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ABSTRACT 
We propose that the stellar initial mass function (IMP) is universal in the sense that 
its functional form arises as a consequence of the statistics of random supersonic 
flows. 

A model is developed for the origin of the stellar IMP that contains a dependence 
on the average physical parameters (temperature, density and velocity dispersion) of 
the large-scale site of star formation. The model is based on recent numerical 
experiments of highly supersonic random flows that have a strong observational 
counterpart. 

It is shown that a Miller-Scalo-like IMP is naturally produced by the model for 
the typical physical conditions in molecular clouds. A more 'massive' IMP in star­
bursts is also predicted. 

Key words: stars: formation - stars: luminosity function, mass function - ISM: 
kinematics and dynamics. 

1 INTRODUCTION 

Star formation is a central problem of astrophysics and 
cosmology. It is very difficult to interpret observations of 
galaxies, or to predict their evolution, without any theoreti­
cal idea about the process of star formation. 

While star formation rates and efficiencies can be con­
strained, because of the negative feedback of the process 
(young massive stars are able to disperse the star-forming 
gas), the mass distribution of the stars is not easily con­
strained theoretically. 

Moreover, observing the stellar initial mass function 
(IMF) is difficult. In old systems, most massive stars have 
already evolved into cold white dwarfs and are hardly 
detectable. The masses of very small and long-lived stars are 
not easily inferred from the photometry. Bound stellar sys­
tems (globular clusters and open clusters) undergo a strong 
dynamical evolution (mass segregation, evaporation) that 
can significantly affect the IMF. In very young systems (e.g. 
young embedded clusters), the relation between the IMF 
and the luminosity function (LF) is strongly dependent on 
the assumed star formation history (e.g. initial burst or con­
tinuous). Finally, the determination of the IMF cut-off at 
the smallest masses requires very deep stellar counts, since 
it may be located at masses smaller than 0.1 Mo. 

©1997 RAS 

Most theoretical attempts to predict the IMF have been 
based on the idea of gravitational fragmentation. This idea 
is a direct consequence of linear gravitational instability: in 
a system with very small density and velocity fluctuations, 
gravitational instability causes the collapse of structures 
larger than a critical mass, that is the mass for which the 
thermal energy of the gas is comparable with its gravita­
tional energy. During the collapse, if cooling is efficient, the 
critical mass becomes smaller, and substructures can col­
lapse inside the collapsing object. 

The picture of gravitational fragmentation depends on 
several idealized assumptions. The collapse of substructures 
and its final result are highly dependent on the presence of 
suitable perturbations in the density or velocity field. More­
over, fragmentation is stopped at some point, when opacity 
becomes important, but this occurs at a mass-scale that 
depends on unknown geometrical factors, which affect the 
rate of radiative loss. Finally, the whole idea of gravitational 
fragmentation relies on the linear gravitational instability, 
that is on the assumption that the density field is initially 
almost uniform, and the velocity field irrelevant. This is 
meaningful in the study of the formation of galaxies in the 
Universe, since we know that the Universe is initially very 
uniform. When we discuss smaller scales, instead, we are 
normally dealing with a contracting background where non-
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uniformities get amplified, rather than an expanding one. 
On scales smaller than galaxies, for example on the scale of 
giant molecular cloud complexes (105_106 Mo), the density 
and the velocity fields are highly non-linear and hierarchi­
cal, so that the idea of gravitational instability cannot be 
applied directly, using mean values of the physical param­
eters. 

The next level of complexity is to still maintain the idea of 
a critical mass for gravitational instability, but using a distri­
bution of the values of the physical parameters for its defini­
tion. The distribution of the physical parameters should be 
as close as possible to the actual distribution in the star­
forming system, so that the complexity of the non-linear 
velocity and density field is bypassed using a statistical 
approach. 

A further step is that of arguing that several ways of 
injecting and transferring kinetic energy in star-forming sys­
tems exist, such as gravity, magnetic fields, fluid turbulence, 
supernovae and H II regions, winds from young stars, tidal 
fields, thermal and magnetic instabilities, and galactic shear. 
All these sources of energy contribute to the generation of 
random motions, that, mediated by fluid turbulence, estab­
lish universal flow statistics. 

