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The mechanism of the change of reaction character from radical to ionic ones is studied 
in the scope of the unrestricted Hartree-Fock theory for the simplest example of dissociation 
reaction of asymmetric two-center two-electron system. It is shown that the spin density 
wave ground state, which corresponds to the ground state of radical nature, disappears when 
the asymmetry of two atoms exceeds a certain limit and a closed shell state of ionic charac­
ter becomes the ground one. It is shown that the transition of the ground state character 
by introduction of asymmetry of atoms is easier at a small interatomic distance than at large 
distances. All time reversal invariant solutions of the UHF equation for the asymmetric 
two-center two-electron system are obtained. It is shown that the UHF theory provides 
satisfactory approximations to exact eigenstates except for a failure to approximate the singly 
excited singlet state. As an additional remark, instability of the symmetric closed shell 
ground state electronic configuration of ortho-benzyne is indicated. 

§ 1. Introduction 

In a previous paper1l of this series (hereafter we cite it as I) we showed 
that in many kinds of chemical reactions the conventional closed shell ground 
state electronic cofiguration becomes unstable and indicated for the case of the 
homopolar two-center two-electron system that ~ new stable ground state of spin 
density wave (SDW) type appears accompanying the instability. We interpreted 
the appearance of the SDW ground state as a theoretical indication of radical 
nature of the reaction. Under this theoretical characterization of radical reactions, 
a question arises how to describe ionic reactions in the scope of the unrestricted 
Hartree-Fock (UHF) theory. It is a general situation of ionic reactions that 
heterologous atoms of different electronegativities are involved. We study, in 
this paper, the dissociation reaction of an asymmetric two-center two-electron 
system as the simplest system to be able to see how the nature of the reaction 
changes by introduction of heterologous atoms. We shall show that if the 
asymmetry of the atoms exceeds a certain limit, the SDW ground state disappears 
and a closed shell state of ionic character becomes the ground state. Besides 
this principal result, we shall obtain all time reversal invariant solutions of the 
UHF equation for asymmetric two-center two-electron system. We shall finally 
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The Unrestricted Hartree-Fock Theory of Chemical Reactions. II 23 

add a remark about the instability of the symmetric electronic configuration of 

benzyne. 

The notation used in this paper is the same as that in I unless explicitly stated. 

§ 2. The UHF equation for two-center two-electron system 

The occupied orbitals of an UHF state of a two-center two-electron system 

IS expanded by the orthogonalized atomic orbitals X1 and X3 of the two centers as 

(2·1) 

We consider only the real orbitals satisfying the requirement of time reversal 

mvanance. The Hartree-Fock (HF) energy of the UHF state is given by 

(I· 5 · 2). Substituting (2 ·1) into (I· 5 · 2), we obtain 

EH=e+2(a sin q; +b cos q;) cos (J 

+ _!_ (c-d)cos 2q;+ _!_ (c+d)cos 2rJ+ f sin 2q;, (2·2) 
2 2 2 

where q; and (J are the parameters defined by 

q;=t(J.++J.-),} 

fJ=i(J.+-;.-) 

and 

e = Kn + K22 + ·Hrn + r22 + 2ru), 1 
a= Kn + t<x1X2I X1X1 + X2X2) , 

:::~~~~~~~;r:~~n-r3z)}. J 
d = <x~xzl X1X2> , 

f= <x1X2IX1X1-XzX2). 

(2·3) 

(2·4) 

From the variation of (2 · 2) with respect to (J and q;, we obtain the equations 

to determine them : 

{a sin q;+b cos q;+ (c+d)cos fJ}sin fJ=O, (2·5) 

(a cos q;-b sin q;) cos (J-_!_(c-d)sin 2q;+ f cos 2q;=0. (2·6) 
. . - 2 2 

We may solve Eqs. (2·5) and (2·6) without any approximation, but in order to 

avoid unnecessary complications, we use the neglect of differential overlap (NDO) 

approximation in the following discussions. In the case of dissociation reaction, 

no essential feature is lost by the NDO approximation. In the NDO approxi­

mation, 
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24 H. Fukutome 

a=Ku, 

d=O, 

We introduce the following quantities: 

f=O.} 

e=t+ (EH-e)/2c ') 
p=b/c, 

q= -a/c, 

then Eqs. (2·2), (2·5) and (2·6) become 

e= t+ (p cos rp. -q sin q;) cos(}+ t(cos 2q; +cos 20"), 

(p cos rp- q sin rp +cos 0") sin (} = 0 , 

(p sin rp + q cos rp) cos (}+sin rp cos rp = 0 . 

