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The universality of zeta-functions attached
to certain cusp forms
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Antanas Laurinčikas (Vilnius) and Kohji Matsumoto (Nagoya)

1. Introduction. The universality property was first discovered by
Voronin [21] in the case of the Riemann zeta-function. Denote by C the com-
plex plane, s = σ + it a complex variable, ζ(s) the Riemann zeta-function,
and meas{A} the Lebesgue measure of the set A. We use the notation

νT (. . .) = T−1 meas{τ ∈ [0, T ] : . . .}

for T > 0, where in place of dots we write a condition satisfied by τ . The
modern statement of Voronin’s universality theorem is as follows (see Chap-
ter 6 of [12]):

Let K be a compact subset of the strip {s ∈ C : 1/2 < σ < 1} with
connected complement. Let f(s) be a non-vanishing continuous function on
K which is analytic in the interior of K. Then for any ε > 0,

lim inf
T→∞

νT (sup
s∈K
|ζ(s+ iτ)− f(s)| < ε) > 0.

This remarkable result raised much attention among specialists, and
Reich [18], [19], Gonek [4], Good [5], Bagchi [1], [2], and the first author
[8]–[12], [14] improved and generalized the Voronin theorem to various other
Dirichlet series including Dirichlet L, and Dedekind, Hurwitz, and Lerch
zeta-functions.

It is the purpose of the present paper to prove the universality theorem
for zeta-functions attached to certain cusp forms. Let F (z) be a holomorphic
cusp form of weight κ for the full modular group SL(2,Z), and assume that
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F (z) is a normalized eigenform. Then F (z) has the Fourier series expansion

F (z) =
∞∑

n=1

c(n)e2πinz, c(1) = 1.

A classical result of Hecke [6] says that the Dirichlet series

ϕ(s, F ) =
∞∑

n=1

c(n)n−s

is absolutely convergent in σ > (κ+ 1)/2, and can be continued analytically
to an entire function. Moreover it satisfies the functional equation

(2π)−sΓ (s)ϕ(s, F ) = (−1)κ/2(2π)s−κΓ (κ− s)ϕ(κ− s, F ),

which implies that the critical strip for ϕ(s, F ) is (κ−1)/2 ≤ σ ≤ (κ+ 1)/2.
Let D = {s ∈ C : κ/2 < σ < (κ+ 1)/2}. Then we shall prove

Theorem. Let F (z) be a normalized eigenform of weight κ for SL(2,Z).
Let K be a compact subset of D with connected complement , and let f(s) be
a non-vanishing continuous function on K which is analytic in the interior
of K. Then for any ε > 0 we have

lim inf
T→∞

νT (sup
s∈K
|ϕ(s+ iτ, F )− f(s)| < ε) > 0.

Before the present work, the universality of ϕ(s, F ) was obtained by
Kačėnas–Laurinčikas [7], and also as a special case of the theorem given
in [15], but both papers require rather strong assumptions. For instance,
the universality theorem of Kačėnas–Laurinčikas [7] is proved under the
assumption of the existence of η > 0 such that

(1.1)
∑

p prime
|cp|<η

p−δ <∞

for δ > 1/2, where cp = c(p)p(1−κ)/2. However it seems to be hopeless to
verify (1.1). Now, our theorem assures the universality property of ϕ(s, F )
unconditionally.

Bagchi [1] gave a new proof of the universality theorem for ζ(s), which
is presented in Chapter 6 of [12]. In this paper we apply Bagchi’s method
to ϕ(s, F ), but some new ideas are necessary to complete the proof. A key
lemma of Bagchi’s method is Theorem 6.4.14 of [12], whose proof is based
on the well known fact (see, e.g., [16])

