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Universe as a domain wall
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It is shown that the effective five-dimensional theory of the strongly coupled heterotic string is a gauged
version ofN51 five-dimensional supergravity with four-dimensional boundaries. For the universal supermul-
tiplets, this theory is explicitly constructed by a generalized dimensional reduction procedure on a Calabi-Yau
manifold. A crucial ingredient in the reduction is the retention of a ‘‘non-zero mode’’ of the four-form field
strength, leading to the gauging of the universal hypermultiplet by the graviphoton. We show that this theory
has an exact three-brane domain wall solution which reduces to Witten’s ‘‘deformed’’ Calabi-Yau background
upon linearization. This solution consists of two parallel three-branes with sources provided by the four-
dimensional boundary theories and constitutes the appropriate background for a reduction to four dimensions.
Four-dimensional space-time is then identified with the three-brane world volume.@S0556-2821~98!02122-5#

PACS number~s!: 11.25.Mj, 04.65.1e, 11.27.1d
n
c-

th
g

ita

i
ug
fi
a
h
he

tin

r-
nd
o

r
s

e
he
e
t

lu
he

ve-
at

ven

e
on.
is
e-

it a

ains
or-
is

is
ur-
n,
the
ed
e-
to
-

tion
he

d
s,
ral
fifth
ld.
sis-
he
on-
I. INTRODUCTION

The strongly coupledE83E8 heterotic string has bee
identified as the 11-dimensional limit of M-theory compa
tified on anS1/Z2 orbifold with a set ofE8 gauge fields at
each ten-dimensional orbifold fixed plane@1,2#. Witten has
shown that there exists a consistent compactification of
M-theory limit on a deformed Calabi-Yau three-fold, leadin
to a supersymmetricN51 theory in four dimensions@3#.
Matching at the tree level to the phenomenological grav
tional and grand-unified couplings@3,4#, one finds that the
orbifold must be larger than the Calabi-Yau radius, which
of the order of the 11-dimensional Planck length. This s
gests that there is a regime where the universe appears
dimensional. It is then important to find the five-dimension
effective action, describing the low-energy physics of t
strongly coupled heterotic string and which underlies p
nomenologically relevant four-dimensionalN51 supergrav-
ity models. Furthermore, this theory constitutes a new set
for early universe string~M-theory! cosmology, which has
traditionally been studied in the framework of the fou
dimensional effective action. Although some formal a
phenomenological aspects of the strongly coupled heter
string have been studied in the literature@5–30#, a derivation
of the five-dimensional effective action from Horˇava-Witten
theory and a detailed discussion of its properties have
mained missing.~Some aspects of five-dimensional physic
however, were considered in@4,24,31,32#.!

In the present paper, we derive this effective fiv
dimensional theory for the universal bulk fields, that is, t
gravity supermultiplet and the universal hypermultiplet. W
shall show that the relevant consistent reduction from 11
five dimensions on a Calabi-Yau manifold requires the inc
sion of non-zero values of the four-form field strength in t
0556-2821/99/59~8!/086001~9!/$15.00 59 0860
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internal Calabi-Yau directions. This leads to a gauged fi
dimensional supergravity action with a potential term th
has not previously been constructed. More precisely, gi
the universal hypermultiplet coset manifold@33# MQ

5SU(2,1)/SU(2)3U(1), we find that a subgroup
U(1),SU(2)3U(1) is gauged, with the vector field in th
gravity supermultiplet as the corresponding gauge bos
Owing to the potential, flat space is not a solution of th
five-dimensional theory without the Calabi-Yau space d
compactifying. However, the equations of motion do adm
three-brane solution that preserves half of the remainingD
55 supersymmetries where the Calabi-Yau space rem
compact. This is supported by source terms on the fixed
bifold planes of the five-dimensional space. Th
Bogoliubov-Prasad-Sommerfield~BPS! three-brane consti-
tutes the ‘‘vacuum’’ of the five-dimensional theory and it
the appropriate background for a further reduction to fo
dimensionalN51 supergravity theories. In such a reductio
four-dimensional space-time becomes identified with
three-brane world volume. We will show that the lineariz
version of this three-brane corresponds to Witten’s ‘‘d
formed’’ Calabi-Yau solution, which was constructed only
first non-trivial order in powers of the 11-dimensional New
ton constant. Thus, our solution represents a generaliza
of this original background, as it is an exact solution of t
effective low energy theory. The inversion of the Horˇava-
Witten construction by first performing a generalize
Kaluza-Klein reduction from 11 down to five dimension
and then finally from five to four dimensions, is more natu
for two reasons. First, as noted above, the scale of the
dimension is larger than that of the Calabi-Yau manifo
Second, the generalized Kaluza-Klein reduction is a con
tent truncation, meaning that, from the point of view of t
bulk theory, the heavy Calabi-Yau modes can simply be c
©1999 The American Physical Society01-1
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sistently set to zero without inducing higher-order corre
tions. The reduction from five to four dimensions will, how
ever, require carefully integrating out the non-trivial fiv
dimensional modes, giving rise to higher-order corrections
potential phenomenological interest. The relation betw
Witten’s deformed Calabi-Yau solution and the fiv
dimensional domain wall solution can also be described
ing brane language. As we will see, there is a natural in
pretation of Witten’s solution as a collection of five-bran
wrapped on two-cycles of the Calabi-Yau space and lying
the orbifold fixed planes. Reduced to five dimensions, th
then become three-branes spanning the orbifold fixed pla