When cooling is very efficient, the most important statis­
tic is the density distribution. Once this is determined, the 
critical mass for gravitational instability can be defined 
along that distribution, resulting in a distribution of collaps­
ing objects, or protostars. 

In the present work, which is an improvement on Padoan 
(1995), we make use of recent numerical and observational 
results, which allow us to describe the density distribution in 
supersonic random flows (such as the ones in molecular 
clouds), and therefore to derive the mass distribution of 
protostars. 

Previous physical models for the origin of the stellar IMF 
do not include a description of the effect of supersonic 
random flows in the star formation sites, based on the solu­
tion of the compressible fluid equations. Nevertheless, the 
idea that supersonic motions play an important part in the 
dynamics of molecular clouds, and in the formation of 
protostars, has already been expressed in the literature (e.g. 
McCrea 1960, Amy 1971, Larson 1981, Hunter & Fleck 
1982, Leorat, Passot & Pouquet 1990, Elmegreen 1993). 

The paper is organized as follows. In the next section we 
present the numerical and observational results on the 
density distribution in molecular clouds. Section 3 contains 
the derivation of the protostar mass function, the depend­
ence on physical parameters of which is discussed in Sec­
tions 4 and 5. We then proceed to make comparisons with 
observations in Section 6. The paper ends with a general 
discussion, followed by a summary. 

2 THE DENSITY FIELD IN RANDOM 
SUPERSONIC FLOWS 

In this section we give a statistical description of the density 
field that emerges from randomly forced supersonic flows. 
Such motions are present in dark clouds, where stars are 
formed. 

The statistical description is based on numerical experi­
ments, but it is also confirmed by stellar extinction observa­
tions in dark clouds. 

2.1 Random supersonic flows in numerical experiments 

Norlund & Padoan (in preparation) have recently discussed 
the importance of supersonic flows in shaping the density 
distribution in the cold interstellar medium (ISM). 

They have run numerical simulations of isothermal flows 
randomly forced to high Mach numbers. Their experiments 
are meant to represent a fraction of a giant molecular cloud, 
where in fact such random supersonic motions are 
observed. Most details about the numerical code, which 
solves the equations of magnetohydrodynamics in three 
dimensions and in a supersonic regime, and about the 
experiments are given in Nordlund & Padoan; here we only 
summarize the main results. 

The physical parameters of the simulated system are: 
av = 2.5 km S-I, T= 10 K (therefore an rms Mach number of 
about 10), M = 4000 Mo' L = 6 pc, where L is the linear size 
of the periodic box. 

It is found that the flow develops a complex system 
of interacting shocks, and these are able to generate very 
large density contrasts, up to 5 orders of magnitude, 
Pmax/ Pmin ~ lOS. In fact, most of the mass concentrates in a 
small fraction of the total volume of the simulation, with a 
very intermittent distribution. The probability density func­
tion of the density field is well approximated by a log-nor­
mal distribution: 

p(1nx) dlox= 1 exp[ _~ (loX - friX)2] dlnx, 
(21ta 2)112 2 a 

where x is the relative number density: 

x=n/ft 

(1) 

(2) 

and the standard deviation a and the mean lnx are functions 
of the rms Mach number of the flow, vii: 

_ a2 

lnx= --
2 

and 

a 2 =ln(1 + v11 2f32) 

or, for the linear density: 

a linear = f3 vii 

(3) 

(4) 

(5) 

where f3 ~ 0.5. Therefore, the standard deviation grows lin­
early with the rms Mach number of the flow. 

It is also found that the power spectrum, S (k), of the 
density distribution is consistent with a power law: 

S(k) OCk- 2.6 (6) 

where k is the wavenumber. 
The fact that the standard deviation of the linear density 

field, a linear, grows linearly with the rms Mach number of the 
flow can be easily understood. The density contrast behind 
an isothermal shock is proportional to vii 2, that is the 
square of the Mach number, but the dense shocked gas 
occupies only a fraction vii -2 of the original volume. Since 
the standard deviation is a volume average, the two effects 
result in a linear growth of a linear with vii. This is in fact the 
result if one computes a linear for the simple case of a single 
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strong, isothennal, plane shock that sweeps all the mass of 
the system. 