(1.2)
∑

p≤x

1
p

= log log x+ c1 +O(exp(−c2
√

log x))

for x > 1, with some constants c1 and c2 > 0, where p runs over all primes
≤ x. If we try to apply Bagchi’s method directly to our case, we need the
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corresponding asymptotic result for the sum
∑
p≤x |cp|/p, but it is quite

difficult to obtain such a formula. Instead, we use the asymptotic formula

(1.3)
∑

p≤x
c2p = π(x)(1 + o(1)), x→∞,

which is equivalent to Theorem 2 of Rankin [17]. Here, π(x) denotes the
number of primes up to x. From (1.3), we can deduce a vanishing lemma.
This is Lemma 6 stated in Section 3, and plays an essential role in our
argument. The proof of Lemma 6 will be given in Section 4, and this is
the most novel part of the present paper. From Lemma 6 we can obtain
Lemma 2, which corresponds to Lemma 6.5.4 of [12]. The deduction of our
theorem from Lemma 2 is essentially the same as Bagchi’s argument.

2. A limit theorem for the function ϕ(s, F ). Since F (z) is a nor-
malized eigenform, the function ϕ(s, F ) for σ > (κ + 1)/2 has the Euler
product expansion

ϕ(s, F ) =
∏

p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1

,

with

(2.1) c(p) = α(p) + β(p)

and

(2.2) |α(p)| ≤ p(κ−1)/2, |β(p)| ≤ p(κ−1)/2

(Deligne [3]). From (2.1) and (2.2) we have

(2.3) |cp| ≤ 2.

Let N > 0, DN = {s ∈ C : κ/2 < σ < (κ + 1)/2, |t| < N}, and
denote by H(DN ) the space of analytic functions on DN equipped with
the topology of uniform convergence on compacta. Let B(S) stand for the
class of Borel subsets of the space S. Define on (H(DN ),B(H(DN))) the
probability measure

PT (A) = νT (ϕ(s+ iτ, F ) ∈ A), A ∈ B(H(DN )).

For our purpose we need a limit theorem in the sense of the weak con-
vergence of probability measures for PT as T →∞, with an explicit form of
the limit measure. Let γ = {s ∈ C : |s| = 1}, and let

Ω =
∏

p

γp,

where γp = γ for all primes p. The infinite-dimensional torus Ω is a compact
topological Abelian group. Denote by mH the probability Haar measure on
(Ω,B(Ω)); thus we obtain the probability space (Ω,B(Ω),mH). Let ω(p)
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be the projection of ω ∈ Ω to the coordinate space γp, and define the
H(DN )-valued random element ϕ(s, ω, F ) on (Ω,B(Ω),mH) by the formula

ϕ(s, ω, F ) =
∏

p

(
1− α(p)ω(p)

ps

)−1(
1− β(p)ω(p)

ps

)−1

for s ∈ DN . Denote by Pϕ the distribution of the random element ϕ(s, ω, F ),
i.e.

Pϕ(A) = mH(ω ∈ Ω : ϕ(s, ω, F ) ∈ A), A ∈ B(H(DN )).

Then we have

Lemma 1. The probability measure PT converges weakly to Pϕ as T
→∞.

Kačėnas–Laurinčikas [7] proved this limit theorem on the space H(D̃),
where D̃ = {s ∈ C : σ > κ/2}, from which Lemma 1 follows immediately.
Lemma 1 can also be regarded as a special case of the result proved in [13].

3. A denseness lemma. Let, for |z| < 1,

log(1 + z) = z − z2

2
+
z3

3
− . . . ,

and define

fp(s) = fp(s; ap) = − log
(

1− α(p)ap
ps

)
− log

(
1− β(p)ap

ps

)

for s ∈ DN and ap ∈ γ. We shall prove

Lemma 2. The set of all convergent series
∑
p fp(s; ap) is dense in the

space H(DN ).

In the proof of this lemma we will use the following three lemmas.

Lemma 3. Let {zm} be a sequence of complex numbers such that
∞∑

m=1

|zm|2 <∞.