In summary, we argue that it is a gauged version of fi
dimensional supergravity that is the correct arena for con
ering the effective action of the strongly coupledE83E8

heterotic string in the intermediate energy range. This eff
tive theory has three-brane domain-wall BPS solutions, w
the three-brane world volume corresponding to the orbif
planes. These solutions represent the correct backgroun
making contact with four-dimensional low-energy physics

Let us now summarize our conventions. We will consid
11-dimensional spacetime compactified on a Calabi-Y
spaceX, with the subsequent reduction down to four dime
sions effectively provided by a double-domain-wall bac
ground, corresponding to anS1/Z2 orbifold. We use coordi-
natesxI with indicesI ,J,K,...50,...,9,11 to parametrize th
full 11-dimensional spaceM 11. Throughout this paper, whe
we refer to orbifolds, we will work in the ‘‘upstairs’’ picture
with the orbifoldS1/Z2 in the x11-direction. We choose the
rangex11P@2pr,pr# with the end points being identified
The Z2 orbifold symmetry acts asx11→2x11. Then there
exist two ten-dimensional hyperplanes fixed under theZ2

symmetry which we denote byM10
( i ) , i 51,2. Locally, they

are specified by the conditionsx1150,pr. Indices with over-
bars, Ī ,J̄,K̄,...50,...,9, are used for the ten-dimension
space orthogonal to the orbifold. Upon reduction on
Calabi-Yau space we have a five-dimensional spacetimeM5
labeled by indicesa,b,g,...50,...,3,11. The orbifold fixed
planes become four-dimensional with indicesm,n,r,...
50,...,3. We use indicesA,B,C,...54,...,9 for theCalabi-
Yau space. The 11-dimensional Dirac-matricesG I with
$G I ,GJ%52gIJ are decomposed asG I5$ga

^ l,1^ lA%
where ga and lA are the five- and six-dimensional Dira
matrices, respectively. Here,l is the chiral projection matrix
in six dimensions withl251. Spinors in 11 dimensions wil
be Majorana spinors with 32 real components throughout
paper. In five dimensions we use symplectic-real spinors@35#
c i where i 51,2 is anSU(2) index, corresponding to th
automorphism group of theN51 supersymmetry algebra i
five dimensions. We will follow the conventions given
@36#. Fields will be required to have a definite behavior und
the Z2 orbifold symmetry inD511. We demand a bosoni
field F to be even or odd, that is,F(x11)56F(2x11). For
a spinorC the condition isG11C(2x11)5C(x11) so that the
projection to one of the orbifold planes leads to a te
dimensional Majorana-Weyl spinor with positive chiralit
Similarly, in five dimensions, bosonic fields will be eith
even or odd. We can choose a basis for theSU(2) automor-
08600
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phism group such that symplectic-real spinorsc i satisfy the
constraintg11c

i(2x11)5(t3) j
i c j (x11) whereta are the Pauli

spin matrices: sot35diag(1,21).

II. STRONGLY COUPLED HETEROTIC STRING
AND CALABI-YAU SOLUTIONS

To set the scene for our later discussion, we will no
briefly review the effective description of strongly couple
heterotic string theory as 11-dimensional supergravity w
boundaries given by Horˇava and Witten@1,2#. In addition,
we present, in a simple form, the solutions of this theory@3#
appropriate for a reduction toN51 theories in four dimen-
sions using the explicit form of these solutions given in R
@20#.

The bosonic part of the action is of the form

S5SSG1SYM ~1!

whereSSG is the familiar 11-dimensional supergravity,

SSG52
1

2k2 E
M11

A2gFR1
1

24
GIJKLGIJKL

1
&

1728
e I 1 . . . I 11CI 1I 2I 3

GI 4 . . . I 7
GI 8 . . . I 11G , ~2!

andSYM are the twoE8 Yang-Mills theories on the orbifold
planes explicitly given by1

SYM52
1

8pk2 S k

4p D 2/3E
M10

~1!
A2gH tr~F ~1!!22

1

2
trR2J

2
1

8pk2 S k

4p D 2/3E
M10

~2!
A2gH tr~F ~2!!22

1

2
trR2J .

~3!

HereFĪ J̄
( i ) are the twoE8 gauge field strengths andCIJK is the

3-form with field strengthGIJKL524] [ ICJKL] . In order for
the above theory to be supersymmetric as well as anom
free, the Bianchi identity forG should receive a correction
such that

~dG!11Ī J̄K̄L̄52
1

2&p
S k

4p D 2/3

3$J~1!d~x11!1J~2!d~x112pr!% Ī J̄K̄L̄ ~4!