2.2 Random supersonic flows in dark clouds 

An observational counterpart of the numerical experiments 
on supersonic random flows has been recently indicated by 
Padoan, Jones & Nordlund (1997a), re-interpreting the 
observational results by Lada et al. (1994). 

Lada et al. perfonned infrared stellar extinction measure­
ments, through the dark cloud IC5146 in Cygnus. They 
obtained values of extinction for more than 1000 stars, 
sampled the observed area with a regular grid, and mea­
sured the mean and the dispersion of the extinction deter­
minations in each bin of the grid. They found that the 
dispersion grows with the mean extinction. 

This result is an indication that the absorbing material in 
the dark cloud has structure well below the resolution of the 
extinction map. Padoan, Jones & Nordlund have shown that 
an intennittent 3D distribution in the cloud, in particular a 
log-nonnal distribution, explains in a natural way the 
growth of dispersion with mean extinction. They have also 
shown that the observational data can be used to constrain 
the value of the standard deviation and of the spectral index 
(power-law power spectrum) of the 3D density distribution. 
The observational constraints are in good agreement with 
the numerical predictions. 

Therefore, both numerical results and observations show 
that the random supersonic flows, known to be present in 
dark clouds, result in a very intennittent density distribu­
tion, well described by a log-nonnal statistic. Both the 
values of the standard deviation and of the spectral index of 
such a distribution are predicted numerically and confinned 
observationally. 

3 THE DERIVATION OF THE STELLAR 
IMF 

A simple way to define a mass distribution of protostars is 
that of identifying each protostar with one local Jeans mass. 
In this way the proto star MF is simply a Jeans mass distribu­
tion. Since the gas is cooling rapidly, the temperature is 
unifonn, and the Jeans mass distribution is just detennined 
by the density distribution. 

The concept of the 'local' Jeans mass is meaningful in our 
scenario for molecular clouds (MCs), because random 
supersonic motions (cascading from a larger scale) are 
present, and are responsible for shaping the density field. 
Strong density enhancements, that is to say the local con­
vergence of the flow, are a result of non-linear hydro­
dynamical interactions, rather than a result of the local 
gravitational potential. We therefore suggest a description 
of star fonnation where random motions are first creating a 
complex and highly non-linear density field (through iso­
thennal shocks), and gravity then takes over, when each 
'local' Jeans mass (defined with the local density) collapses 
into a protostar. 

The statistic of the density field is not sufficient in general 
to predict the protostar MF. Some extra knowledge on the 
topology of the density field is necessary. 

For example, the distribution of mass in a complex system 
of interacting shocks may be hierarchical. The mass distri-
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bution in MCs is also found to be hierarchical over a very 
large range of scales (Scalo 1985; Falgarone & Perault 1987; 
Vazquez-Semadeni 1994). This brings a considerable diffi­
culty when trying to define a mass distribution of cores 
inside MCs (Myers, Linke & Benson 1993; Blitz 1987; Carr 
1987; Loren 1989; Stutzki & Giisten 1990; Lada, Bally & 
Stark 1991; Nozawa et al. 1991; Langer, Wilson & Anderson 
1993; Williams & Blitz 1993) and indeed any mass distribu­
tion estimated from molecular emission line maps is ill­
defined if the hierarchical structure is not taken into 
account. 

The main uncertainty in the Jeans mass distribution, 
derived as a transfonnation of the density distribution, is 
related to the density fluctuations that are smaller than their 
Jeans mass. If many fluctuations are smaller than their 
Jeans mass, the transfonnation of density into Jeans mass 
overestimates the number of collapsing protostars with that 
mass. 

Nevertheless, in our numerical experiments we find that 
isolated density fluctuations, smaller than their Jeans mass, 
are extremely rare, and do not account for more than 1 per 
cent in mass for any level of density considered. We con­
clude therefore that the transfonnation of the density field 
into the distribution of Jeans masses gives an estimate of the 
mass distribution of collapsing objects, which is not in error 
by more than a few per cent. 