Let {εm} be a sequence of independent random variables on a certain prob-
ability space (S,B(S),P) such that P(εm = 1) = P(εm = −1) = 1/2 for any
m. Then the series

∑∞
m=1 εmzm converges almost surely.

The assertion of this lemma is included in the proof of Lemma 6.5.3
of [12].

Lemma 4. Let {fm} be a sequence in H(DN ) which satisfies:

(a) If µ is a complex measure on (C,B(C)) with compact support con-
tained in DN such that

∑∞
m=1 |

�
C fm dµ| <∞, then

�
C s

r dµ(s) = 0 for any
non-negative integer r.
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(b) The series
∑∞
m=1 fm converges in H(DN ).

(c) For any compact K ⊂ DN ,
∑∞
m=1 sups∈K |fm(s)|2 <∞.

Then the set of all convergent series
∑∞
m=1amfm, am∈γ, is dense in H(DN ).

Lemma 5. Let µ be a complex measure on (C,B(C)) with compact sup-
port contained in the half-plane σ > σ0, and let f(z) =

�
C e

sz dµ(s). If
f(z) 6≡ 0, then

lim sup
r→∞

log |f(r)|
r

> σ0.

Both of Lemmas 4 and 5 are due to Bagchi [1]. For the proofs, see
Theorem 6.3.10 and Lemma 6.4.10, respectively, of [12].

Now we start the proof of Lemma 2, which we divide into three steps.

The first step. Let

f̃p = f̃p(s) = − log
(

1− α(p)
ps

)
− log

(
1− β(p)

ps

)
,

and let p0 > 0. Define

f̂p = f̂p(s) =
{
f̃p(s) if p > p0,
0 if p ≤ p0.

We claim that there exists a sequence {âp : âp ∈ γ} such that the series

(3.1)
∑

p

âpf̂p

converges in H(DN ).
To prove this claim, we observe that in view of (2.1) and (2.2),

f̃p(s) =
α(p) + β(p)

ps
+ rp(s) =

c(p)
ps

+ rp(s)

with

(3.2) rp(s) = O(pκ−2σ−1).

The series

(3.3)
∑

p

rp(s)

converges uniformly on any compact subset of DN . Next, let {σ(j)} be a
sequence of real numbers, σ(1) > σ(2) > . . . and σ(j) → κ/2 as j → ∞.
For each j, the series

∑
p εpc(p)p

−σ(j) converges almost surely by Lemma 3.
Hence we can find a sequence {âp : âp = ±1} such that

∑
p âpc(p)p

−σ(j) con-
verges for any j. By a well known property of Dirichlet series,

∑
p âpc(p)p

−s

converges uniformly on any compact subset of DN . This and the convergence
of (3.3) imply our claim on the series (3.1).
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The second step. We now claim that the set of all convergent series

(3.4)
∑

p

apf̂p, ap ∈ γ,

is dense in H(DN ). For this purpose we apply Lemma 4. Obviously it suffices
to show that the set of all convergent series

(3.5)
∑

p

apgp, ap ∈ γ,

is dense in H(DN ), where gp = âpf̂p.
We have already shown that the series

∑
p gp converges inH(DN ). Also it

is easy to see that
∑
p sups∈K |gp(s)|2 <∞ for any compact subset K ⊂ DN .

Thus it remains to verify the condition (a) of Lemma 4.
Let µ be a complex measure on (C,B(C)) with compact support con-

tained in DN such that

(3.6)
∑

p

∣∣∣ �
C
gp(s) dµ(s)

∣∣∣ <∞.

We put hp(s) = âpc(p)p−s. Then in virtue of (3.2) we have
∑

p

sup
s∈K
|gp(s)− hp(s)| <∞.

From this and (3.6) we have
∑
p |

�
C hp(s) dµ(s)| <∞, so

(3.7)
∑

p

|c(p)|
∣∣∣ �
C
p−s dµ(s)

∣∣∣ <∞.