(2·7) 

(2·8) 

(2·9) 

(2·10) 

(2·11) 

The UHF equation in the form of (2·10) and (2·11) contains the two 
parameters p and q. The parameter q is proportional to the resonance integral 
K 12 and a monotonely descreasing function of interatomic distance R. It is the 
parameter to determine dominantly R dependency of the solution. The parameter 
p becomes zero for the homopolar system, and the larger the asymmetry of the 
system is, the larger is the value of p. Noting that Ka= -Ii at R= oo and 
using the the semi-empirical evaluation r ii = Ii- Et of the one-center Coulomb 
repulsion integrals, where Ii and E, are the ionization potential and the electron 
affinity of the i-th atom, we obtain the semi-empirical value of p at R = oo: 

2.0 

1.0 

0 
R (atomic unit) 

Fig. L R dependencies of the parameters q and 
p for LiH evaluated with non-empirical 
parametrization are shown. LiH is treated 
as a two-center two-electron system consisted 
of the 2s orbital of Li and the ls orbital of H. 

p 

1.5 

LiH trajectory 

q 

1.5 

Fig. 2. The existence domain (3·7) of the SDW 
I solution is shown. It is inside of the 
boundary. The trajectory of LiH in the q, p 
space with varying R is also shown. R 
decreases on going from left to right of the 
trajectory. 
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The Unrestricted Hartree-Fock Theory of Chemical Reactions. II 25 

Therefore, the semi-empirical value of p ( oo) is proportional to the difference of 

Mulliken's electronegativity of the two atoms. Thus, p is the parameter to 

represent the asymmetry of the system. We show in Fig. 1, as an illustration 

of R dependencies of p and q, those for LiH evaluated with non-empirical para­

metrization. We also show in Fig. 2 the trajectory of LiH with varying R in 

the q, p space. It is to be noted that the asymmetry parameter p is a monotonely 

decreasing function of R and its value becomes larger for smaller R. 

Equation (2 ·10) leads to the two classes of solutions: 

p cos rp- q sin rp + cos 0" = 0 , 

sin 0"= 0. 

(2·12) 

(2·13) 

In the solutions satisfying (2·12), ).+=f=A- and they are of SDW type, while, m 

the solutions satisfying (2 ·13) A+= A- and they are of closed shell type. 

§ 3. The SDW solutions of the UHF equation 

We consider in this section the solutions satisfying (2 ·12) and (2 ·11). 

From (2 ·12) we have 

cos 0" = q sin rp - p cos rp . (3·1) 

Substituting (3 ·1) into (2 ·11), we have 

(1 + q2 -p2) sin 2rp -2pq cos 2rp = 0. (3·2) 

From (3 · 2) the parameter rp is determined as 

sin 2rp = ± 2pql { (1 + q2-p2)2 + 4p2q2p!2, 
(3·3) 

cos 2rp = ± c1 + q2 _ p2) I { c1 + q2 _ p2y + 4p2q2p12, 

where the double signs in (3 · 3) must be taken in the same order. The solutions 

with the plus and the minus signs of (3 · 3) respectively lead to different 

solutions of SDW type. We call the solution with the minus sign in (3 · 3) the 

SDW I and that with the plus sign the SDW II. 

We next determine cos 0". We obtain from (3 ·1) 

cos20" = t {p2 + q2 + (p2 - q2) cos 2rp- 2pq sin 2rp}. (3·4) 

Substituting (3 · 3) into (3 · 4), we have 

cos20" = t [p2 + q2 ± { (1 + q2 _ p2) (p2 _ q2) _ 4p2q2} I { (1 + q2 _ p2y + 4p2q2p12J. 