1We note that there is a debate in the literature about the pre
value of the Yang-Mills coupling constant in terms ofk. While we
quote the original value@2,37# the value found in Ref.@10# is
smaller. In the second case, the coefficients in the Yang-Mills
tion ~3! and the Bianchi identity~4! should both be multiplied by
221/3. This potential factor will not be essential in the followin
discussion as it will simply lead to a redefinition of the fiv
dimensional coupling constants. We will comment on this po
later on.
1-2
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UNIVERSE AS A DOMAIN WALL PHYSICAL REVIEW D 59 086001
where the sources are given by

J~ i !5trF ~ i !`F ~ i !2
1

2
trR`R. ~5!

Under the Z2 orbifold symmetry, the field component
gĪ J̄ ,g11,11,CĪ J̄11 are even, whilegĪ 11,CĪ J̄K̄ are odd. We note
that the above boundary actions contain, in addition to
Yang-Mills terms, trR2 terms which were not part of th
original theory derived in@2#. It was argued in Ref.@20# that
these terms are required by supersymmetry, since they
with theR2 terms in the Bianchi identity~4! in analogy to the
weakly coupled case. The existence of these terms will b
some importance in the following.

One way to view this theory is to draw an analogy b
tween the orbifold planes and D-branes in type II theories
collection of Dp-branes is described by aU(N) gauge
theory. The Dp-brane charge is measured by tr15N, while
exciting a D(p22)-brane charge corresponds to havi
a non-trivial trF, a D(p24)-brane charge correspond
to non-trivial trF`F and so on@38#. Similarly, if the origi-
nal D-branes are on a curved manifold, then there is a
an induced charge for lower-dimensional branes given
trR`R and higher even powers@39#. Applying this picture
to our situation, the role of theU(N) gauge field on the
D-brane world volume is here played by theE8 gauge fields
on the orbifold planes. The correction to the Bianchi ident
then has the interpretation of exciting an M5-brane charg
the orbifold plane. In Ref.@13# this picture has been mad
explicit by constructing a gauge five-brane in this theory.

We would now like to discuss solutions of the abo
theory which preserve four of the 32 supercharges lead
upon compactification, to four dimensionalN51 supergravi-
ties. This task is significantly complicated by the fact that
sources in the Bianchi identity~4! are located on the orbifold
planes with the gravitational part distributed equally betwe
the two planes. While the standard embedding of the s
connection into the gauge connection

trF ~1!`F ~1!5trR`R ~6!

leads to vanishing source terms in the weakly coupled
erotic string Bianchi identity~which, in turn, allows one to
set the antisymmetric tensor gauge field to zero!, in the
present case, one is left with non-zero sources6trR`R on
the two hyperplanes. As a result, the antisymmetric ten
field G and, hence, the second term in the gravitino sup
symmetry variation,

dC I5DIh1
&

288
~G IJKLM28gIJGKLM !GJKLMh1¯ ,

~7!

do not vanish. Thus, straightforwardly compactifying on
Calabi-Yau manifold no longer provides a solution to t
Killing spinor equationdC I50. The problem can, howeve
be treated perturbatively in powers of the 11-dimensio
Newton constantk. To lowest order, one can start with
manifoldX3S1/Z23M4 whereX is a Calabi-Yau three-fold
andM4 is four-dimensional Minkowski space. This manifo
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has anx11-independent~and hence chiral! Killing spinor h
which corresponds to four preserved supercharges. Then
can determine the first order corrections to this backgro
and the spinorh so that the gravitino variation vanishes
orderk2/3.

The existence of such a distorted background solution
orderk2/3 has been demonstrated in Ref.@3#. To see its ex-
plicit form, let us start with the zeroth order metric

ds11
2 5hmndxmdxn1R0

2~dx11!21V0
1/3VABdxAdxB, ~8!

where VAB is a Calabi-Yau metric with Ka¨hler form vab̄

5 iVab̄ . ~Here a and b̄ are holomorphic and anti
holomorphic indices.! To keep track of the scaling propertie
of the solution, we have introduced moduliV0 andR0 for the
Calabi-Yau volume and the orbifold radius, respectively.
was shown in@3# that, to orderk2/3, the metric can be written
in the form

ds11
2 5~11b̂!hmndxmdxn1R0

2~11ĝ !~dx11!2

1V0
1/3~VAB1hAB!dxAdxB ~9!

where the functionsb̂, ĝ and hAB depend onx11 and the
Calabi-Yau coordinates. Furthermore, as we have discus
GABCD andGABC11 receive a contribution of orderk2/3 from
the Bianchi identity source terms. To get the general expl
form of the corrections, one has to solve the relations giv
in Ref. @3#. This can be done by dualizing the antisymmet
tensor field and using a harmonic expansion on the Cal
Yau space@20#.