Let D1,N = {s ∈ C : 1/2 < σ < 1, |t| < N} and let h(s) = s− (κ− 1)/2.
Then

µh−1(A) = µ(h−1(A)), A ∈ B(C),

is a complex measure with compact support contained in D1,N . From (3.7)
it follows that

(3.8)
∑

p

|cp|
∣∣∣ �
C
p−s dµh−1(s)

∣∣∣ <∞.

(Recall cp = c(p)p(1−κ)/2.) Define

%(z) = �
C
e−sz dµh−1(s), z ∈ C.

Then (3.8) can be written as

(3.9)
∑

p

|cp| · |%(log p)| <∞.
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From (3.9) we can deduce

Lemma 6. %(z) ≡ 0.

The proof of this fact is the most novel part of the present paper, and
will be given in the next section.

Let r be a non-negative integer. Differentiating r-times the equality
%(z) ≡ 0 with respect to z, and then putting z = 0, we see that

�
C s

r dµh−1(s)
= 0, hence

�
C s

r dµ(s) = 0. Consequently, all hypotheses of Lemma 4 are
satisfied, and we obtain the denseness of the set of all convergent series (3.5),
hence (3.4).

The third step. Let x0 ∈ H(DN ), K be a compact subset of DN , and
ε > 0. We choose a p0 for which

(3.10) sup
s∈K

( ∑

p>p0

∞∑

l=2

|α(p)|l + |β(p)|l
lplσ

)
<
ε

4
.

By the claim proved in the second step we find a sequence {ãp : ãp ∈ γ}
such that

(3.11) sup
s∈K

∣∣∣x0(s)−
∑

p≤p0

f̃p(s)−
∑

p>p0

ãpf̃p(s)
∣∣∣ < ε

2
.

We put

ap =
{

1 if p ≤ p0,
ãp if p > p0.

Then (3.10) and (3.11) yield

sup
s∈K

∣∣∣x0(s)−
∑

p

fp(s; ap)
∣∣∣ ≤ sup

s∈K

∣∣∣x0(s)−
∑

p≤p0

f̃p(s)−
∑

p>p0

ãpf̃p(s)
∣∣∣

+ sup
s∈K

∣∣∣
∑

p>p0

ãpf̃p(s)−
∑

p>p0

fp(s; ap)
∣∣∣

<
ε

2
+ 2 sup

s∈K

( ∑

p>p0

∞∑

l=2

|α(p)|l + |β(p)|l
lplσ

)
< ε.

Therefore the proof of Lemma 2 is now reduced to the validity of Lemma 6.

4. Proof of Lemma 6. An essential ingredient of the proof is the
following

Lemma 7. Let f(s) be an entire function of exponential type, and let
{λm} be a sequence of complex numbers. Let α, β and δ be positive numbers
such that

lim sup
y→∞

log |f(±iy)|
y

≤ α,(a)
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|λm − λn| ≥ δ|m− n|,(b)

lim
m→∞

λm
m

= β,(c)

αβ < π.(d)

Then

lim sup
m→∞

log |f(λm)|
|λm|

= lim sup
r→∞

log |f(r)|
r

.

This is a variant of the Bernstein theorem, and is given as Theorem 6.4.12
of [12] with a proof.

To prove Lemma 6, we apply Lemma 7 with f = %. Since the support of
the measure µh−1 is included in D1,N , we see that

|%(±iy)| ≤ eNy �
C
|dµh−1(s)|

for y > 0, hence we can take α = N in the condition (a) of Lemma 7. Let
us take a fixed positive number β satisfying

(4.1) β < π/N.

Consider the set A of all positive integers m such that there exists r ∈
((m− 1/4)β, (m+ 1/4)β] with |%(r)| ≤ e−r.

We fix a number µ satisfying 0 < µ < 1, and put

Pµ = {p : primes, |cp| > µ}.
Then from (3.9) it follows that

(4.2)
∑

p∈Pµ
|%(log p)| <∞.

