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Abstract

The Extended Kalman Filter (EKF) has become a standard

technique used in a number of nonlinear estimation and ma-

chine learning applications. These include estimating the

state of a nonlinear dynamic system, estimating parame-

ters for nonlinear system identification (e.g., learning the

weights of a neural network), and dual estimation (e.g., the

ExpectationMaximization (EM) algorithm)where both states

and parameters are estimated simultaneously.

This paper points out the flaws in using the EKF, and

introduces an improvement, the Unscented Kalman Filter

(UKF), proposed by Julier and Uhlman [5]. A central and

vital operation performed in the Kalman Filter is the prop-

agation of a Gaussian random variable (GRV) through the

system dynamics. In the EKF, the state distribution is ap-

proximated by a GRV, which is then propagated analyti-

cally through the first-order linearization of the nonlinear

system. This can introduce large errors in the true posterior

mean and covariance of the transformed GRV, which may

lead to sub-optimal performance and sometimes divergence

of the filter. The UKF addresses this problem by using a

deterministic sampling approach. The state distribution is

again approximated by a GRV, but is now represented using

a minimal set of carefully chosen sample points. These sam-

ple points completely capture the true mean and covariance

of the GRV, and when propagated through the true non-

linear system, captures the posterior mean and covariance

accurately to the 3rd order (Taylor series expansion) for any

nonlinearity. The EKF, in contrast, only achieves first-order

accuracy. Remarkably, the computational complexity of the

UKF is the same order as that of the EKF.

Julier and Uhlman demonstrated the substantial perfor-

mance gains of the UKF in the context of state-estimation

for nonlinear control. Machine learning problems were not

considered. We extend the use of the UKF to a broader class

of nonlinear estimation problems, including nonlinear sys-

tem identification, training of neural networks, and dual es-

timation problems. Our preliminary results were presented

in [13]. In this paper, the algorithms are further developed

and illustrated with a number of additional examples.
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1. Introduction

The EKF has been applied extensively to the field of non-

linear estimation. General application areas may be divided

into state-estimation and machine learning. We further di-

vide machine learning into parameter estimation and dual

estimation. The framework for these areas are briefly re-

viewed next.

State-estimation

The basic framework for the EKF involves estimation of the

state of a discrete-time nonlinear dynamic system,

(1)

(2)

where represent the unobserved state of the system and

is the only observed signal. The process noise drives

the dynamic system, and the observation noise is given by

. Note that we are not assuming additivity of the noise

sources. The system dynamic model and are assumed

known. In state-estimation, the EKF is the standard method

of choice to achieve a recursive (approximate) maximum-

likelihood estimation of the state . We will review the

EKF itself in this context in Section 2 to help motivate the

Unscented Kalman Filter (UKF).

Parameter Estimation

The classic machine learning problem involves determining

a nonlinear mapping

(3)

where is the input, is the output, and the nonlinear

map is parameterized by the vector . The nonlinear

map, for example, may be a feedforward or recurrent neural

network ( are the weights), with numerous applications

in regression, classification, and dynamic modeling. Learn-

ing corresponds to estimating the parameters . Typically,

a training set is provided with sample pairs consisting of

known input and desired outputs, . The error of

the machine is defined as , and the

goal of learning involves solving for the parameters in

order to minimize the expected squared error.



While a number of optimization approaches exist (e.g.,

gradient descent using backpropagation), the EKF may be

used to estimate the parameters by writing a new state-space

representation

(4)

(5)

where the parameters correspond to a stationary pro-

cess with identity state transition matrix, driven by process

noise (the choice of variance determines tracking per-

formance). The output corresponds to a nonlinear obser-

vation on . The EKF can then be applied directly as an

efficient “second-order” technique for learning the parame-

ters. In the linear case, the relationship between the Kalman

Filter (KF) and Recursive Least Squares (RLS) is given in

[3]. The use of the EKF for training neural networks has

been developed by Singhal and Wu [9] and Puskorious and

Feldkamp [8].

Dual Estimation

A special case of machine learning arises when the input

is unobserved, and requires coupling both state-estimation

and parameter estimation. For these dual estimation prob-

lems, we again consider a discrete-time nonlinear dynamic

system,

(6)

(7)

where both the system states and the set of model param-

eters for the dynamic systemmust be simultaneously esti-

mated from only the observed noisy signal . Approaches

to dual-estimation are discussed in Section 4.2.

