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If string theory is on the right track as a description of nature, then our observable universe may be a 3-dimensional membrane surface in a

higher-dimensional spacetime. The brane-world picture of the universe, as inspired by string theory, opens up new vistas in cosmology. The

extra polarizations of the higher-dimensional graviton, and the additional fields arising from the extra dimensions, bring new features that

may leave detectable signatures. Moreover, the hope is that these new ingredients will shed light on the major puzzles associated with the

standard cosmological model – in particular, the problem of explaining inflation and the dark energy problem.
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Si la teorı́a de cuerdas es una descripción correcta de la naturaleza, entonces nuestro universo observable puede ser una membrana tridimen-

sional en un espacio-tiempo de mayor dimensionalidad. La visión del universo basada en mundos brana, inspirada en la teorı́a de cuerdas,

abre nuevas posibilidades en la cosmologı́a. Las polarizaciones extra del gravitón en mas dimensiones, y los campos adicionales que aparecen

debido a las dimensiones extra, tienen como consecuencia nuevas propiedades que producir señales detectables. Además, existe la esperanza

de que estos nuevos ingredientes iluminen algunos de los mayores problemas asociados con el modelo cosmológico estándar - en particular,

el problema del origen de la inflación y la energı́a obscura.

Descriptores: Modelos cosmológicos; energı́a obscura; modelos de mundos brana.

PACS: 95.36.+x; 98.80.-k; 98.80.Cq; 98.80.Qc

1. Introduction

The current “standard model” of cosmology – the inflationary

cold dark matter model with cosmological constant (LCDM),

based on general relativity and particle physics (the mini-

mal supersymmetric extension of the Standard Model) – pro-

vides an excellent fit to the wealth of high-precision obser-

vational data [1]. In particular, independent data sets from

CMB anisotropies, galaxy surveys and SNe redshifts, pro-

vide a consistent set of model parameters. For the fundamen-

tal energy density parameters, this is shown in Fig. 1. The

data indicates that the cosmic energy budget is given by

ΩΛ ≈ 0.7 , ΩM ≈ 0.3 , (1)

so that the universe is undergoing a late-time acceleration.

The data further indicates that the universe is (nearly) spa-

tially flat, and that the primordial perturbations are (nearly)

scale-invariant, adiabatic and Gaussian.

This standard model is remarkably successful, but we

know that its theoretical foundation, general relativity, breaks

down at high enough energies, usually taken to be at the

Planck scale,

E & Mp ∼ 1016 TeV . (2)

The classical singularities predicted by general relativity in

gravitational collapse and in the hot big bang will be removed

by quantum gravity. But even below the fundamental energy

scale that marks the transition to quantum gravity, significant

corrections to general relativity will arise. These corrections

could have a major impact on the behaviour of gravitational

collapse, black holes and the early universe, and they could

leave a trace – a “smoking gun” – in various observations

and experiments. Thus it is important to estimate these cor-

rections and develop tests for detecting them or ruling them

out. In this way, quantum gravity can begin to be subject to

testing by astrophysical and cosmological observations.

The LCDM model can only provide limited insight into

the very early universe. Indeed, the crucial role played by in-

flation belies the fact that inflation remains an effective

FIGURE 1. Observational constraints in the (ΩΛ, ΩM ) plane

(from Ref. 2).
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theory without yet a basis in fundamental theory. A quantum

gravity theory will be able to probe higher energies and ear-

lier times, and should provide a consistent basis for inflation,

or an alternative that replaces inflation within the standard

cosmological model.

An even bigger theoretical problem than inflation is that

of the recent accelerated expansion of the universe. Within

the framework of general relativity, the acceleration must

originate from a dark energy field with effectively negative

pressure (w ≡ p/ρ < −1/3), such as vacuum energy or a

slow-rolling scalar field (“quintessence”). So far, none of the

available models has a natural explanation. For the simplest

option of vacuum energy, in the LCDM model, the incredibly

small,

ρΛ,obs =
Λ

8πG
∼ H2

0M2
P ≪ ρΛ,theory , (3)

and incredibly fine-tuned,

ΩΛ ∼ ΩM , (4)

value of the cosmological constant cannot be explained by

current particle physics. Quantum gravity will hopefully pro-

vide a solution to the problems of vacuum energy and fine-

tuning.