(3·5) 

In order for the SDW solutions to exist, the condition 

cos20"<1 (3·6) 
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26 H. Fukutome 

must hold. For the SDW II solution, it can be shown that the condition (3 · 6) 
is satisfied for all values of p and q. However, for the SDW I solution, (3·6) 
is satisfied only in a limited region of p and q. From (3·5) and (3·6) the 
condition for the SDW I solution to exist is given as 

(3·7) 

We show in Fig. 2 the existence domain (3 · 7) of the SDW I solution. 
By substituting (3 ·1) into (2 · 9) and using (3 · 3) the normalized HF energy 

e of the SDW solutions are obtained as 

(3·8) 

where the minus and the plus signs in (3 · 8) respectively correspond to the SDW 
I and II. 

In order to clarify the nature of the SDW solutions, we consider the special 
cases of p=O and q=O. 

The case p = 0 is nothing but the case of homopolar system. The SDW I 
solution for p = 0 is given from (3 · 3) and (3 ·1) as 

sin 2<f?=0, 

cos (J=q. 

cos 2(/? = -1 ' } 

The orbitals of the SDW I are obtained from (3·9) and (2·1) as 

and 

¢1 ± = [ t (1 ± v'1- q2) )112%1 + [ t (1 =f v'1- q2) )112%2 ) 

¢1± = [t(1 =f v'1-q2)J12X1 + [t(1 ± v'1-l)J112X2. 

(3·9) 

(3 ·10) 

The SDW I orbitals (3 ·10) are identical with the SDW orbitals (I· 5 · 25) of 
homopolar system in the NDO approximation. 

The SDW II for p=O is given by 

sin 2<f?=0, 

cos 6=0. 

cos 2(/?= 1 '} 

Hence, the orbitals of the SDW II at p=O become 

¢1± = : 2 cx1± x2) 

and 

(3 ·11) 

(3·12) 

Thus, the SDW II in the homopolar system is the conventional singly excited 
cofiguration ( ¢1) ( ¢2) • 

The case q = 0 is the case of an infinite interatomic distance. Then, the 
SDW I is given by 
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The Unrestricted Hartree-Fock Theory of Chemical Reactions. II 27 

sin 2cp=0, 

cos 0"=0. 

cos 2cp= -1 '} 
(3·13) 

It exists only in the range p<l. Hence, the orbitals of the SDW I at q=O are 

¢11+=x1, ¢11-=X2 

l and (3 ·14) 

¢11+ =x2, ¢11-=X1. 

Thus, the SDW I at q = 0 corresponds to the state of isolated neutral atoms. 
The SDW II for q = 0 is given by 

sin 2cp= 0, 

cos 2cp=1' 

=-1, 

cos G= -p; CIPI<1) } 

=0. CIPI>1) 

(3·15) 

Note that in this solution the values of cp and 0" change discontinuously at IPI = 1. 
Hence, the orbitals of the SDW II at q = 0 are for IPI <1 

¢h±= [!(1-p)]lf2Xd [!(1+p)J12X2 

••• ~ [!(1-p n•x. 'F [!(1+ plJ"x.l 
and (3 ·16) 

and for IPI > 1 they are identical with (3 ·14). It is to be noted that the orbitals 

of the SDW II for IPI <1 are delocalized even at infinite interatomic distance, 

while those for IPI > 1 become localized. 

The normalized HF energies of the SDW solutions at p=O and q=O are 
respectively given by 

e= -tq2, 
-.!. 
-2' 

(SDW I) } 

(SDW II) 

e=O, (SDW I, IPI<1 and SDW II, IPI>1)} 

=H1-p2). (SDW II, IPI<1) 

Equation (3 ·17) is identical with (I· 5 · 36) in the NDO approximation. 

§ 4. The closed shell solutions of the UHF equation 

For the closed shell solutions, A+=A-=A and Eq. (2·11) becomes 

p sin A+ q cos A+ sin A cos A= 0 . 

