ o c = pr  1 and by linearity in the second factor. Thus, if x i, yP are 
some local fiber coordinates on E and X i, YP are the induced coordinates on TE,  then 
the coordinate form of an element c e C is 

(1) yP = yP, X ~ = X i, Yp - P (y) X i  

Every  smooth section y: B--~ C defines a connection F: E • B TB ---> TE  by F(y,  X)  = 
= y (p(y ) ) (y ,  X). Write e: C z B E  • for evaluation map 

(2) e(c, y ,  X)  = c(y, X ) .  

A finite dimensional subbundle Z of C is, in fact, a finite dimensional system of 
connections in the sense of MODUGN0. If  X i, Z a are some local fiber coordinates on Z 
with the same coordinates x i on B,  then the coordinate expression of the evaluation 
map ez of the system Z is 

YP = F~ (x, y ,  z ) X  ~ 
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Every C ~-section ~: B-->Z defines a connection on E of the form 

Y~ = F~ (x, y, ~(x)) X ~ 

In [3] we have defined the general concept of the tangent bundle of ~(E1, E2) with 
two projections z:  T~(EI, E2) --> ~(E1, E2) and Tp: T~(E1, E2) ---) TB. For every X e  
eTB over x e B ,  TxE1 = (Tpl)-~(X) or TxE~ = (Tpe)-~(X) is an affine bundle with 
derived vector bundle T(E~) or T(Ee~), respectively. Each vector A = 3/$tloy(t) 
tangent to a smooth curve y: R-->~(E~, E~) over Tp(A) = ~/$tlo(po ~) = X  can be 
interpreted as an affine bundle morphism . 4 : T x E I ~ T x E 2  o v e r  y ( 0 ) =  z(A): Elx--> 
- ~ E ~ ,  the derived linear morphism of which is T(y(0)): T(E~)-*T(E~).  

We are going to describe the subset TCc T~(E • TE-->B) of all vectors 
tangent to the curves lying in C. We shall characterize the additional structure of C in 
three steps. First of all, consider two fiber bundles ql: GI-->E and q~: Ge-~E, so that 
the total projections are p o q~ : G~ --* B and p o q~: G~-* B. Denote by ~E (G~, Ge) c 
c 5~(G~ -~ B, G~ -~ B) the set of all C ~-maps 0 : G~ ~ ~ Gex over the identity of Ez. Then 
one sees directly that an element A e T#E(G~, Ge) over X e  TB is characterized by the 
fact that A:  TxG~-->Tx~ is projectable over the identity of TxE. 

Assume further that G~ and Ge are vector bundles over E and denote by 
2~(G~,  Ge) r ~E(G~, Gz) the set of all linear morphisms Glx---~G2x over the identity of 
E~. Let x ~, y~ be local fiber coordinates on E and z ~ or w ~ be some additional linear 
coordinates o n  G 1 o r  G2, respectively. A curve y on 2:yE(G~, Ge) is of the form x~(t), 
yP = y~, w a = f : ( y ,  t)z a. Hence the associated map A of A = ~/~tlo~/is 

(3) ~ p = y p ,  w a _  a r  
3y p 

_ _ _  ~pz  ~ + q ~ ( y )  ~ + q ) ~ ( y )  z ~ 

with q)~(y) =f~(y ,  0) and r  = 3f:(y, 0)/3t ,  provided the dot denotes the induced 
tangent coordinates. The map ~ = y(0) is of the form 

(4) 
a yp =y~,  w ~ = q~(y) z ~ 

so that the coordinate expression of Tr is 

(5) yp = Sp, w~ _ 3 e ~  ~pz~ + r  ~ 
3y p 

We know that A is over idTxE, affine and the derived linear map is Tq~. In coordinates, 
this means 

(6) yp = ~p, wa = $q~ ypz ~ + 0~(y) ~ + ~ba(y, z) 
9y p 

For every Y e  TxE , TyG1 = (Tql) -I and TyG2 = (Tq2) -1 are vector bundles and 
induces a restricted map .4y: TyGi--->TyG2. If we require that each Ay is linear, we 
obtain Ca(y,  z )=  r z% This implies (3). Hence the linearity of each .4y 
characterizes T2:yE ( G1, G2). 
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Assume finally we have a surjective linear morphism/t :  G2-* G1 over idE. Then we 
define 

.~sVE(G1, G2)C~,~E(G1, G2) 

to be the subset of all q~ satisfying tt o r = id. We. have dim G2 i> dim G1 and we can 
choose the coordinates in such a way that  w a = (z% v~). Then we ver i fy  easily that the 
elements of E a a T25~ (G1, G2) are characterized by ~ b ( Y ) =  ~ = Oh(y). 

In the case of the system C of all connections on E ,  we have 

C = ,~5~E, Tp)(E x8  TB, TE) .  