The density distribution per unit volume is given by equa­
tion (1). If we multiply that function with the relative density 
x, we get the density distribution per unit mass, that is the 
mass fraction at any given density: 

f(x) dx=xp(x) dx. (7) 

The fraction of the total mass in collapsing structures of 
mass <M is integral of the distribution f(x) over relative 
densities x >xJ: r f(x)dx 

wherexJ is the Jeans density for the massM. The Jeans mass 
distribution is the derivative along mass of the previous 
integral: 

The Jeans mass can be written as: 

M=MJ=1 Mo Bx- 1/2 

where: 

B-12-( 
T )3/2( fi )-1/2 

-. 10 K 1000 cm-3 

(8) 

(9) 

(10) 

is the average Jeans mass, i.e. the Jeans mass for the average 
relative density x = l. 

Here we use the simplest definition of the Jeans mass: 
without turbulent pressure or rotation, because the gas has 
just been shocked and is dissipating its kinetic energy in a 
short time; without magnetic pressure; we will discuss the 
role of the magnetic field in such random flows in a subse­
quent work (Padoan & Nordlund 1997). 
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Using equations (1), (7), (8), (9) and (10) we get the 
protostar MF: 

F(M)dM= M-3 exp -- dM 2B2 [ 1 (21nM _A)2] 
(21t(rl"s 2 (J 

(11) 

where M is in units of Mo' and: 

A=21nB-lnx (12) 

One can also express the MF in terms of the average 
Jeans mass, rather than of Mo: 

F(M/B) d(M/B) = -2 (M)-3 
(21t(J2)O.S B 

x exp -- d(M/B) [ 
1 (21n(M/B) -Ilnx 1)2] 
2 (J 

A linear plot of the protostar MF is shown in Fig. 1, for 
T= 10 K. One recognizes a long tail at large masses and an 
exponential cut-off at the smallest masses, inherited from 
the log-normal distribution of density. This shape is an 
important result, because most models for the origin of the 
stellar IMF are not able to reproduce the cut-off at the 
smallest masses that should be present in any reasonable 
IMF. 

In the coming sections we will discuss the dependence of 
the MF on the average physical parameters of the star­
forming gas, and we will then compare our results with the 
observations. 

4 THE DEPENDENCE OF THE IMF ON 
THE PHYSICAL PARAMETERS 

The protostar MF depends on the density distribution that 
arises from random supersonic motions, through a complex 
system of interacting shocks, and on the definition of the 
Jeans mass. The first dependence brings into the MF the 
dependence on the average temperature, T, and velocity 
dispersion of the flow, (Jv, through the rms Mach number of 
the flow, which is the only parameter of the density distribu­
tion in random supersonic flows. The dependence on the 
Jeans mass translates into a dependence of the MF on the 
average density, n, and on the temperature. Therefore our 
model for the MF may be applied to different sites of star 
formation, identified by their mean values of density, tem­
perature and velocity dispersion. 

In Figs 2, 3 and 4, we have plotted mass distributions for 
different values of the physical parameters. We have chosen 
to plot the exponent of the power-law approximation of the 
MF, rather than the actual MF. The exponent is defined 
as: 

X o In[F (lnM)] (2A -3)-~lnM 
olnM (J2 (J2 

(13) 

The Salpeter MF has X = - 1.35, and the Miller-Scala MF 
(Miller & Scala 1979) hasX= -1.0-0.431nM, whereMis 
in units of Mo-

The most probable stellar mass per logarithmic mass 
interval, that is the stellar mass that contributes most 

to the MF, is defined by X(Mm.J=O, along the curves 
X(M) plotted in the figures. 

In Fig. 2 we see that a growing T produces a flattening of 
the MF at large masses, and a growth of M m"", which is the 
typical stellar mass. The effect of the growth of density is 
illustrated in Fig. 3; its effect is the opposite of the effect of 
the temperature. Fig. 4 shows the dependence on velocity 
dispersion. 