On the other hand, we have

(4.3)
∑

p∈Pµ
|%(log p)| ≥

∑

m6∈A

∑′

m
|%(log p)| ≥

∑

m6∈A

∑′

m
p−1,

where
∑′
m denotes the sum running over all primes p ∈ Pµ satisfying

(m− 1/4)β < log p ≤ (m+ 1/4)β.

Therefore, putting

a = exp((m− 1/4)β), b = exp((m+ 1/4)β),

from (4.2) and (4.3) we obtain

(4.4)
∑

m6∈A

∑

p∈Pµ
a<p≤b

p−1 <∞.
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Let πµ(x) be the number of primes p ∈ Pµ up to x. Then, using (2.3),
we have, for a ≤ u ≤ b,

∑

a<p≤u
c2p ≤ 4

∑

p∈Pµ
a<p≤u

1 + µ2
∑

p6∈Pµ
a<p≤u

1(4.5)

= 4(πµ(u)− πµ(a)) + µ2((π(u)− πµ(u))− (π(a)− πµ(a)))

= (4− µ2)(πµ(u)− πµ(a)) + µ2(π(u)− π(a)).

On the other hand, by Rankin’s formula (1.3), we have

(4.6)
∑

a<p≤u
c2p = π(u)(1 + o(1))− π(a)(1 + o(1))

as m→∞.
We fix a positive parameter δ satisfying 1 + δ < eβ/2, and let 0 < ε

< δ/100. If m ≥ m0(ε), then, for any u ≥ a(1 + δ), we obtain

π(u)(1 + o(1)) ≥ π(u)(1− ε), π(a)(1 + o(1)) ≤ π(a)(1 + ε).

Hence

(4.7) π(u)(1 + o(1))− π(a)(1 + o(1)) ≥ (π(u)− π(a))− ε(π(u) + π(a)).

Since u ≥ a(1 + δ), we have, for m ≥ m0(ε),

π(u)− π(a) ≥ u

log u
(1− ε)− a

log a
(1 + ε)(4.8)

≥ a(1 + δ)
log a+ log(1 + δ)

(1− ε)− a

log a
(1 + ε)

≥ a

log a
(1 + δ)(1− 2ε)− a

log a
(1 + ε)

≥ a

log a
(δ − 4ε) ≥ a

log a
· δ

2
.

On the other hand, if u ≤ b = Ba where B = eβ/2, then, for m ≥ m0(ε),

π(u) + π(a) ≤ π(b) + π(a) ≤ b

log b
(1 + ε) +

a

log a
(1 + ε)

≤ Ba

log a
(1 + ε)2 +

a

log a
(1 + ε) ≤ a

log a
(2B + 2).

Therefore this and (4.8) yield

π(u) + π(a) ≤ 4B + 4
δ

(π(u)− π(a)).

From this and (4.7) we find that for the same u as above and m→∞,

π(u)(1 + o(1))− π(a)(1 + o(1)) ≥ π(u)− π(a)− ε4B + 4
δ

(π(u)− π(a))

= (π(u)− π(a))(1 + o(1)).
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Hence, by (4.5) and (4.6), we find

(π(u)− π(a))(1 + o(1)) ≤ (4− µ2)(πµ(u)− πµ(a)) + µ2(πµ(u)− πµ(a)),

so

πµ(u)− πµ(a) ≥ 1− µ2

4− µ2 (π(u)− π(a))(1 + o(1))

for u ≥ a(1 + δ), m→∞. Therefore, by partial summation,

∑

p∈Pµ
a<p≤b

1
p

=
( ∑

p∈Pµ
a<p≤b

1
)

+
b

�
a

( ∑

p∈Pµ
a<p≤b

)du
u2(4.9)

= (πµ(b)− πµ(a))
1
b

+
b

�
a

(πµ(u)− πµ(a))
du

u2

≥ (πµ(b)− πµ(a))
1
b

+
b

�
a(1+δ)