Alternatively, it is possible that there is no dark energy,

but instead a low-energy/ large-scale modification to general

relativity that accounts for late-time acceleration. An infra-

red modification to general relativity could emerge within the

framework of quantum gravity, in addition to the ultraviolet

modification that must arise at high energies in the very early

universe.

The LCDM model is a framework seeking a fundamental

theory. Cosmological observations are pointing towards the

gaps that need to be filled by quantum gravity – and it is prob-

able that further puzzles will arise from future observational

advances. In this sense, cosmology has become a driving

force in quantum gravity theory. Observations are ahead of

theory, since no candidate theory is available that is yet able

to make cosmological predictions. This includes the leading

candidate theory, string theory.

String theory removes the infinities of quantum field the-

ory and unifies the fundamental interactions, including grav-

ity. But there is a price – the theory is only consistent in 9

space dimensions. There are five distinct 1+9-dimensional

string theories, all giving quantum theories of gravity. Du-

ality transformations relate these theories and the 1+10-

dimensional supergravity theory, leading to the conjecture

that all of these theories arise as different limits of a single

theory, known as M theory. The 11th dimension in M the-

ory is related to the string coupling strength; at low energies,

M theory can be approximated by 1+10-dimensional super-

gravity.

It was also discovered that p-branes, which are extended

objects of higher dimension than strings (1-branes), play a

fundamental role in the theory. In the weak coupling limit,

p-branes (p > 1) become infinitely heavy, so that they do not

appear in the perturbative theory. Of particular importance

among p-branes are the D-branes, on which open strings can

end. Roughly speaking, open strings, which describe the non-

gravitational sector, are attached at their endpoints to branes,

while the closed strings of the gravitational sector can move

freely in the higher-dimensional “bulk” spacetime. Classi-

cally, this is realised via the localization of matter and radia-

tion fields on the brane, with gravity propagating in the bulk.

The implementation of string theory in cosmology is ex-

tremely difficult, given the complexity of the theory. There

has been some recent progress in constructing inflationary

models [4], but there is still a long way to go. This situ-

ation motivates the development of phenomenology, as an

intermediary between observations and fundamental theory.

(Indeed, the development of inflationary cosmology has been

a very valuable exercise in phenomenology.) Brane-world

cosmological models inherit key aspects of string theory, but

do not attempt to impose the full machinery of the theory.

Instead, drastic simplifications are introduced in order to be

able to construct cosmological models that can be used to

compute observational predictions (see Ref. 5 for reviews

in this spirit). Cosmological data can then be used to con-

strain the brane-world models, and hopefully thus provide

constraints on string theory, as well as pointers for the fur-

ther development of string theory.

It turns out that even the simplest brane-world models are

remarkably rich – and the computation of their cosmologi-

cal perturbations is remarkably complicated, and still incom-

plete. Here I will describe two brane-world cosmologies –

those of Randall-Sundrum (RS) type [6] and those of Dvali-

Gabadadze-Porrati (DGP) type [7]. Both are 5-dimensional

models, with an infinite extra dimension. (We effectively as-

sume that 5 of the extra dimensions in the “parent” string

theory may be ignored at low enough energies.)

2. KK modes of the graviton

The brane-world mechanism, whereby matter is confined to

the brane while gravity accesses the bulk, means that ex-

tra dimensions can be much larger than in the conventional

Kaluza-Klein (KK) mechanism, where matter and gravity

both access all dimensions. The dilution of gravity via the

bulk effectively weakens gravity on the brane, so that the true,

higher-dimensional Planck scale, M4+d, can be significantly

lower than the effective 4D Planck scale Mp. Since higher-

dimensional gravity effects would have shown up in particle

colliders, the true Planck scale should be & 1 TeV.