The normalized HF energy (2·9) becomes 

e= 1 +p cos A -q sin A-t sin2A. 

Making use of (4·1) we may eliminate q or p from (4·2) and obtain 

(3 ·17) 

(3·18) 

(4·1) 

(4·2) 
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28 H. Fukutome 

e=~-l_ cos2 A+-p-=l_ sin2,l.-_q_. (4·3) 
2 2 cos ,l. 2 sin 1.. 

By putting 

x=pfcos 1.., y=qfsin 1.., (4·4) 

Eqs. ( 4 ·1) and ( 4 · 3) may be transformed into the following equations: 

(4·5) 

- 3 P2 
- l e----+x---y. (4·6) 

2 2x2 2y2 

Equation ( 4 · 5) may be rewritten in the following forms: 

q= ± (x+1)v1-p2/x2 ,} 

p= ±(y + 1) v'1-q2jy2. 
(4·7) 

Equation ( 4 · 7) gives the functional relationship between q and x for fixed p and 
one between p and y for fixed q. We show in Fig. 3 the graph of the function 
( 4 · 7) for various values of the fixed q,(p) 

parameter p or q. The function (4·7) has 

extrema at x= -p213 or y= -l/3 when 

lpl, lqi<L The values of q or p at the 
extrema are ± (1-p213)BI2 or ± (1-l/3)812• 

Therefore, if the value of q or p is 

within the range between the extremum 
values, that is, if the inequality 

(4·8) 

is satisfied, then there are four solutions 
of x or y for given p and q, as seen 

in Fig. 3. We denote these four solu­
tions as A, B, C and D according to 

the order of their energy (from lower 

to higher) at the positive values of p 
and q. 

At the boundary of the domain 

( 4 · 8) two of these solutions coalesce 

and at the outside of ( 4 · 8) only two 
solutions exist. The parameter ranges 

for these solutions to exist are 

I 
I 

I 
I 
I 
f1.2 
I 
I 

Fig. 3. Function (4·7), q vs. xwith fixed p 
or p vs. y with fixed q, is indicated for the 
values 0, 0.2, 0.6 and 1.2 of the fixed param­
eter. · The entities referring to p vs. y 

curve are indicated in parentheses. The 
closed shell solutions for P=0.2 and q=0.4 
are indicated by the black dots on q vs. x 

curve of P=0.2 and named A, B, C and 
D according to the order of their energy 
(from lower to higher). The solutions for 
P=0.4 and q=0.2 are also given by the 
same dots onp vs.y curve of q=0.2 as those 
on q vs. x curve of p=0.2. Note that 
solutions represented by the same point 
on q vs. x and p vs. y curves respectively 
correspond to different solutions. 
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The Unrestricted Hartree-Fock Theory of Chemical Reactions. II 29 

A: q>O, O>q>- (1-p';sy;',} 
B: q<O, O<q<(1-p'f3Y1', 

C: p<O, O<p<(1-q'I3YI2, 

D: p>O, O>p>- (1-l;sy;2. 

(4·9) 

Regarding x or y as the varying parameter, we may easily plot from ( 4 · 6) 
and (4·7) the graphs of q and p dependencies of e for fixed values of p and q 

respectively. We show in Figs. 4 and 5 the q and p dependencies of the HF 
energy e for the closed shell solutions as well as those for the SDW solutions. 

Now, we consider the closed shell solutions for the special cases of p = 0 
and q=O. 

For the case of p=O, they are given by 

y=q;A,q>-1 and D,q<-1,! 
= -q; B, q<1 and D, q>1, 

= -1; C and D, lql<1. 

From ( 4 ·10), the explicit forms of the orbital are given by 

1 ¢1±= .J2 Cx1+X2); A, q>-1 and D, q<-1, 

1 = .J2 Cx1-x2); B, q<1 and D, q>1, 

=[! (1+../1-l)r2x1-[! c1-../1-q')r2X2 

(4·10) 

and ; C and D, lql<1 

(4·11) 

Thus, in the homopolar system, the solutions A for q > -1 and D for q< -1 are 
the conventional symmetric ground state configuration (¢1) 2, the solutions C and 

D for I ql <1 are degenerated and correspond to the CDW solutions and the 
solution B for q<1 and D for q>1 correspond to the conventional antisymmetric 

doubly excited configuration (¢2)2. 