Here, we quote those results simplified in two essen
ways. First, we drop all terms corresponding to non-z
eigenvalue harmonics on the Calabi-Yau space. These te
will be of no relevance to the low energy theory, since th
correspond to heavy Calabi-Yau modes which decouple
this order. Second, we write only the one massless term
is related to the Calabi-Yau breathing mode. This will
sufficient for all applications dealing only with the univers
moduli. Given these simplifications, the corrections are
plicitly

b̂52
&R0

3V0
2/3a~ ux11u2pr/2! ~10!

ĝ5
2&R0

3V0
2/3 a~ ux11u2pr/2! ~11!

hAB5
&R0

3V0
2/3a~ ux11u2pr/2!VAB ~12!

GABCD5
1

6
aeABCD

EFvEFe~x11! ~13!

GABC1150 ~14!

with
1-3
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a52
1

8&pv
S k

4p D 2/3E
X
v`trR~V!`R~V!,

v5E
X
AV. ~15!

Heree(x11) is the step function which is11 (21) for x11

positive ~negative!. Note that, by dropping the massiv
modes, these expressions take a very simple form repre
ing a linear increase of the corrections along the orbifo
Even more significantly, and unlike the exact solution
cluding the heavy modes, the above approximation leads
corrected metricVAB1hAB that is still of Calabi-Yau type a
each point on theS1/Z2 orbifold. The Calabi-Yau volume
~and, if all moduli are included, also its shape!, however, is
continuously changing across the orbifold. More genera
one can think of the internal part of the corrected metric a
curve in the Calabi-Yau moduli space.

Returning to the D-brane perspective, one can view
above configuration as the linearized solution for a collect
of five-branes embedded in the orbifold planes. The rela
~6! fixes equal amounts of five-brane charge,1

2 trR`R, on
each orbifold fixed plane, where the five-branes are confi
to reside. Since trR`RPH2,2(X), we can associate a differ
ent five-brane charge for each independent elemen
H2,2(X). The five-branes themselves are associated w
Poincare´ dual cycles. Thus they span the non-compact fo
dimensional space together with a two-cycle in the Cala
Yau space. In particular, from the five-dimensional point
view, they are three-branes localized on the orbifold plan
Witten’s construction ensures that this configuration
branes preserves one-eighth of the supersymmetry. Fin
restricting to just the Calabi-Yau breathing modes cor
sponds to keeping only the five-brane which spans the h
morphic two-cycle in the Calabi-Yau space defined by
Kähler form.

III. FIVE-DIMENSIONAL EFFECTIVE ACTION

Phenomenologically, there is a regime where the unive
appears five-dimensional. We would, therefore, like to der
an effective theory in the space consisting of the usual f
space-time dimensions and the orbifold, based on the b
ground solution discussed in the previous section. As
have already mentioned, we will consider universal z
modes only, that is, the five-dimensional graviton superm
tiplet and the breathing mode of the Calabi-Yau space, al
with its superpartners. These form a hypermultiplet in fi
dimensions. Furthermore, to keep the discussion as simp
possible, we will not consider boundary gauge matter fie
This simple framework suffices to illustrate our main ide
The general case will be presented elsewhere@40#.

Naively, one might attempt to perform the actual redu
tion directly on the background given in Eqs.~9! and ~10!–
~14!. This would, however, lead to a complicated fiv
dimensional theory with explicitx11-dependence in the
action. Moreover, this background preserves only four sup
charges whereas the minimal supergravity in five dimensi
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(N51) is invariant under twice this amount of supersymm
try.

A useful observation here is that, since we retain the
pendence on the orbifold coordinate, we can actually abs
the metric deformations in Eqs.~9! and ~10!–~14! into the
five-dimensional metric moduli. That is, thex11-dependent
scale factorsb̂ and ĝ of the four-dimensional space and o
the orbifold can be absorbed into the five-dimensional~Ein-
stein frame! metric gab while, analogously, the variation o
the Calabi-Yau volume along the orbifold encoded inhAB
can be absorbed into a modulusV.2 More precisely, we can
perform the Kaluza-Klein reduction on the metric

ds11
2 5V22/3gabdxadxb1V1/3VABdxAdxB. ~16!

This rewriting suggests a change of perspective: rather t
reducing on the Witten vacuum, we can try to find an effe
tive five-dimensional theory where we recover the Witt
vacuum as a particular solution.

We see that, since we have absorbed the deformation
the moduli, the background corresponding to the metric~16!
preserves eight supercharges, the appropriate number
reduction down to five dimensions. It might appear that
are simply performing a standard reduction of 1
dimensional supergravity on a Calabi-Yau space to five
mensions, for example, in the way described in Ref.@41#. If
this were the case, then it would be hard to understand h
the resulting five-dimensional theory could encode any inf
mation about the deformed Calabi-Yau background. Th
are, however, two important ingredients that we have not
included. One is obviously the existence of the bound
theories. We will return to this point shortly. First, howeve
let us explain a somewhat unconventional addition to
bulk theory that must be included.