Note that, although the effect of temperature and density 
is qualitatively as expected from the definition of the Jeans 
mass, the effect of T on the MF is more complicated than 
through the Jeans mass, because T also affects the density 
distribution through the Mach number. 

0.50 

0.40 T=10 K 

g 0.30 n=100 cm-3 

a. 

0.20 0".=5 km/s 

0.10 

0.00 L.--,-~ ........... ~~-,--,-===:::L::::~======iI 
o 2 4 6 8 10 

M/Me 

Figure 1. A linear plot of the theoretical MF. The linear shape is 
characterized by a maximum, with an exponential cut-off for 
smaller masses. The exponential cut-off is an important feature, 
because it could be identified in the observations without the ambi­
guities arising from uncertainties in the mass-luminosity rela­
tion. 

~ x -1 

-2 

-3 

0.01 

Salpeter 

______ Miller-Scalo 

0.10 1.00 
M/Me 

10.00 

Figure 2. The power-law exponent of the theoretical MF is plotted 
versus the mass, for different temperatures. The Miller-Scala MF 
(dashed line) is also plotted for comparison. The Salpeter value 
X = - 1.35 and the cut-off value X = 0 are also shown. The Miller­
Scala exponent is fitted by low temperatures at low masses, and by 
high temperatures at large masses. The mean density and velocity 
dispersion have been taken to be n = 1000 em -3 and 0" v = 2.5 km s - \ 
typical of molecular cloud cores. 
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Cutoff 

'i' 
X -1 

Sol peter 

-2 

______ Miller-Scalo 

-3 

0.01 0.10 1.00 10.00 
M/M(1) 

Figure 3. The same as in Fig. 2, but for different values of density. 
The temperature and velocity dispersion have been taken to be 
T=lO K and O"v=2.5 km S-1. The exponentX(M) varies with mass 
always faster than in the Miller-Scalo MF, which is an indication 
that the Miller-Scalo MF emerges from a mixed population of 
stars formed in clouds with different temperatures. 

0 
Cutoff 

.--.. 
:::; 
x -1 

Solpeter 

-2 

_ _ _ _ _ _ Miller-Scalo 

-3 

0.01 0.10 1.00 10.00 
M/M(1) 

Figure 4. The same as in Fig. 2, but for different velocity disper­
sions. The temperature and density have been taken to be T = 10 K 
and n = 1000 em -3. Very large velocity dispersions, probably typical 
of large primordial clouds (proto galaxies and protoglobular 
clouds), can fit the Miller-Scalo MF very well, even for a single 
temperature. 

We will now discuss the variation of the position of the 
cut-off (or of the typical stellar mass) with the physical 
parameters. 

5 THE TYPICAL STELLAR MASS 

The main result of a theory of star formation should be the 
prediction of the typical stellar mass. From this point of 
view, all models resulting in a power-law MF are unsuccess­
ful, because power laws are featureless. 

In the present work we have shown that the random 
supersonic motions present in molecular clouds produce a 
protostar MF with an exponential cut-off at the smallest 
masses, just below the most probable protostellar mass, 
Mmax· 
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The position of the maximum in the MF is given by 
imposing 

X(Mmax) =0 

in equation (13). By using the definition of A from (12), of 
a from (4), and ofMJ from (9) and (10), we get: 

M max=lMo Be[-(1!2)a2] (14) 

where 1 MoB is the average Jeans mass, i.e. the Jeans mass 
for the average density. Therefore: 

We can read the result as a modified Jeans mass. The 
modification is quite important. In fact this modified Jeans 
mass is more sensitive to temperature than the traditional 
Jeans mass, and is also quite sensitive to the velocity disper­
sion av• 

This result is not surprising, because it looks like the 
Jeans mass at constant external pressure (Spitzer 1978, p. 
241) if turbulent ram pressure is considered. Nevertheless it 
is an important result because it has been obtained from a 
realistic statistical description of random supersonic flows, 
which allows the prediction of the whole shape of the MF. 