In the next section we explain the basic assumptions and

flaws with the using the EKF. In Section 3, we introduce the

Unscented Kalman Filter (UKF) as a method to amend the

flaws in the EKF. Finally, in Section 4, we present results of

using the UKF for the different areas of nonlinear estima-

tion.

2. The EKF and its Flaws

Consider the basic state-space estimation framework as in
Equations 1 and 2. Given the noisy observation , a re-
cursive estimation for can be expressed in the form (see
[6]),

prediction of prediction of (8)

This recursion provides the optimalminimummean-squared

error (MMSE) estimate for assuming the prior estimate

and current observation are Gaussian RandomVari-

ables (GRV). We need not assume linearity of the model.

The optimal terms in this recursion are given by

(9)

(10)

(11)

where the optimal prediction of is written as , and

corresponds to the expectation of a nonlinear function of

the random variables and (similar interpretation

for the optimal prediction ). The optimal gain term

is expressed as a function of posterior covariance matrices

(with ). Note these terms also require tak-

ing expectations of a nonlinear function of the prior state

estimates.

The Kalman filter calculates these quantities exactly in

the linear case, and can be viewed as an efficient method for

analytically propagating a GRV through linear system dy-

namics. For nonlinear models, however, the EKF approxi-

mates the optimal terms as:

(12)

(13)

(14)

where predictions are approximated as simply the function

of the priormean value for estimates (no expectation taken)1

The covariance are determined by linearizing the dynamic

equations ( ), and

then determining the posterior covariance matrices analyt-

ically for the linear system. In other words, in the EKF

the state distribution is approximated by a GRV which is

then propagated analytically through the “first-order” lin-

earization of the nonlinear system. The readers are referred

to [6] for the explicit equations. As such, the EKF can be

viewed as providing “first-order” approximations to the op-

timal terms2. These approximations, however, can intro-

duce large errors in the true posterior mean and covariance

of the transformed (Gaussian) random variable, which may

lead to sub-optimal performance and sometimes divergence

of the filter. It is these “flaws” which will be amended in the

next section using the UKF.

3. The Unscented Kalman Filter

The UKF addresses the approximation issues of the EKF.

The state distribution is again represented by a GRV, but

is now specified using a minimal set of carefully chosen

sample points. These sample points completely capture the

true mean and covariance of the GRV, and when propagated

through the true non-linear system, captures the posterior

mean and covariance accurately to the 3rd order (Taylor se-

ries expansion) for any nonlinearity. To elaborate on this,

1The noise means are denoted by and , and are

usually assumed to equal to zero.
2While “second-order” versions of the EKF exist, their increased im-

plementation and computational complexity tend to prohibit their use.



we start by first explaining the unscented transformation.

The unscented transformation (UT) is a method for cal-

culating the statistics of a random variable which undergoes

a nonlinear transformation [5]. Consider propagating a ran-

dom variable (dimension ) through a nonlinear function,

. Assume has mean and covariance . To

calculate the statistics of , we form a matrix of

sigma vectors (with corresponding weights ), accord-

ing to the following:

(15)

where is a scaling parameter. deter-

mines the spread of the sigma points around and is usually

set to a small positive value (e.g., 1e-3). is a secondary

scaling parameter which is usually set to 0, and is used

to incorporate prior knowledge of the distribution of (for

Gaussian distributions, is optimal).

is the th row of the matrix square root. These sigma vectors

are propagated through the nonlinear function,

(16)

and the mean and covariance for are approximated us-

ing a weighted sample mean and covariance of the posterior

sigma points,

(17)

(18)