(πµ(u)− πµ(a))
du

u2

≥ 1− µ2

4− µ2

(
(π(b)− π(a))

1
b

+
b

�
a(1+δ)

(π(u)− π(a))
du

u2

)
(1 + o(1))

≥ 1− µ2

4− µ2

(
(π(b)− π(a(1 + δ)))

1
b

+
b

�
a(1+δ)

(π(u)− π(a(1 + δ)))
du

u2

)
(1 + o(1))

=
1− µ2

4− µ2

( ∑

a(1+δ)<p≤b

1
p

)
(1 + o(1))

as m→∞.
From (1.2) it follows that, as m→∞,

∑

a(1+δ)<p≤b

1
p

=
(

1
2
− log(1 + δ)

β

)
1
m

+O

(
1
m2

)
;

hence and from (4.9),

(4.10)
∑

p∈Pµ
a<p≤b

1
p
≥ 1− µ2

4− µ2

(
1
2
− log(1 + δ)

β

)
1
m

(1 + o(1)) +O

(
1
m2

)
.

Since 0 < µ < 1 and 1 + δ < eβ/2, we see that

1− µ2

4− µ2

(
1
2
− log(1 + δ)

β

)
> 0.
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Therefore, from (4.4) and (4.10), we obtain

(4.11)
∑

m6∈A

1
m
<∞.

We write

A = {am : m = 1, 2, . . .}, a1 < a2 < . . .

Then from (4.11) we can easily show that

lim
m→∞

am
m

= 1.

By the definition of the set A, there exists a sequence {λm} such that

(am − 1/4)β < λm ≤ (am + 1/4)β and |%(λm)| ≤ exp(−λm).

Then

lim
m→∞

λm
m

= β and lim sup
m→∞

log |%(λm)|
λm

≤ −1.

Now by Lemma 7 we have

(4.12) lim sup
r→∞

log |%(r)|
r

≤ −1.

Assume %(z) 6≡ 0. We can write

%(s) = �
C
esz dν(s),

where the measure ν is defined by ν(A) = µh−1(−A), A ∈ B(C), so its
support is included in {s ∈ C : −1 < σ < −1/2}. Hence, by Lemma 5, we
get

lim sup
r→∞

log |%(r)|
r

> −1,

which contradicts (4.12). Therefore we conclude that %(z) ≡ 0, which is the
assertion of Lemma 6. The proof of Lemma 2 is now complete.

5. The support of the measure Pϕ. Now we can deduce our theorem
from Lemma 2 in much the same way as described in Section 6.5 of [12]. In
this section we determine the support of the measure Pϕ defined in Section 2.
Let

SN = {f ∈ H(DN ) : f(s) 6= 0 for any s ∈ DN , or f(s) ≡ 0}.
Lemma 8. The support of the measure Pϕ is the set SN .

In order to deduce this lemma from Lemma 2, we need two more lemmas:

Lemma 9. Let {fn(s)} be a sequence of functions analytic on DN such
that fn(s) → f(s) (as n → ∞) uniformly on DN . Suppose f(s) 6≡ 0. Then
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an interior point s0 of DN is a zero of f(s) if and only if there exists a
sequence {sn} in DN such that sn → s0 (as n → ∞) and fn(sn) = 0 for
n > n0 = n0(s0).

This is the Hurwitz theorem (see Section 3.45 of Titchmarsh [20]). The
next lemma is Theorem 1.7.10 of [12]. Denote by S(ξ) the support of the
random element ξ.

Lemma 10. Let {ξm} be a sequence of independent H(DN )-valued ran-
dom elements such that the series

(5.1)
∞∑

m=1

ξm

converges almost surely. Then the support of the sum (5.1) is the closure of
the set of all f ∈ H(DN ) which may be written as a convergent series

f =
∞∑

m=1

fm, fm ∈ S(ξm).