Another way to interpret the modified Jeans mass is to 
use equation (14), and substitute the standard deviation of 
the logarithmic density distribution, a, with the linear 
standard deviation, a lineax, from equations (4) and (5). We 
obtain: 

1 MoB 
M =--max 

(Tlinear 

(16) 

where alineax is about one half of the rms Mach number of the 
flow (cf. equation 5), and B is the Jeans mass for the mean 
density, in Mo. Therefore we may conclude that the most 
probable Jeans mass is equal to the Jeans mass for the mean 
density divided by half of the rms Mach number. As an 
example, a typical molecular cloud with rms Mach number 
of about 10, and with a Jeans mass of the mean density of 
about 1 Mo' has a most probable Jeans mass of 0.2 Mo. 

In Fig. 5, we show contours of constant Mmax, on the plane 
n - T, for av =3 km S-1 typical of molecular clouds. 

6 THE OBSERVED IMF 

In Fig. 6 the theoretical MF for T = 10 K (dashed line) is 
compared with the Miller-Scalo MF (MSMF) (dotted line). 
The shape of the theoretical MF is different from the shape 
of the MSMF. In fact, for the typical parameters of MCs, or 
of MC cores, the MF is always less broad than the MSMF. 
On the other hand, the models with low T (say 5 K) give the 
correct slope for low masses, while the models with high T 
(say 40 K) give the correct slope for the large masses. 

Therefore the MSMF can be reproduced only if the solar 
neighbourhood stars are assumed to be born in clouds with 
temperatures in the range 5-40 K, which is a reasonable 
assumption, since these temperature values are measured in 
cloud cores. It is likely that the solar neighbourhood stars 
are a mixed population coming from different cloud cores, 
or even from different giant molecular cloud complexes, 
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Figure 5. Lines of constant value of the cut-off, or typical stellar 
mass, in Mo' in the density-temperature plane. The velocity dis­
persion is CTv =3.0 kIn s-\ typical of molecular clouds. 

10-4 

........... ~.«.-:.::.::.~.~.~>.~.:::,." 

_______ T=10K 

___ T=[5K, 40K] 

.................. Miller-Scala 

"\ .......... , .. . 
, 
\ , , , , , 

\ 
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10-5L-~~~~U-~~~~~_~~~~~\ 
0.01 0.10 1.00 

MIMe 
10.00 

Figure 6. Log-log plot of the theoretical MF (dashed line), for a 
temperature T=10 K The Miller-Scalo MF is plotted for com­
parison (dotted line). The single temperature MF cannot be made 
to fit the Miller-Scalo MF. Once the theoretical MF is generated 
from a distribution of temperatures in the range 5-40 K (continu­
ous line), it is practically coincident with the Miller-Scalo MF. 

with temperatures in the range observed in present-day 
molecular clouds. 

To illustrate the origin of a MF that contains a mixed 
population, coming from clouds with different tempera­
tures, we integrate our theoretical MF along a temperature 
distribution, g(T) dT: 

Fmixed(M)dM= I F(M, T) dMg(T) dT. 

Fig. 6 shows the result of the temperature integration 
(continuous line). The temperature distribution has been 
taken to be g(T) oc T- \ which means that there are more 
cold clouds than warm ones. 

One can see that the temperature integration improves 
the shape of the single temperature MF, making the theo­
retical MF practically coincident with the MSMF. 

We may therefore conclude that the model is consistent 
with the MSMF, as long as most of the solar neighbourhood 

stars are formed in molecular clouds similar to the ones that 
are the sites of present-day star formation, with tempera­
tures between 5 and 40 K 

It has been claimed by many authors, on both theoretical 
and observational grounds, that the IMF in starburst 
regions is more 'massive' than in the solar neighbourhood. 
Models of the stellar populations in starbursts suggest an 
MF with the low-mass cut-off at a few Mo (e.g. Augarde & 
Lequeux 1985; Doane & Mathews 1993; Riecke et al. 1993; 
Doyon, Joseph & Wright 1994). 