The higher-dimensional graviton has massive 4D modes

felt on the brane, known as KK modes, in addition to the

massless mode of 4D gravity. From a geometric viewpoint,

the KK modes can also be understood via the fact that the pro-

jection of the null graviton 5-momentum p
(5)
a onto the brane

is timelike. If the unit normal to the brane is na, then the

induced metric on the brane is

gab = g
(5)
ab − nanb , g

(5)
ab nanb = 1 , gabn

b = 0 , (5)
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and the 5-momentum may be decomposed as

p(5)
a = mna + pa , pana = 0 , m = p(5)

a na , (6)

where pa = gabp
(5)
b is the projection along the brane, de-

pending on the orientation of the 5-momentum relative to the

brane. The effective 4-momentum of the 5D graviton is thus

pa. Expanding g
(5)
ab pa

(5)p
b
(5) = 0, we find that

gabp
apb = −m2 . (7)

It follows that the 5D graviton has an effective mass m on the

brane. The usual 4D graviton corresponds to the zero mode,

m = 0, when p
(5)
a is tangent to the brane.

The extra dimensions lead to new scalar and vector de-

grees of freedom on the brane. The spin-2 5D graviton is

represented by a metric perturbation h
(5)
ab that is transverse

traceless:

g
(5)
ab → g

(5)
ab + h

(5)
ab , h(5)a

a = 0 = ∂bh
(5)b

a . (8)

In a suitable gauge, h
(5)
ab contains a 3D transverse traceless

perturbation hij , a 3D transverse vector perturbation Σi and

a scalar perturbation β, which each satisfy the 5D wave equa-

tion:

hi
i = 0 = ∂jh

ij , ∂iΣ
i = 0 , (9)

(∇µ∇
µ + ∂2

y)





β
Σi

hij



 = 0 . (10)

The 5 degrees of freedom (polarizations) in the 5D graviton

are thus split into 2 (hij) + 2 (Σi) +1 (β) degrees of freedom

in 4D. On the brane, the 5D graviton field is felt as

• a 4D spin-2 graviton hij (2 polarizations)

• a 4D spin-1 gravi-vector (gravi-photon) Σi (2 polariza-

tions)

• a 4D spin-0 gravi-scalar β.

The massive modes of the 5D graviton are represented via

massive modes in all 3 of these fields on the brane. The stan-

dard 4D graviton corresponds to the massless zero-mode of

hij .

In the general case of d extra dimensions, the num-

ber of degrees of freedom in the graviton follows from the

irreducible tensor representations of the rotation group as
1
2 (d + 1)(d + 4).

3. RS type brane-worlds: ultraviolet modifica-

tions to GR

RS brane-worlds do not rely on compactification to localize

gravity at the brane, but on the curvature of the bulk. What

prevents gravity from “leaking” into the extra dimension at

low energies is a negative bulk cosmological constant,

Λ5 = −
6

ℓ2
, (11)

where ℓ is the curvature radius of 5D anti de Sitter spacetime,

AdS5. For a vacuum brane, the metric takes the form

ds2
(5) = dy2 + e−2|y|/ℓ

[

−dt2 + d~x 2
]

, (12)

which is a solution of the 5D Einstein equations,

G
(5)
ab = −Λ5g

(5)
ab . (13)

The brane gravitates with self-gravity in the form of brane

tension σ, where

σ =
3M2

p

4πℓ2
, M2

p = M3
5 ℓ . (14)

On the brane, the negative Λ5 is offset by the positive brane

tension σ.