For the case of q = 0, the closed shell solutions are given by 

x= -1; A and 

= -p; A, p>1 

=p; A, p<-1 

B, IPI<1, l 
and C, p<1, 

and D, p>-1. 

From (4·12) the explicit forms of the orbital are given by 

(4·12) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

9
/1

/2
2
/1

8
7
0
1
2
2
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



30 H. Fukutome 

±- [1-p]l/2 [1+p]l/2 1h - -- X1 + -- Xa 
2 2 

[ 1+p]l/2 [1-p]l/2 -- X1+ -- Xs 
2 2 

; A and B, IPI<1 
(4·13) 

and 

=x,; A, p>1 and C, p<1, 

= X1; A, P< -1 and D, p > -1 . 

The solutions A and B for JpJ <1 are delocalized even at infinite interatomic 
distance. The solutions A for p > 1 and C for p<1 correspond to the ionic 
state of isolated atoms in which the two electrons are bound to the atom 2. 
The solutions A for p< -1 and D for p > -1 correspond to another ionic state, 
the two electrons bound to the other atom 1. 

The HF energies of the closed shell solutions for p=O and q=O are 
respectively 

e=-§-...:...q; A, q> -1 and D, q< -1,} 
=-§-+q; B, q<1 and D, q>1, 

=1+-§-q'; C and D, JqJ<1, 

e=H1-p2
); A and B, IPI<1, } 

=1-p; A, p>1 and C, p<1, 

=1+p; A, p<-1 and D, p>-1. 

§ 5. The exact eigenstates and the projected UHF states 

(4·14) 

(4·15) 

The exact Hamiltonian of two-center two-electron system is given m the 
following form: 

H~e+[ c+2b, d, a+f/2, a+ f/2r, ') (x,-) 
d, c-2b, a-f/2, a-f/2 (x,+) Cxs-) 

(5·1) 
a+f/2, a-f/2, -c, d Cxl+)(x,-) 

a+f/2, a-f/2, d, -c C%1-)(x2+), 

when the expansion bases are chosen to be the Slater determinants of the atomic 
orbitals. The upper signs of Xi represent the spin state of the atomic orbital. 
In the NDO approximation, (5 ·1) becomes 

H~e+11+2p, 0, -q, -q] ' 0, 1-2p, -q, -q 

-q, -q, -1, 0 

-q, -q, 0, -1 . 

(5·2) 

From (5 · 2) the normalized exact energy eE defined as before by 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

9
/1

/2
2
/1

8
7
0
1
2
2
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



The Unrestricted Hartree-Fock Theory of Chemical Reactions. II 31 

is determined by the following equation for the singlet states 

eE 8 -2eE~...,... (p2 +q'-l)eE+q'=0 

and for the triplet state 

eE=O. 

Equation (5 · 4) may be rewritten in the following forms: 

(5·3) 

'(5·4) 

(5·5) 

(5·6) 

By using (5·6), we may easily draw the graphs of q and p dependencies of eE 

for fixed values of p and q as shown in Figs. 4 and 5. 

e 

2 

-1 

P=~1 /. 

/ 

/. 
/ 

Ooubl y excited/./. 0 
/. 

/-

.&~ 

,;/-/-/_ 

/. 
/. 

SOWn proj 
c _}_ __________ _ 

---- - --- Singlet 

sown 

Triplet 

-1 

q 

Single!..-----
c --.... ........ ........ 