Hence the above results imply that  the coordinate form of A c TC over c e C is (1) 
and 

(7) ~]p = ~]p, j(i  = j i i ,  ~p = 3FP ~f X i + O~ ( y ) X  i + F~(y)  jVi 
ay q 

Now we define the main subject of the paper. 

DEFINITION 3.2. - A system of connections on E is a smooth subbundle D c C. We 
say that  D is regular, if TD is a vector subbundle of TC. 

I f  i: D - o  C is the inclusion of a regular system, we denote by Ti: TD---> TC the 
inclusion of the tangent  bundle. 

4.  - T h e  u n i v e r s a l  c o n n e c t i o n .  

The concept of universal connection of a finite dimensional system of connections 
Z---)B was introduced by  MODUGNO [8]. This is a connections A z  on Z x ~ E - - ~ Z ,  so 
that  its lifting map is of the form (Z x ~ E )  XzTZ---*T(Z XBE ). But (Z x s E )  xzTZ--> 
--~ E x s TZ , so that  we can also write A z = E x B TZ---) TE X TB TZ. 

Firs t  of all, we generalize this concept to the system q: C---)B of all connection 
on B.  We have Tq: TC--~ TB and ~ c: TC ~ C. 

DEFINITION 4.1 .  - The map 

A: E X BTC- ->TEXTBTC , A ( y , A )  =(e ( zc (A) ,  y,  T q ( A ) ) , A )  

is called the universal connection of the system of all connections on E .  

We also say that  A is the universal connection of E .  
The map (C XBE) xcTC-->T(E XBC), ((~c(A),  y), A) (e ( zc (A) ,  y ,  Tq(A)) ,  A)  can 

be interpreted as a lifting map, i.e. we have a connection on (E x B C)--> C. 

DEFINITION 4.2. - The universal connection of a regular system q: D-->B is a map 
A D : E x ~ TD ---> TE X T~ TD defined by 

(8) A v ( y ,  A)  = (e(ZD(A), y, Tq(A)),  A)  
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In other words, the universal connection of D is the restriction of the universal 
connection A of E to D. In the case of a finite dimensional system Z-~  B we obtain the 
universal connection A z by M O D U G N 0 .  

5. - A n o t h e r  a p p r o a c h  t o  t h e  c l a s s i c a l  c u r v a t u r e .  

The curvature of a classical connection F: E • B TB-*  TE is an antisymmetric map 
CF: E • B TB • ~ TB --> VE , where VE is the vertical tangent bundle of E. We present 
an original construction of CF in a way, which can be generalized to regular systems of 
connections. For every manifolds M, write ZlM=ZTM: TTM-->TM, Z2M= 
=TZM: TTM--->TM and denote by A M c T T M x M T T M  the set of all pairs (~, ~) 
satisfying 

(9) ~ = ~ ]  and ~ = ~ 

Let KM be the canonical involution of TTM. The strong difference ~ + ~] of (~, ~]) c A M  
is, in fact, the difference ~ - KM~] identified with an element of TM, [6]. Hence + is a 
map AM--> TM. 

Taking into account the tangent map TF: TE x TB TTB--~ TTE, we construct 

:f: E • B TTB --~ TTE by F(y, ~) = TF(F(y, z~  ~), ~). 

For every (y, X1, X2) c E  x , T B  z , T B ,  consider any ~e TTB satisfying X1 = z ~  and 
3/2 = z ~ .  Then one verifies easily that F(y, ~) and F(y, KB~) satisfy the condi- 
tion (9). 

PROPOSITION 5.1. - The strong difference 

(10) F(Y, ~) + F(Y, K8 ~) 

does not depend on the choice of ~ over X1 and X2. The value of the induced map at 
(y, X1, X2) coincides with the curvature CF(y, X1, X2). 

PROOF. - This can be proved by direct evaluation. 

6. - T h e  u n i v e r s a l  c u r v a t u r e .  

Analogously to [3], the tangent map Te of the evaluation map e: C • BE • B TB--> 
---> TE should be a map Te: TC • TB TE • TB TTB-~ TTE defined by 

$ I e(c(t), y(t), X(t)) (11) Te(A, Y, ~) = -~ o 

for A = 8/8tto c(t), Y = a/atlo y(t) and ~ = a/atloX(t), where c(t), y(t) and X(t) are over 
the same curve on B. But we must prove that Te is well defined, i.e. (11) not depend on 
the generating curves. This is a consequence of the following proposition, which also 
gives the geometric interpretation of Te. We recall that A ~ TC over X c TB is 
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characterized by the associated map A: Tx(E•  Clearly, we have 
Tx(E • = TxE • TxTB.  