Although we could absorb all metric corrections into t
five-dimensional metric moduli, the same is not true for t
4-form field. Specifically, for the nonvanishing compone
GABCD in Eq. ~13! there is no corresponding zero mod
field.3 Therefore, in the reduction, we should take this part
G explicitly into account. In the terminology of Ref.@42#,
such an antisymmetric tensor field configuration is calle
‘‘non-zero mode.’’ More generally, a non-zero mode is
background antisymmetric tensor field that solves the eq
tions of motion but, unlike antisymmetric tensor fie
moduli, has nonvanishing field strength. Such configu
tions, for ap-form field strength, can be identified with th
cohomology groupHp(M ) of the manifoldM and, in par-

2Note that we could not apply a similar method for a reducti
down to four dimensions, as all moduli fields would then bex11

independent. In this case, one should work with the backgroun
the form ~9!, ~10!–~14! as done in Ref.@20#.

3This can be seen from the mixed part of the Bianchi iden
]aGABCD50 which shows that the constanta in Eqs. ~10!–~14!
cannot be promoted as stands to a five-dimensional field. It is p
sible to dualize in five dimensions, so that the constanta is pro-
moted to a five-form field, but we will not pursue this formulatio
here.
1-4



e
p

tin

so

e

le
t

-

th

in
in
e
ur
ur
b

ei

ee

er-
q.
e,
rce

e-
is
ace

es.

ur-

lds

nt

ther
ro
ly,

the
the

gi-
the
e-

c-
n

UNIVERSE AS A DOMAIN WALL PHYSICAL REVIEW D 59 086001
ticular, exist if this cohomology group is nontrivial. In th
case under consideration, the relevant cohomology grou
H4(X) which is nontrivial for a Calabi-Yau manifoldX since
h2,25h1,1>1. Again, the form ofGABCD in Eq. ~13! is some-
what special, reflecting the fact that we are concentra
here on the universal moduli. In the general case,GABCD
would be a linear combination of all harmonic~2,2!-forms.

The complete configuration for the antisymmetric ten
field that we use in the reduction is given by

Cabg , Gabgd524] [aCbgd]

CaAB5
1

6
AavAB , GabAB5FabvAB52] [aAb]vAB ,

CABC5
1

6
jvABC1

1

6
v̄ABC , GaABC5]ajvABC1]av̄ABC

~17!

and the non-zero mode is

GABCD5
a

6
eABCD

EFvEFe~x11!, ~18!

wherea was defined in Eq.~15!. Here,vABC is the harmonic
~3,0! form on the Calabi-Yau space andj is the correspond-
ing ~complex! scalar zero mode. In addition, we have a fiv
dimensional vector fieldAa and 3-formCabg , which can be
dualized to a scalars. The total bulk field content of the
five-dimensional theory is then given by the gravity multip
(gab ,Aa ,ca

i ) together with the universal hypermultiple

(V,s,j,j̄,z i) whereca
i and z i are the gravitini and the hy

permultiplet fermions, respectively, andi 51,2. From their
relations to the 11-dimensional fields, it is easy to see
gmn ,g11,11,A11,s must be even under theZ2 action whereas
gm11,Am ,j must be odd.

Examples of compactifications with non-zero modes
pure 11-dimensional supergravity on various manifolds
cluding Calabi-Yau three-folds have been studied in R
@43#. There is, however, one important way in which o
non-zero mode differs from other non-zero modes in p
11-dimensional supergravity. Whereas the latter may
viewed as an optional feature of generalized Kaluza-Kl
reduction, the non-zero mode in Horˇava-Witten theory that
we have identified cannot be turned off. This can be s
from the fact that the constanta in expression~18! cannot be
08600
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set to zero, unlike the case in pure 11-dimensional sup
gravity where it would be arbitrary, since it is fixed by E
~15! in terms of Calabi-Yau data. This fact is, of cours
intimately related to the existence of the boundary sou
terms, particularly in the Bianchi identity~4!. As we will see,
keeping the non-zero mode in the derivation of the fiv
dimensional action is crucial to finding a solution of th
theory that corresponds to the deformed Calabi-Yau sp
discussed in the previous section.

Let us now turn to a discussion of the boundary theori
In the five-dimensional spaceM5 of the reduced theory, the
orbifold fixed planes constitute four-dimensional hypers
faces which we denote byM4

( i ) , i 51,2. Clearly, since we
have used the standard embedding, there will be anE6 gauge
field Am

(1) accompanied by gauginos and gauge matter fie
on the orbifold planeM4

(1) . For simplicity, we will set these
gauge matter fields to zero in the following. The field conte
of the orbifold planeM4

(2) consists of anE8 gauge fieldAm
(2)

and the corresponding gauginos. In addition, there is ano
important boundary effect which results from the non-ze
internal gauge field and gravity curvatures. More precise
note that

E
X
AVtrFAB

~1!F ~1!AB5E
X
AVtrRABRAB

5216&pvS 4p

k D 2/3

a,

FAB
~2!50. ~19!