' SOW! ', 

sown 

Triplet 

' ' ' A " Ground'" 

"· 
.· ------' 

0 1 2 0 2 

(a) (b) 

q 

Fig. 4. q dependencies of the normalized energy e for the solutions of UHF equation (the 

real line) and for the exact eigenstates (the dashed line) are indicated for the fixed 

values 0.2· (a) and 0.6 (b) of p. The corresponding graph for p=O was given in Fig. ll(a) 

of I. In the case of p=0.2, q dependencies of e for the singlet projected SDW solutions 

are also indicated (the dotted line). 
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The SDW solutions given in § 3 are not the eigenstates of the total spin. 

The projection of SDW solution to spin eigenstates, singlet and triplet states 

leads to wave functions 

The energy expectation values of these states are 

<H> = {<qh +IKI ¢>1 +) + <1>1-IKI ¢>1-> ± 2<¢>1 +I ¢>1-><¢>1+ I Kl ¢>1-> 

+ <1>1 + 1>1 +I 1>1-1>1-> ± <1>1 +¢>1-l 1>1-1>1 +)} {1 ± <1>1 +I ¢>1-)2}-\ (5 • 8) 

where the plus and the minus signs in (5 · 8) respectively correspond to the 

singlet and the triplet states. By substituting (2·1) and using (2·2), (5·8) 

becomes 

1<H)=e+ {2(EH-e) + (c+d)sin20"}/(1+cos20"),} 
3<H)=e- (c+d). 

(5·9) 

By defining eproi in the same way as for (5 · 3) and using the NDO approximation, 

(5 · 9) becomes 

1eproi=2e/(1+ cos 20"),} 
3eproi=O. 

(5 ·10) 

Thus, the triplet projected SDW gives the energy identical with that of the exact 

triplet state, while the energy of the singlet projected SDW is higher or lower 

than that of the SDW according to e>O or e<O as seen from (5 ·10). Therefore, 

the singlet projected SDW I leads to a better approximation to the ground state 

as was noted for the homopolar system. 2l The energies of the projected SDW 

are also shown in Figs. 4 and 5. 

§ 6. Conclusions and discussion 

As seen from Figs. 4 and 5, the SD W I in the domain (3 · 7) and the closed 

shell solution A(q>O) or B(q<O) at the outside of (3·7) are a good approxi­

mation to the exact ground state. Salotto and Burnelle3l have already shown that 

the UHF theory provides satisfactory ground state adiabatic potentials for the 

dissociation reactions of H 2 and LiH. The present analysis indicated this for the 

general two-center two-electron system. The closed shell solution D (p >O) or 

C (p<O) is also a good approximation to the exact doubly excited state. The 

triplet projected SDW coincides with the exact triplet state. However, on the 

contrary to these cases, there is no state that covers the whole range of p and q in 

the UHF approximation appropriate as the approximation to the exact singlet singly 

excited state. For small values of p and q, the solution C is a good approximation 

to the exact singlet singly excited state and, for large values of p and q, the singlet 
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34 H. Fukutome 

projected SDW II becomes a good approximation. However, these approximate 
states are not continuously connected to each other and no good approximation 
exists for intermediate values of p and q. ~his indicates that the UHF theory 
fails to approximate the singly excited singlet state over whole ranges of q and p. 

The SDW I solution which corresponds to the ground state of radical nature 
exists only in the limited region (3 · 7). It ceases to exist not only for the 
region of large q which corresponds to the region of small interatomic distance 
but also for the region of large p which corresponds to the system of large 
asymmetry. Physical meaning of the disappearance of the SDW I solution at 
large p is seen most clearly at R= oo. At R= oo, the condition IPI>l of non­
existence of the SDW I ground state may be rewritten as 

Ku +K22>2Ku +rn or 2K22+r22. 

This is nothing but the condition that the radical state of two isolated neutral 
atoms is of energy higher than either of the states of the pair of isolated ions l­
and 2+ or 1 + and 2-. Therefore, when the asymmetry of the system exceeds the 
limit (3 · 7), the character of the ground state changes from radical to ionic one. 