Note that this method differs substantially from general “sam-

pling” methods (e.g., Monte-Carlo methods such as particle

filters [1]) which require orders of magnitude more sample

points in an attempt to propagate an accurate (possibly non-

Gaussian) distribution of the state. The deceptively sim-

ple approach taken with the UT results in approximations

that are accurate to the third order for Gaussian inputs for

all nonlinearities. For non-Gaussian inputs, approximations

are accurate to at least the second-order, with the accuracy

of third and higher order moments determined by the choice

of and (See [4] for a detailed discussion of the UT). A

simple example is shown in Figure 1 for a 2-dimensional

system: the left plot shows the true mean and covariance

propagation using Monte-Carlo sampling; the center plots

Actual (sampling) Linearized (EKF) UT

sigma points

true mean

UT mean

    and covariance
weighted sample mean

mean

UT covariance

covariance

true covariance

transformed
sigma points

Figure 1: Example of the UT for mean and covariance prop-

agation. a) actual, b) first-order linearization (EKF), c) UT.

show the results using a linearization approach as would be

done in the EKF; the right plots show the performance of

the UT (note only 5 sigma points are required). The supe-

rior performance of the UT is clear.

The Unscented Kalman Filter (UKF) is a straightfor-

ward extension of the UT to the recursive estimation in Equa-

tion 8, where the state RV is redefined as the concatenation

of the original state and noise variables: .

The UT sigma point selection scheme (Equation 15) is ap-

plied to this new augmented state RV to calculate the corre-

sponding sigma matrix, . The UKF equations are given

in Algorithm 3. Note that no explicit calculation of Ja-

cobians or Hessians are necessary to implement this algo-

rithm. Furthermore, the overall number of computations are

the same order as the EKF.

4. Applications and Results

The UKF was originally designed for the state-estimation

problem, and has been applied in nonlinear control applica-

tions requiring full-state feedback [5]. In these applications,

the dynamic model represents a physically based paramet-

ric model, and is assumed known. In this section, we extend

the use of the UKF to a broader class of nonlinear estimation

problems, with results presented below.

4.1. UKF State Estimation

In order to illustrate the UKF for state-estimation, we pro-

vide a new application example corresponding to noisy time-

series estimation.

In this example, the UKF is used to estimate an underly-

ing clean time-series corrupted by additive Gaussian white

noise. The time-series used is the Mackey-Glass-30 chaotic



Initialize with:

For ,

Calculate sigma points:

Time update:

Measurement update equations:

where, , ,

=composite scaling parameter, =dimension of augmented state,

=process noise cov., =measurement noise cov., =weights

as calculated in Eqn. 15.

Algorithm 3.1: Unscented Kalman Filter (UKF) equations

series. The clean times-series is first modeled as a nonlinear

autoregression

(19)

where the model (parameterized by w) was approximated

by training a feedforward neural network on the clean se-

quence. The residual error after convergence was taken to

be the process noise variance.

Next, white Gaussian noise was added to the cleanMackey-

Glass series to generate a noisy time-series .

The corresponding state-space representation is given by:

...
. . .

...
...

...

(20)

In the estimation problem, the noisy-time series is the

only observed input to either the EKF or UKF algorithms

(both utilize the known neural network model). Note that

for this state-space formulation both the EKF and UKF are

order complexity. Figure 2 shows a sub-segment of the

estimates generated by both the EKF and the UKF (the orig-

inal noisy time-series has a 3dB SNR). The superior perfor-

mance of the UKF is clearly visible.
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Figure 2: Estimation of Mackey-Glass time-series with the

EKF and UKF using a known model. Bottom graph shows

comparison of estimation errors for complete sequence.

4.2. UKF dual estimation

Recall that the dual estimation problem consists of simul-

taneously estimating the clean state and the model pa-



rameters from the noisy data (see Equation 7). As

expressed earlier, a number of algorithmic approaches ex-

ist for this problem. We present results for the Dual UKF

and Joint UKF. Development of a Unscented Smoother for

an EM approach [2] was presented in [13]. As in the prior

state-estimation example, we utilize a noisy time-series ap-

plication modeled with neural networks for illustration of

the approaches.

In the the dual extended Kalman filter [11], a separate

state-space representation is used for the signal and the weights.

The state-space representation for the state is the same

as in Equation 20. In the context of a time-series, the state-

space representation for the weights is given by

(21)

(22)

where we set the innovations covariance equal to 3.

Two EKFs can now be run simultaneously for signal and

weight estimation. At every time-step, the current estimate

of the weights is used in the signal-filter, and the current es-

timate of the signal-state is used in the weight-filter. In the

new dual UKF algorithm, both state- and weight-estimation

are done with the UKF. Note that the state-transition is lin-

ear in the weight filter, so the nonlinearity is restricted to the

measurement equation.