In view of the boundary actions~3!, it follows that we will
retain cosmological type terms with opposite signs on
two boundaries. Note that the size of those terms is set by
same constanta, given by Eq.~15!, which determines the
magnitude of the non-zero mode. The boundary cosmolo
cal terms are another important ingredient in reproducing
11-dimensional background as a solution of the fiv
dimensional theory.

We can now compute the five-dimensional effective a
tion of Hořava-Witten theory. Using the field configuratio
~16!–~19! we find from the action~1!–~3! that

S55Sgrav1Shyper1Sbound ~20!

where
Sgrav52
1

2k5
2 E

M5

A2gFR1
3

2
FabF ab1

1

&
eabgdeAaFbgFdeG ~21!

Shyper52
1

2k5
2 E

M5

A2gF 1

2V2 ]aV]aV1
2

V
]aj]aj̄1

V2

24
GabgdGabgd

1
&

24
eabgdeGabgd@ i ~j]ej̄2 j̄]ej!12ae~x11!Ae#1

1

3V2 a2G ~22!
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bound k5
2

M4
~1! k5

2
M4

~2! 16paGUT
(
i 51 M4

~ i ! mn

~23!
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In this expression, we have now dropped higher-deriva
terms. The four-form field strengthGabgd is subject to the
Bianchi identity

~dG!11mnrs52
k5

2

4&paGUT

3$J~1!d~x11!1J~2!d~x112pr!%mnrs

~24!

which follows directly from the 11-dimensional Bianch
identity ~4!. The currentsJ( i ) have been defined in Eq.~5!.
The five-dimensional Newton constantk5 and the Yang-
Mills coupling aGUT are expressed in terms of 11
dimensional quantities as4

k5
25

k2

v
, aGUT5

k2

2v S 4p

k D 2/3

. ~25!

We have checked the consistency of the truncation wh
leads to the above action by an explicit reduction of
11-dimensional equations of motion to five dimensions. N
that the potential terms in the bulk and on the bounda
arise precisely from the inclusion of the non-zero mode a
the gauge and gravity field strengths, respectively. Since
have compactified on a Calabi-Yau space, we expect
bulk part of the above action to have eight preserved su
charges and, therefore, to correspond to minimalN51 su-
pergravity in five dimensions. Accordingly, let us compa
the result~21!–~23! to the knownN51 supergravity-matter
theories in five dimensions@34,36,44,45#.

In these theories, the scalar fields in the universal hyp
multiplet parametrize a quaternionic manifold with cos
structureMQ5SU(2,1)/SU(2)3U(1). Hence, to compare
our action to these we should dualize the three-formCabg to
a scalar fields by setting~in the bulk!

Gabgd5
1

&V2
eabgde@]es2 i ~j]ej̄2 j̄]ej!22ae~x11!A e#.

~26!

Then the hypermultiplet part of the action~22! can be written
as

4The following relations are given for the normalization of th
11-dimensional action as in Eq.~1!. If instead the normalization o
@10# is used, the expression foraGUT gets rescaled toaGUT

521/3(k2/2v)(4p/k)2/3. Otherwise the action and Bianchi ident
ties are unchanged, except that in the expression~19! for a the
right-hand side is multiplied by 21/3.
08600
e

h
e
e
s
d
e
e
r-

r-
t

Shyper52
v

2k2 E
M5

A2gFhuv¹aqu¹aqv1
1

3
V22a2G

~27!

where qu5(V,s,j,j̄). The covariant derivative¹a is de-
fined as¹aqu5]aqu1ae(x11)A aku with ku5(0,22,0,0).
The sigma model metrichuv5]u]vKQ can be computed
from the Kähler potential

KQ52 ln~S1S̄22CC̄!, S5V1jj̄1 is, C5j.
~28!

Consequently, the hypermultiplet scalarsqu parametrize a
Kähler manifold with metrichuv . It can be demonstrated
thatku is a Killing vector on this manifold. Using the expres
sions given in Ref.@46#, one can show that this manifold i
quaternionic with coset structureMQ . Hence, the terms in
Eq. ~27! that are independent ofa describe the known form
of the universal hypermultiplet action. How do we interpr
the extra terms in the hypermultiplet action depending ona?
A hint is provided by the fact that one of thesea-dependent
terms modifies the flat derivative in the kinetic energy to
generalized derivative¹a . This is exactly the combination
that we would need if one wanted to gauge theU(1) sym-
metry onMQ corresponding to the Killing vectorku, using
the gauge fieldAa in the gravity supermultiplet. In fact
investigation of the other terms in the action, including t
fermions, shows that the resulting five-dimensional theory
precisely a gauged form of supergravity. Not only is aU(1)
isometry ofMQ gauged, but at the same time aU(1) sub-
group of theSU(2) automorphism group is also gauged.