These 'massive' MFs are in agreement with our theoreti­
cal prediction. In fact, a value of 4 Mo is predicted for the 
cut-off in the MF, for T~60 K, which is reasonable in 
environments with strong UV and X-ray radiation fields, 
and with enhanced (even by a factor 100) cosmic-ray flux. 
We also predict a slope of the MF considerably smaller than 
in the MSMF. For example, X = - 0.9 [the value found 
by Malumuth & Heap (1994) in the core of 30 
Doradus, R136a, which is a local example of a starburst 
event] is predicted by the model for T=60 K, or slightly 
warmer (Fig. 2). 

Padoan, Jimenez & Jones (1997b) have studied the hypo­
thesis of a primordial origin of GCs, by applying the present 
model of star formation to protoglobular clouds of a few 
108 Mo in baryons. In their model the GCs originate from 
the star formation process in the core of the large cloud, at 
density n ~ 104 cm -3 and temperature T ~ 100 K (due to H2 
cooling), while most of the halo stars are the stars formed in 
the rest of the protoglobular cloud, which does not result in 
a bound system. For the halo stars the parameters are 
n = 250 cm -3 and T = 100 K The assumed velocity disper­
sion is some fraction of the virial velocity, (Tv ~ 50 km S-l. 

It is found that the GC MF matches the Miller-Scalo MF 
very well. In particular, the exponent of the MF, in the 
interval [0.1,0.6] Mo' is X = [0.5, - 0.5], in agreement with 
the most recent results on the MF in NGC 6397 (Paresce, 
De Marchi & Romaniello 1995; d'Antona & Mazzitelli 
1996) and in contrast with previous results (Fahlman et al. 
1989; Richer et al. 1990, 1991). 

7 DISCUSSION 

A purely statistical description of the origin of the IMF has 
been given by several authors, as an attempt to model the 
process of gravitational fragmentation (e.g. Auluck & 
Kothari 1954, Kruszewski 1961, Kiang 1966, Reddish 1962, 
1966, Fowler & Hoyle 1963, Belserene 1970, Larson 1972, 
Elmegreen & Mathieu 1983, Zinnecker 1984, Di Fazio 
1986). 

Other works tried to relate the MF of molecular cloud 
cores to the stellar MF [see Zinnecker (1993) for a discus­
sion]. 

Most of the physical models for the origin of the IMF 
have been based on the concept of opacity-limited fragmen­
tation (Silk 1977a, b; Yoshii & Saio 1985, 1986). 

In all the cited models, the presence of random super­
sonic motions in the clouds is not taken into account. 
Models where such motions are considered in a semi­
empirical way are Myers & Fuller (1993) and Silk (1995). 
The effect of turbulent motions are also considered by Arny 
(1971) as a source of internal pressure, and by Hunter & 
Fleck (1982) as a source of compression. 
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Takebe, Unno & Hatanaka (1962) assumed, as in the 
present work, that the mass function is set by the distribu­
tion of the Jeans mass in the cloud, but, missing a physical 
model for the cloud structure, they inferred this from the 
IMF. 

In the present work, as in Padoan (1995), we suggest that 
all stars are formed as a consequence of turbulent fragmen­
tation, that is the fragmentation due to a complex system of 
strong interacting shocks, formed in a field of random 
supersonic motions. 

Such an approach has been made possible only very 
recently, thanks to new numerical simulations of 3D highly 
supersonic magnetohydrodynamic random flows (Nordlund 
& Padoan, in preparation), such as the ones observed in 
molecular clouds, and to the recognition of their observa­
tional counterpart (Padoan, Jones & Nordlund 1997; 
Padoan & Nordlund 1997). 

We have seen that the theoretical MF depends on the 
values of temperature, density and velocity dispersion, aver­
aged over the large-scale star-forming system. Since the 
velocity dispersion and the density can be very different, 
when measured at different scales, the application of the 
present model might seem ambiguous: how do we define the 
scale over which to perform the average of the physical 
parameters? 

This, in fact, is not a problem, because one is likely to find 
the same IMF: when the average is performed on different 
scales. The reason is that in general the star-forming gas has 
a hierarchical structure, such that the average density on a 
large scale is smaller than the density on small scales. The 
velocity, instead, grows with the scale. 