PROPOSITION 6.1. - It holds 

(12) Te(A, Y, ~) = 2,(Y, r 

PROOF. - Let x~(t) be the coordinate expression of the underlying curve on B and 
O~(Y, t), yP(t) and Xi(t)  be the additional coordinate expressions of c(t), y(t) and X(t). 
Then the coordinate form of e(c(t), y(t), X(t)) is  

YP -- q)~(y(t), t)X~(t) 

By differentiating, we obtain 

(13) ~ _ 3F{(y) ~flxi + r Xi  + F~(y) J~ 
ay q 

with F ~ ( y ) = ~ ( y , O )  and r  By (7), this is the coordinate 
expression of A(y,  4). 

We introduce the curvature CA of the universal connection of E as a map CA: E • 
• B (TC • c TC) --~ VE similarly to Section 5. For every (Y, A1, A2) �9 E • 8 (TC • c TC), 
consider any ~ �9 TTB satisfying Tq(A1) = z lB ~ and Tq(A2) = Z2B ~. Write c = z cA1 = 
=zcA2.  Using the coordinate expressions, we deduce that 7t~(e(c, y, Tq(A~)), ~), 

A2(e(c, y, Tq(A2)), KB~)eTTE  satisfy the condition for the existence of strong 
difference (9). 

PROPOSITION 6.2. - The strong difference 

(14) 7il(e(c, y, Tq(Ai)), ~)+Ti2(e(c, y, Tq(A2)), KB~) 

does not depend on the choice of ~ and belongs to VE r TE. 

PROOF. - Let x i, A i, F/P(y), q)~(y) and x i, B i, F~(y), ~ ( y )  be the coordinate 
expressions of A1 and A2 and let x ~, A ~, B i, ~i the coordinates of ~. By (13) we find the 
following coordinate form of (14) 

(15) 
$F~(y) 

~yq 
p i _ _ F q ( y ) ( A i B  j _ A J B  i) + q2i(y)B _y2i(y)AP i 

together with the zero vector on the base. This proves our assertion. 

DEFINITION 6.1. - The map CA : E • B ( TC • c TC) ---> VE defined by (14) is called the 
curvature of the universal connection of E. 

We also say that CA is the universal curvature of E. 
We remark that (15) can be interpreted as the coordinate expression of the 

universal curvature of E. 
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Consider a regular system of connections i: D--~ C. Then we define its universal 
curvature CAD: E xe(TDXDTD)--->VE by the same formula (14). This implies 
dh'ectly 

PROPOSITION 6.3. - It holds 

CAD = CA o (idu XB(Ti XD Ti) ) .  

The universal connection A z  of a finite dimensional system i: Z-+C,  which is a 
classical fibered manifold Z - +  B, is a classical connection on Z x ~ E--+ Z.  Hence we can 
apply the classical definition of curvature to A z. The following result can be deduced 
by direct evaluation. 

PROPOSITION 6.4. - The classical curvature of A z coincides with A o (idE • B (Ti • 
•  

In particular, a connection F on E represents a trivial system given by a smooth 
section B--->C. Its universal connection on E--+B coincides with r itself. In this case, 
Proposition 6.4 yields. 

COROLLARY 6.1. - The curvature of every connection on E is induced from the 
universal curvature of E. 

7. - The s y s t e m  o f  p o l y n o m i a l  c o n n e c t i o n s .  

An interesting example of an infinite dimensional system of connections are the 
polynomial connections on an affine bundle. 

Assume p: E - + B  is a classical affine bundle. Then J1E--+B is an affine bundle as 
well. The following definition is due to K. MARATHE and M. MODUGNO [7]. 

DEFINITION 7.1. - A  connection F: E--+J1E is called polynomial, if each restriction 
Fx: E x - + j I E  is a polynomial map. 

Even Tp: TE-+ TB is an affine bundle. The lifting form of F~ is a map 

(16) E~ • T~B-+ (TE)~ 

Clearly, F~ is polynomial, iff (16) is a polynomial map for each X ~  TxB. An element of 
connection (16) with such a property will be called a polynomial element of connection 
on the affine bundle E-->B. Hence the coordinate form of (16) is 

(17) Y~ = F~(y) X i 

where F~ are same polynomials on / ix .  
Let  P--+ B denote the smooth bundle of all polynomial elements of connection on E.  

One deduces directly that the elements of TP are of the form (17) and 

(18) Yp - 3FiP(Y) iiqX{ + q)[(y) X ~ + F~(y) J~{ 
3y q 
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where r  are another polynomials on Ex. This implies that  P is a regular system of 
connections in the sense of Definition 3.2. 

By Definition 4.2, the universal connection A p is expressed by (8) with polynomial 
A. By Proposition 6.3, the universal curvature CA p is given by (15) with polynomial F~, 
q)P and ~ .  
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