What about the remaininga-dependent potential term in
the hypermultiplet action? FromD54, N52 theories, we
are used to the idea that gauging a symmetry of the qua
nionic manifold describing hypermultiplets generically intr
duces potential terms into the action when supersymmetr
preserved~see for instance@47#!. Such potential terms can b
thought of as the generalization of pure Fayet-Iliopoulos~FI!
terms. This is precisely what happens in our theory as w
with the gauging of theU(1) subgroup inducing thea-
dependent potential term in Eq.~27!. The general gauged
action will be discussed in more detail in@40#. Certain pure
FI terms were previously considered in@44#, but, to our
knowledge, such a theory with general gauging has not b
constructed previously in five dimensions.

The phenomenon that the inclusion of non-zero mo
leads to gauged supergravity theories has already been
served in type II Calabi-Yau compactifications@48,49#, while
the observation that the vacua of gauged theories corresp
to dimensional reduction with non-trivial form-fields has
long history. Recent results relating to intersecting branes
described in@50#. From the form of the Killing vector, we
1-6



d

a
e
on
r

n
-

ap

na

ry
de
de
ul
fiv
al
nd
-

ee
th
ha

e
c
y,

ace
of
s a
re-
has
ding
-
of

ve-
the
re-
x-
ons
-

of
the

ne
be
ne
e-
ree-
ve
air

s
ally,

ne

rary

is

le
llel

in-
up-
urce
the
ible
nes

nd

the

UNIVERSE AS A DOMAIN WALL PHYSICAL REVIEW D 59 086001
see that it is only the scalar fields, dual to the four-form
Gabgd , which is charged under theU(1) symmetry. Its
charge is fixed bya. We note that this charge is quantize
since, suitably normalized, trR`R is an element of
H2,2(X,Z). In the brane description of the theory, this is
reflection of the fact that the five-brane charge is quantiz

To analyze the supersymmetry properties of the soluti
shortly to be discussed, we need the supersymmetry va
tions of the fermions associated with the theory~20!. They
can be obtained either by a reduction of the 11-dimensio
gravitino variation~7! or by generalizing the known five
dimensional transformations@36,45# by matching onto
gauged four-dimensionalN52 theories. It is sufficient for
our purposes to keep the bosonic terms only. Both
proaches lead to

dca
i 5Dae i1

& i

8
~ga

bg24da
bgg!F bge i

2
1

2
V21/2@]aj~t12 i t2! i

j2]aj̄~t11 i t2! i
j #e

j

2
& i

96
Vea

bgdeGbgde~t3! i
je

j

2
&

12
aV21e~x11!ga~t3! i

je
j

dz i5
&

48
VeabgdeGabgdgee

i

2
i

2
V21/2ga@]aj~t12 i t2! i

j1]aj̄~t11 i t2! i
j #e

j

1
i

2
V21gb]bVe i2

i

&
aV21e~x11!~t3! i

je
j ~29!

wheret i are the Pauli spin matrices.
In summary, we see that the relevant five-dimensio

effective theory for the reduction of Horˇava-Witten theory is
a gaugedN51 supergravity theory with bulk and bounda
potentials. While we have calculated the theory only to or
k2/3, one would expect that M-theory corrections can be
scribed in the same type of theory. For this reason, it wo
be very desirable to construct the most general gauged
dimensionalN51 supergravity theory coupled to gener
N51 four-dimensional boundary theories with vector a
chiral multiplets@40#. In the context of global supersymme
try, such boundary theories in five dimensions have b
studied in Ref.@31#. In this paper, we content ourselves wi
having identified some of the crucial generalizations t
would be required.

IV. DOMAIN-WALL SOLUTION

Let us recapitulate what we have done so far. To arrive
a simple form for the five-dimensional effective action, w
have absorbed the deformation of the Calabi-Yau ba
ground metric into the five-dimensional moduli. Effectivel
08600
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we could then carry out the reduction on a Calabi-Yau sp
but had to explicitly keep the antisymmetric tensor part
the background as a non-zero mode in the reduction. A
consequence, although Witten’s original background p
served only four supercharges, the effective bulk theory
twice that number of preserved supercharges, correspon
to minimal N51 supergravity in five dimensions. For con
sistency, we should now be able to find the deformations
the Calabi-Yau background as solutions of the effective fi
dimensional theory. These solutions should break half
supersymmetry of the five-dimensional bulk theory and p
serve Poincare´ invariance in four dimensions. Hence, we e
pect there to be a three-brane domain wall in five dimensi
with a world volume lying in the four uncompactified direc
tions. This domain wall can be viewed as the ‘‘vacuum’’
the five-dimensional theory, in the sense that it provides
appropriate background for a reduction to theD54, N51
effective theory.

This expectation is made stronger if we recall the bra
picture of Witten’s background. We argued that this could
described by five-branes with equal amounts of five-bra
charge residing on the orbifold planes. From the fiv
dimensional perspective, the five-branes appear as th
branes residing on the orbifold fixed planes. Thus, in fi
dimensions, Witten’s background must correspond to a p
of parallel three-branes.