As an example we consider the well-known scaling rela­
tions for the ISM (Larson 1979, 1981; Leung, Kutner & 
Mead 1982; Myers 1983; Quiroga 1983; Sanders, Scoville & 
Solomon 1985; Dame et al. 1986; Falgarone & Perault 1987; 
Fuller & Myers 1992), which are approximately: 

n(L)ocL -1 

where N(L) is the density averaged on the linear scale L, 
and: 

av(L) ocL liZ 

where av(L) is the velocity dispersion averaged on the scale 
L. 

We can now see how the typical stellar mass changes, 
when the average is performed on different scales. Equation 
(15) becomes: 

Mmax~O.1 Mo(~)Z 
10K 

(17) 

that is the dependence on velocity dispersion and density 
cancel each other. 

Therefore, the scalings found in the ISM are such that 
performing the average on a molecular cloud core of 10 Mo' 
or on the whole giant molecular cloud complex of 106 Mo' 
gives a prediction, for the typical stellar mass, that is the 
same. Nevertheless, the shape of the distribution is affected 
by the choice of the velocity dispersion, in the sense that the 
MF becomes broader when the velocity dispersion is 
increased. Therefore some care must be taken when esti­
mating the velocity dispersion of the star formation site. 
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Note that the scaling (17) does not apply to primordial 
clouds where globular clusters are formed, however. The 
turbulent ram pressure is there much larger than in molecu­
lar clouds, but since the temperature is also larger (Hz cools 
the gas down to 100 K), a characteristic stellar mass close to 
the one in molecular clouds is obtained. 

As we discussed above, the protostar MF can be obtained 
directly from the density distribution of the gas, because 
most high-density structures formed in the supersonic ran­
dom flow are larger than their Jeans mass. This does not 
imply that the expected star formation efficiency of molecu­
lar clouds should be close to 100 per cent. In fact, it takes 
about two dynamical times before the log-normal density 
distribution is achieved, that is about 107 yr for a typical 
molecular cloud of 105 Mo' It is therefore possible that the 
first supernova explosions are able to disrupt the clouds 
before a large fraction of protostars are formed. 

Moreover, it is well known that not all the gas that starts 
to collapse into a protostar will finally accrete on to the star; 
some fraction of it will be expelled by stellar winds. 
Although we have not gone into these details in the formu­
lation of the MF, it is clear that this process alone can 
further reduce the star formation efficiency. 

Finally, some parts of the cloud are strongly magnetized, 
and therefore their collapse may be hindered, or delayed, 
until the cloud is disrupted by supernova explosions. This 
influence of magnetic fields is not discussed here, but it is 
the subject of another work (Padoan & Nordlund, in pre­
paration). 

8 SUMMARY AND CONCLUSIONS 

In the present work we have proposed a new physical model 
for the origin of the stellar IMF. The model is based on a 
new statistical description of star formation on a large scale, 
which focuses on the importance of random supersonic 
flows observed in the sites of star formation. 

Recent numerical and observational results, concerning 
the density distribution that arises from random supersonic 
motions, are implemented in the theoretical model for the 
MF of protostars. The main results of the present work are 
as follows. 

(i) The MF is quantified without free parameters, with its 
dependence on the mean temperature, density and velocity 
dispersion of the star-forming gas. 

(ii) The shape of the protostar MF has a single maxi­
mum, a long tail of massive stars, and an exponential cut-off 
below the maximum. Such a shape is inherited directly from 
the density distribution in random supersonic flows. 

(iii) The typical protostellar mass is 

M ~O.2M _ v ( n )-lIZ( T )Z( a )-1 
max 0 1000 cm-3 10 K 2.5 km S-1 

and 

Mmax ~ 0.1 Mo( 1; K)Z 

using the ISM scaling laws. 
(iv) A Miller-Scalo IMF is predicted for the solar neigh­

bourhood stars, if they are formed in molecular clouds, 
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similar to the ones observed in the sites of present day star 
formation, with temperatures in the range 5-40 K. 

(v) Globular clusters are expected to have a MF similar 
to the Miller-Scalo MF, with a typical stellar mass of 
0.1 Mo' 

(vi) Starburst regions should have flatter IMFs, with a 
more massive cut-off, because of their higher mean tem­
perature. 
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