To see how gravity is localized at low energies, we con-

sider the 5D graviton perturbations of the metric in a conve-

nient gauge:

h(5)
ay = 0 = h(5)µ

µ = ∂νh(5)
µν . (15)

We split the amplitude h into 3D Fourier modes, and the

linearized 5D Einstein equations lead to the wave equation

(y > 0)

e2y/ℓ
[

ḧ + k2h
]

= h′′ −
4

ℓ
h′ . (16)

Separability means we can write

h(t, y) =

∫

dmϕm(t) hm(y) , (17)

and the wave equation reduces to

ϕ̈m + (m2 + k2)ϕm = 0 , (18)

h′′
m −

4

ℓ
h′

m + e2y/ℓhm = 0 . (19)

The zero mode solution is

ϕ0(t) = A0+e+ikt + A0−e−ikt , (20)

h0(y) = B0 + C0e
4y/ℓ , (21)

and the continuum of massive KK modes (m > 0) is

ϕm(t) = Am+ exp
(

+i
√

m2 + k2t
)

+ Am− exp
(

−i
√

m2 + k2t
)

, (22)

hm(y)=e2y/ℓ

[

BmJ2

(

mℓey/ℓ
)

+CmY2

(

mℓey/ℓ
)

]

, (23)

where J2, Y2 are Bessel functions.
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The boundary condition for the perturbations is

h′(t, 0) = 0, which implies

C0 = 0, Cm = −
J1(mℓ)

Y1(mℓ)
Bm . (24)

The zero mode is normalizable, since

∣

∣

∣

∣

∣

∣

∞
∫

0

B0e
−2y/ℓdy

∣

∣

∣

∣

∣

∣

< ∞ . (25)

Its contribution to the gravitational potential V = 1/2h
(5)
00

gives the 4D result, V ∝ r−1. The contribution of the mas-

sive KK modes sums to a correction of the 4D potential. For

r ≪ ℓ, one obtains

V (r) ≈
GMℓ

r2
, (26)

which simply reflects the fact that the potential becomes truly

5D on small scales. For r ≫ ℓ,

V (r) ≈
GM

r

(

1 +
2ℓ2

3r2

)

, (27)

which gives the small correction to 4D gravity at low energies

from extra-dimensional effects.

The RS cosmological model has a Friedman-Robertson-

Walker brane in AdS5. On the brane, the standard conserva-

tion equation holds,

ρ̇ + 3H(ρ + p) = 0 , (28)

but the Friedmann equation is modified by an ultraviolet cor-

rection:

H2 =
8π

3M2
p

ρ
(

1 +
ρ

2σ

)

+
Λ

3
−

K

a2
. (29)

The ρ2/σ term is the ultraviolet term. At high energies,

ρ ≫ σ, gravity “leaks” off the brane and behaves increas-

ingly as 5D gravity – the massive KK modes dominate over

the zero-mode. At low energies, the zero-mode dominates

over the massive modes, and the standard Friedman equation

is recovered. Since σ ≫ 1 MeV, standard cosmology applies

well before nucleosynthesis.

When ρ ≫ σ, or equivalently Hℓ ≫ 1, in the early uni-

verse, then H2 ∝ ρ2. This means a given energy density

produces a greater rate of expansion than it would in general

relativity. As a consequence, inflation in the early universe is

modified in interesting ways.

In the the slow-roll approximation, for a 4D inflaton φ
with potential V (φ),

H2 ≈
8π

3M2
p

V

[

1 +
V

2σ

]

, (30)

φ̇ ≈ −
V ′

3H
. (31)

The brane-world correction term V/σ in Eq. (30) serves to

enhance the Hubble rate for a given potential energy, relative

to general relativity. Thus there is enhanced Hubble “fric-

tion” in Eq. (31), and brane-world effects will reinforce slow-

roll at the same potential energy. The slow-roll parameters at

high energies are modified relative to the general relativity

parameters as

ǫ ≈ ǫgr

[

4σ

V

]

, η ≈ ηgr

[

2σ

V

]

. (32)

In particular, this means that steep potentials which do not

give inflation in general relativity, can inflate the brane-world

at high energy and then naturally stop inflating when V drops

below σ. These models can be constrained because they typ-

ically end inflation in a kinetic-dominated regime and thus

generate a blue spectrum of gravitational waves, which can

disturb nucleosynthesis. They also allow for the novel possi-

bility that the inflaton could act as dark matter or quintessence

at low energies.