It is interesting to see that the asymmetry parameter p becomes larger for 
smaller R as indicated in Fig. 2 in the example of LiH. This property of the 
parameter p and the shape of the domain (3 · 7), i.e., the critical value of p 
becomes smaller for R approaching the value of q = 1, make the transition 
of the ground state character from radical to ionic one by an increment of 
intrinsic asymmetry of the system much easier at finite R near q= 1. This 
result seems to offer a basis for theoretical explanation of ionic character observed 
for some elimination and addition reactions. It was known that olefin forming 
elimination reactions of hydrogen bro­
mide from brominated alkyls exhibit 
ionic characters and are considered to 
proceed via an ionic four-center 
transition state4> as indicated in Fig. 
6 (a). The non-concerted 2 + 2 cyclo­
addition reactions of substituted ethyl­
enes are considered to proceed via 
the U shaped transition state5> as 
indicated in Fig. 6 (b). The transition 
state for the 2 + 2 cycloaddition of 
tetracyanoethylene to substituted sty­
renes was shown to be ionic as shown 
for the upper route of Fig. 6 (b), while 
that for the 2 + 2 cycloaddition of 
fluorinated ethylenes to dienes was 
shown to be hi-radical as shown for 

+ 

'e-e$/ ' - / - e=e 
/I ! ' / " 

H----are H-Br 

(a) 

I I ~R 
-e-e' 

I I 
-e-e­

l I 

Fig. 6. Transition states of olefine forming elimi­
nation reactions of hydrogen bromide from 
brominated alkyls (a) and non-concerted 2+2 
cycloaddition reactions of substituted ethylenes 
(b). 
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The Unrestricted Hartree-Fock Theory of Chemical Reactions. II 35 

H~ 
H~ 

H 

Fig. 7. Ortho-benzyne and the atomjc orbitals ··of the extra triple. bond. 

the lower route of Fig. 6 (b). 5l The present result for simple two-center two-electron 

system does not directly apply to these complex systems, hut it predicts that at 

finite distances between leaving or approaching atoms corresponding to the transi­

tion states of these reactions a change of the ground state from radical to ionic 

one may be induced by introduction of small increment of asymmetry between 

the atoms. Thus, the UHF theory seems to provide a promising theoretical basis to 

understand the mechanism to determine radical vs. ionic character of the reactions. 

We add a remark related to the results in I. It concerns with the electronic 

state of ortho-benzyne. The peripheral two electrons in benzyne, Fig. 7, may 

be treated as an homopolar two-center two-electron system. Because the atomic 

orbitals of these two electrons extend toward opposite directions, the resonance 

integral between them is small and the parameter q is also small. Under the 

CNDO approximation,6l the value of q is evaluated to be 0.695 for the same 

geometry as benzene. Thus. the symmetric closed shell electronic configuration 

of the two peripheral electrons in benzyne falls into the instability region I q I <1 

and the broken symmetry SDW state becomes the ground state. Instability of 

the symmetric closed shell electronic configuration of benzyne may also be con­

cluded from the ab initio calculation of Wilhite and Whitten.7l They showed 

that the ground state of ortho-benzyne is triplet for the SCF approximation, 

but becomes singlet when CI is performed. In a homopolar two-center two­

electron system such an unusual situation may occur if the parameter q is in the range 

(r+r2)112<q<t+r 

as can be seen from Fig. 11 (b) of I. The value of q in the above range is in 

the instability region. 

The conclusion of electronic instability of benzyne raises an interesting 

question about the limit of applicability of Woodward and Hoffmann's (W-H) 

selection rule. 8l, The W-H rule is based on concept of orbital symmetry. In 

the case of benzyne, the symmetrical orbital is unstable and the SDW orbital of 

broken symmetry becomes the orbital of ground state configuration. Thus, the 

concept of orbital symmetry itself does not hold for benzyne. This breakdown 

of orbital symmetry was indicated also from the CI point of view. Wilhite and 

Whitten showed that the mixing ratio of the antisymmetric configuration to the 

symmetric one is - 0.46 which is a too large value that makes the concept of 

orbital symmetry meaningless. It has been known that cycloaddition reactions of 

benzyne exhibit the behavior violating the W-H rule.9l This abnormal behavior of 

benzyne might be closely related to the electronic instability arising in it. 
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