Proof of Lemma 8. By the definition {ω(p)} is a sequence of independent
random variables defined on (Ω,B(Ω),mH), and the support of each ω(p)
is the unit circle γ. Hence

{
log
(

1− α(p)ω(p)
ps

)−1

+ log
(

1− β(p)ω(p)
ps

)−1}

is a sequence of independent H(DN )-valued random elements, and the set
{
f ∈ H(DN ) : f(s) = − log

(
1− α(p)a

ps

)
+ log

(
1− β(p)a

ps

)
, a ∈ γ

}

is the support of each element. Consequently, by Lemma 10, the support of
the H(DN )-valued random element

logϕ(s, ω, F ) = −
∑

p

{
log
(

1− α(p)ω(p)
ps

)
+ log

(
1− β(p)ω(p)

ps

)}

is the closure of the set of all convergent series
∑
p fp(s; ap). By Lemma 2

the latter set is dense in H(DN ).
The map exp : H(DN ) → H(DN ) is continuous, sending logϕ(s, ω, F )

to ϕ(s, ω, F ), and sending H(DN ) onto SN \ {0}. Therefore the support of
ϕ(s, ω, F ) contains the set SN \{0}. By the definition the support is a closed
set (see Definition 1.2.13 of [12]), and by Lemma 9 we have SN \ {0} = SN .
Thus

(5.2) S(ϕ) ⊇ SN .
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On the other hand,
(

1− α(p)ω(p)
ps

)−1(
1− β(p)ω(p)

ps

)−1

, s ∈ DN , ω ∈ Ω,

is non-zero for all primes p. Hence ϕ(s, ω, F ) is an almost surely convergent
product of non-vanishing factors. Again by Lemma 9 we see that ϕ(s, ω, F ) ∈
SN almost surely. Thus S(ϕ) ⊆ SN . This and (5.2) give the assertion of
Lemma 8.

6. Completion of the proof of the theorem. Let K be a compact
subset of D with connected complement. Then we can find N > 0 such that
K ⊂ DN . Let f(s) be a non-vanishing continuous function on K which is
analytic in the interior of K.

First we assume that f(s) has a non-vanishing analytic continuation to
H(DN ). Denote by G the set of functions g ∈ H(DN ) for which

sup
s∈K
|g(s)− f(s)| < ε.

The set G is open, hence by Lemma 1 we have

(6.1) lim inf
T→∞

νT (sup
s∈K
|ϕ(s+ iτ, F )− f(s)| < ε) ≥ Pϕ(G).

Obviously f ∈ SN , hence by Lemma 8 it is contained in the support of
the random element ϕ(s, ω, F ). Since G is a neighbourhood of f , we have
Pϕ(G) > 0. This together with (6.1) implies the assertion of the theorem in
this case.

Now consider the general case. First we quote

Lemma 11. Let K be a compact subset of C whose complement is con-
nected. Then any continuous function f(s) on K which is analytic in the
interior of K is approximable uniformly on K by polynomials in s.

This is the Mergelyan theorem, and the proof can be found, for example,
in Walsh [22].

Since f(s) 6= 0 on K, by Lemma 11 we can find a polynomial p(s) such
that p(s) 6= 0 on K and

(6.2) sup
s∈K
|f(s)− p(s)| < ε/4.

Since p(s) has only finitely many zeros, we can find a region G1 such that
K ⊂ G1 and p(s) 6= 0 on G1. We choose log p(s) to be analytic in the interior
of G1. Applying Lemma 11 to log p(s), we find another polynomial q(s) such
that

sup
s∈K
|p(s)− eq(s)| < ε/4.
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From this and (6.2) it follows that

(6.3) sup
s∈K
|f(s)− eq(s)| < ε/2.

Since eq(s) 6= 0 for all s, we can use the result of the case already proved,
which yields

lim inf
T→∞

νT (sup
s∈K
|ϕ(s+ iτ, F )− eq(s)| < ε/2) > 0.

Together with (6.3), this completes the proof of the theorem.
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