RS modifications at high energy mean that the same num-

ber of e-folds can be obtained as in general relativity for a

much lower value of the initial inflaton and inflationary po-

tential. This alters the relation between the inflationary pa-

rameters and the observations, so that constraints on various

inflationary potentials are modified. As an illustration, the

constraints on φ2 and φ4 potentials are shown in Fig. 2.

In addition, the amplitude of scalar perturbations is en-

hanced relative to the standard result at a fixed value of φ for

a given potential [9]:

A2
s ≈

(

512π

75M6
p

V 3

V ′2

)[

V

2σ

]3
∣

∣

∣

∣

∣

k=aH

. (33)

FIGURE 2. Constraints from CMB and large-scale structure data

on inflation models with quadratic and quartic potentials, where R
is the ratio of tensor to scalar amplitudes and n is the scalar spec-

tral index. The high energy (H.E.) and low energy (L.E.) limits are

shown, with intermediate energies in between, and the 1-, 2- and

3-σ contours are also shown. (From Ref. 8.)
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High-energy inflation on the brane also generates a

zero-mode (4D graviton mode) of tensor perturbations, and

stretches it to super-Hubble scales. This zero-mode has the

same qualitative features as in general relativity, remaining

frozen at constant amplitude while beyond the Hubble hori-

zon. Its amplitude is enhanced at high energies, although the

enhancement is much less than for scalar perturbations [10]:

A2
t ≈

(

32V

75M2
p

)[

3V 2

4σ2

]

, (34)

A2
t

A2
s

≈

(

M2
p

16π

V ′2

V 2

)

[

6σ

V

]

. (35)

Equation (35) means that RS brane-world effects suppress the

large-scale tensor contribution to CMB anisotropies.

To lowest order in the slow-roll approximation, we can

neglect the KK modes of the inflationary scalar and tensor

perturbations. Modifications to the CMB spectrum will arise

from KK corrections to the primordial initial conditions for

the perturbations, as well as from KK modes that are gener-

ated after inflation. The computation of these effects is still

an open problem, given the complexity of the 5D perturba-

tion problem [11]. In this problem, the anisotropic 5D grav-

itational field imprints an effective anisotropic stress on the

brane, which plays a crucial role.

4. DGP type brane-worlds: infrared modifica-

tions to GR

Could the late-time acceleration of the universe be a gravita-

tional effect? (Note that this would not remove the problem

of explaining why the vacuum energy does not gravitate.)

An historical precedent is provided by attempts to explain

the anomalous precession of Mercury’s perihelion by a “dark

planet”. In the end, it was discovered that a modification to

Newtonian gravity was needed.

An alternative to dark energy plus general relativity is

provided by models where the acceleration is due to modi-

fications of gravity on very large scales, r & H−1
0 . It is very

difficult to produce infrared corrections to general relativity

by modifying the 4D Einstein-Hilbert action; typically, in-

stabilities arise or the action has no natural motivation. The

DGP brane-world offers an alternative higher-dimensional

(and fully covariant) approach to the problem.

In the DGP case the brane has no tension and the bulk

is 5D Minkowski spacetime. Unlike the AdS bulk of the

RS model, the Minkowski bulk has infinite volume. Conse-

quently, there is no normalizable zero-mode of the graviton

in the DGP brane-world. Gravity leaks off the 4D Minkowski

brane into the bulk at large scales. At small scales, gravity is

effectively bound to the brane and 4D Newtonian dynamics

is recovered to a good approximation. The transition from

4- to 5D behaviour is governed by a crossover scale rc; the

weak-field gravitational potential behaves as

Ψ ∼

{

r−1 for r < rc

r−2 for r > rc
(36)

For a Friedman-Robertson-Walker brane in a Minkowski

bulk, gravity leakage at late times initiates acceleration – not

due to any negative pressure field, but due to the weakening

of gravity on the brane. 4D gravity is recovered at high en-

ergy via the lightest KK modes of the graviton, effectively

via an ultralight metastable graviton.