In the joint extended Kalman filter [7], the signal-state

and weight vectors are concatenated into a single, joint state

vector: . Estimation is done recursively by writ-

ing the state-space equations for the joint state as:

(23)

(24)

and running an EKF on the joint state-space4 to produce

simultaneous estimates of the states and . Again, our

approach is to use the UKF instead of the EKF.

Dual Estimation Experiments

We present results on two time-series to provide a clear il-

lustration of the use of the UKF over the EKF. The first

series is again the Mackey-Glass-30 chaotic series with ad-

ditive noise (SNR 3dB). The second time series (also

chaotic) comes from an autoregressive neural network with

random weights driven by Gaussian process noise and also

3 is usually set to a small constant which can be related to the time-

constant for RLS weight decay [3]. For a data length of 1000,

was used.
4The covariance of is again adapted using the RLS-weight-decay

method.

corrupted by additive white Gaussian noise (SNR 3dB).

A standard 6-4-1 MLP with hidden activation func-

tions and a linear output layer was used for all the filters in

the Mackey-Glass problem. A 5-3-1 MLP was used for the

second problem. The process and measurement noise vari-

ances were assumed to be known. Note that in contrast to

the state-estimation example in the previous section, only

the noisy time-series is observed. A clean reference is never

provided for training.

Example training curves for the different dual and joint

Kalman based estimation methods are shown in Figure 3. A

final estimate for the Mackey-Glass series is also shown for

the Dual UKF. The superior performance of the UKF based

algorithms are clear. These improvements have been found

to be consistent and statistically significant on a number of

additional experiments.
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Figure 3: Comparative learning curves and results for the

dual estimation experiments.



4.3. UKF parameter estimation

As part of the dual UKF algorithm, we implemented the

UKF for weight estimation. This represents a new param-

eter estimation technique that can be applied to such prob-

lems as training feedforward neural networks for either re-

gression or classification problems.

Recall that in this case we write a state-space representa-

tion for the unknownweight parameters as given in Equa-

tion 5. Note that in this case both the UKF and EKF are or-

der ( is the number of weights). The advantage of the

UKF over the EKF in this case is also not as obvious, as the

state-transition function is linear. However, as pointed out

earlier, the observation is nonlinear. Effectively, the EKF

builds up an approximation to the expected Hessian by tak-

ing outer products of the gradient. The UKF, however, may

provide a more accurate estimate through direct approxima-

tion of the expectation of the Hessian. Note another distinct

advantage of the UKF occurs when either the architecture

or error metric is such that differentiation with respect to

the parameters is not easily derived as necessary in the EKF.

The UKF effectively evaluates both the Jacobian and Hes-

sian precisely through its sigma point propagation, without

the need to perform any analytic differentiation.

We have performed a number of experiments applied to

training neural networks on standard benchmark data. Fig-

ure 4 illustrates the differences in learning curves (averaged

over 100 experiments with different initial weights) for the

Mackay-Robot-Arm dataset and the Ikeda chaotic time se-

ries. Note the slightly faster convergence and lower final

MSE performance of the UKF weight training. While these

results are clearly encouraging, further study is still neces-

sary to fully contrast differences between UKF and EKF

weight training.
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Figure 4: Comparison of learning curves for the EKF and

UKF training. a) Mackay-Robot-Arm, 2-12-2 MLP, b) Ikeda

time series, 10-7-1 MLP.

5. Conclusions and future work

The EKF has been widely accepted as a standard tool in the

machine learning community. In this paper we have pre-

sented an alternative to the EKF using the unscented fil-

ter. The UKF consistently achieves a better level of ac-

curacy than the EKF at a comparable level of complexity.

We have demonstrated this performance gain in a number

of application domains, including state-estimation, dual es-

timation, and parameter estimation. Future work includes

additional characterization of performance benefits, exten-

sions to batch learning and non-MSE cost functions, as well

as application to other neural and non-neural (e.g., paramet-

ric) architectures. In addition, we are also exploring the use

of the UKF as a method to improve Particle Filters [10], as

well as an extension of the UKF itself that avoids the linear

update assumption by using a direct Bayesian update [12].
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