We notice that the theory~20! has all of the prerequisite
necessary for such a three-brane solution to exist. Gener
in order to have a (D22)-brane in aD-dimensional theory,
one needs to have a (D21)-form field or, equivalently, a
cosmological constant. This is familiar from the eight-bra
@51# in massive type IIA supergravity in ten dimensions@52#,
and has been systematically studied for theories in arbit
dimension obtained by generalized~Scherk-Schwarz! dimen-
sional reduction@53#. In our case, this cosmological term
provided by the bulk potential term in the action~20!. From
the viewpoint of the bulk theory, we could have multip
three-brane solutions with an arbitrary number of para
branes located at various places in thex11 direction. As is
well known, however, elementary brane solutions have s
gularities at the location of the branes, needing to be s
ported by source terms. Natural candidates for those so
terms, in our case, are the boundary actions. Given
anomaly-cancellation requirements, this restricts the poss
solutions to those representing a pair of parallel three-bra
corresponding to the orbifold planes.

From the above discussion, it is clear that in order to fi
a three-brane solution, we should start with the ansatz

ds5
25a~y!2dxmdxnhmn1b~y!2dy2

V5V~y! ~30!

wherea and b are functions ofy5x11 and all other fields
vanish. The general solution for this ansatz, satisfying
equations of motion derived from action~20!, is given by
1-7
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a5a0H1/2

b5b0H2, H5
&

3
auyu1c0

V5b0H3 ~31!

wherea0 , b0 andc0 are constants. We note that the boun
ary source terms have fixed the form of the harmonic fu
tion H in the above solution. Without specific informatio
about the sources, the functionH would generically be glued
together from an arbitrary number of linear pieces w
slopes (6&/3)a. The edges of each piece would then ind
cate the location of the source terms. The necessity of ma
ing the boundary sources aty50 and pr, however, has
forced us to consider only two such linear pieces, namely
P@0,pr# andyP@2pr,0#. These pieces are glued togeth
at y50 andpr ~recall here that we have identifiedpr and
2pr). Therefore, we have

]y
2H5

2&

3
a@d~y!2d~y2pr!# ~32!

which shows that the solution represents two parallel thr
branes located at the orbifold planes.

We stress that this solution solves the five-dimensio
theory ~20! exactly, whereas the original deformed Cala
Yau solution was only an approximation to orderk2/3. It is
straightforward to show that the linearized version of E
~31!, that is, the expansion to first order ina5O(k2/3), co-
incides with Witten’s solution~9!, ~10!–~14! upon appropri-
ate matching of the integration constants. Hence, we h
found an exact generalization, good to all orders ink, of the
linearized 11-dimensional solution.

Of course, we still have to check that our solution p
serves half of the supersymmetries. Whengab andV are the
only non-zero fields, the supersymmetry transformations~29!
simplify to

dca
i 5Dae i2

&

12
ae~y!V21ga~t3! i

je
j

dz i5
i

2
V21gb]bVe i2

i

&
ae~y!V21~t3! i

je
j .

The Killing spinor equationsdca
i 50, dz i50 are satisfied

for the solution~31! if we require that the spinore i be given
by

e i5H1/4e0
i , g11e0

i 5~t3! j
i e0

j ~33!
08600
-
-

h-

r

e-

l
-

.

ve

-

where e0
i is a constant symplectic Majorana spinor. Th

shows that we have indeed found a BPS solution preser
four of the eight bulk supercharges.

Let us discuss the meaning of this solution in some det
First, we notice that it fits the general scheme of domain w
solutions in various dimensions.5 It is, however, a new solu-
tion to the gauged supergravity action~20! in five dimen-
sions which has not been constructed previously. In addit
its source terms are naturally provided by the boundary
tions resulting from Horˇava-Witten theory. Most impor-
tantly, it constitutes the fundamental vacuum solution o
phenomenologically relevant theory. The two parallel thre
branes of the solution, separated by the bulk, are oriente
the four uncompactified space-time dimensions, and ca
the physical low-energy gauge and matter fields. Theref
from the low-energy point of view where the orbifold is n
resolved the three-brane world volume is identified w
four-dimensional space-time. In this sense the Universe
sides on the world volume of a three-brane.

Although we have found an exact solution to the~lowest
order! low energy theory, thereby improving previous r
sults, it is not clear whether the solution will be exact in t
full theory. Strominger@46# has argued that the all-loop co
rections~corresponding to corrections to the effective acti
proportional to powers ofk4/3/V, in our notation! to the
quaternionic metric of the universal hypermultiplet can
actually absorbed into a shift ofV, so that the metric is
unchanged. This implies that our solution would be un
fected by such corrections. On the other hand, we have
general argument why the solution should be protec
against corrections from higher derivative terms.

In any case, we believe that pursuing the construction
five-dimensional gauged supergravities with boundaries,
the analysis of their soliton structure, in the way indicated
this paper might provide important insights into low ener
particle phenomenology as well as early universe cosm
ogy.
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@2# P. Hořava and E. Witten, Nucl. Phys.B475, 94 ~1996!.
@3# E. Witten, Nucl. Phys.B471, 135 ~1996!.
@4# T. Banks and M. Dine, Nucl. Phys.B479, 173 ~1996!.
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