The energy conservation equation remains the same as in

general relativity, but the Friedman equation is modified:

ρ̇ + 3H(ρ + p) = 0 , (37)

H2 −
H

rc
=

8πG

3
ρ . (38)

This shows that at late times in a CDM universe, with ρ ∝

a−3 → 0, we have

H → H∞ =
1

rc
. (39)

Since H0 > H∞, in order to achieve acceleration at late

times, we require rc & H−1
0 , and this is confirmed by fit-

ting SNe observations, as shown in Fig. 3.

LCDM and DGP can both account for the SNe observa-

tions, with the fine-tuned values Λ ∼ H2
0 and rc ∼ H−1

0 re-

spectively. This degeneracy may be broken by observations

based on structure formation, since the two models suppress

the growth of density perturbations in different ways. The

FIGURE 3. Supernovae constraints on DGP models, where Ωrc
=

1/4r2
cH2

0 . The dotted (red) curve is the flat case, with closed mod-

els above and open models below; the dot-dashed (black) curve de-

marcates models that are currently accelerating (above) from those

decelerating (below); the shaded (blue) region contains expanding

models that bounce in the past, i.e. do not have a big bang. The

likelihood contours are fits to the SNe Gold data [dashed (brown)]

and Legacy data [solid (blue)]. (From Ref. 12.)

Rev. Mex. Fı́s. S 53 (4) (2007) 106–112



THE UNIVERSE AS A BRANE 111

distance-based SNe observations draw only upon the back-

ground 4D Friedman equation (38) in DGP models, and

therefore there are quintessence models in general relativity

that can produce precisely the same SNe redshifts as DGP.

By contrast, structure formation observations require the 5D

perturbations in DGP, and one cannot find equivalent general

relativity models.

For LCDM, the analysis of density perturbations is well

understood. For DGP it is much more subtle and compli-

cated. Although matter is confined to the 4D brane, gravity is

fundamentally 5D, and the bulk gravitational field responds

to and backreacts on density perturbations. The evolution of

density perturbations requires an analysis based on the 5D

nature of gravity. In particular, the 5D gravitational field pro-

duces an anisotropic stress on the 4D universe. Some previ-

ous results are based on inappropriately neglecting this stress

and all 5D effects – as a consequence, the 4D Bianchi iden-

tity on the brane is violated, i.e., ∇νGµν 6= 0. When the 5D

effects are incorporated [13], the 4D Bianchi identity is sat-

isfied (The results of Ref. 13 confirm and generalize those

of Ref. 14.). The modified evolution equation for density

perturbations is

∆̈ + 2H∆̇ = 4πG

{

1 −
(2Hrc − 1)

3[2(Hrc)2 − 2Hrc + 1]

}

ρ∆ .

(40)

The linear growth factor, g(a) = ∆(a)/a (i.e., normalized to

the flat CDM case, ∆ ∝ a), is shown in Fig. 4.

It must be emphasized that these results apply on sub-

horizon scales. On superhorizon scales, where the 5D effects

are strongest, the problem has yet to be solved. This solution

is necessary before one can compute the large-angle CMB

anisotropies. It should also be remarked that the late-time

asymptotic de Sitter solution in DGP cosmological models

has a ghost [15], which may have implications for the analy-

sis of density perturbations.

FIGURE 4. The growth factor g(a) = ∆(a)/a for LCDM (long

dashed) and DGP (solid, thick), as well as for a dark energy model

with the same expansion history as DGP (short dashed). DGP-4D

(solid, thin) shows the incorrect result in which the 5D effects are

set to zero. (From Ref. 13.)

5. Conclusion

In conclusion, brane-world models that are inspired by ideas

from string theory provide a rich and interesting phenomenol-

ogy, where higher-dimensional gravity effects in the early

and late universe can be explored, and predictions can be

computed for comparison with high-precision cosmological

data. Even for the simplest models, of RS and DGP type,

brane-world cosmology can bring new effects in inflation and

structure formation, and new ideas for dark energy. In the RS

and DGP type models, the 5D graviton, i.e., its KK modes,

plays a crucial role, which has been emphasized in this re-

view.
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