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REPORT No. 681

THE. UNSTEADY LIFT OF A WING OF FINITE ASPECT RATIO

By Roeert T. JoNEs

SUMMARY

Unsteady-lift functions for wings of finite aspect ratio
have been calculated by correcting the aerodynamic inertia
and the angle of attack of the infinite wing. The calcula-
tions are based on the operational method.

The starting lLift of the finite wing is found to be only
slightly less than that of the infinite wing; whereas the
Jfinal lift may be considerably less. The theory indicates
that the imitial distribution of lift is similar to the final
distribution.

Curves showing the variation of lift after a sudden unat
change i angle of attack,during penetration of a sharp-
edge gust,and during a continuous oscillation are given.
Operational equivalents of these functions have been devised
to fo~litate the calculation of Lift under various conditions
of motion. As an application of these formulas, the
vertical acceleration of a loaded wing caused by penetrating
@ gust has been caleulated.

INTRODUCTION

The two-dimensional potential theory of airfoils in
nonuniform motion was given by Wagner (reference 1)
and has been extended to problems involving the motion
of hinged or flexible airfoils by Theodorsen (reference 2)
and Kissner (reference 3).

In the case of steady motion, a correction is known to

. be necessary before the results of the two-dimensional

theory can be applied to wings of finite aspect ratio.

A theory for the unsteady lift of finite wings was devel-

oped in reference 4. This theory has since been some-
what improved mathematically by making use of
operational methods in the solution of the integral
equations. (See reference 5.) The present report
combines this previous work and extends the theory to
show the effects of gusts.

THE INDICIAL LIFT
INFLUENCE OF THE WAKE

Owing to the presence of circulation, the lifting wing
leaves in its path a surface of discontinuity, the local
vortex strength of which is determined by the rate of
change of circulation taken both across the span and
along the flight path. (See fig. 1.) The distribution
of vorticity in the wake is determined by the assump-
tion that the flow field at each instant conforms to the

Kutta condition. An essential feature of the problem
is the determination of the influence of this wake on
the flow at the wing.

It is important to note that the wake is supposed
to remain plane and undistorted. As a consequence of
this assumption, the effects of different wakes are
additive, permitting the various flows to be built up by
superposition. Thus, if the solution for the growth of
the increment of 1ift following a sudden change of nor-
mal velocity—or, what amounts to the same thing
under the assumptions involved, a sudden change in
the angle of attack—is known, this solution may be
used as the element in an integral that gives the lift in
any variable motion. With this point in mind, atten-
tion will at first be directed to the special case in which
the wing starts suddenly from rest at ¢ =0 with the

|
A%;i/<éw

F1GURE 1.—Flow caused by wing starting from rest.

normal velocity w and the flight velocity U, the
velocities remaining constant thereafter.

LIFT NEAR THE START

The starting lift of any wing may be expressed by 2
simple theorem based directly on the Kutta condition.
As a consequence of this condition, the portion of the
wake adjacent to the trailing edge must move as an
impermeable extension of the wing surface. Thus, the
first element of wake formed must move with the same
normal velocity as the wing. The flow produced at
the first instant is what might be caused by the wing
in process of growing wider at the rate U, while moving
downward with the velocity w. The starting lift may
then be thought of as the reaction to uniform motion
of the wing as a body with increasing mass:

dm’
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where m’ is the mass representing the aerodynamic
inertia of the wing in normal motion.

In order to apply equation (1) to the finite wing
the inertia factor for such a wing must be known as a
function of the width. Solutions for elliptic plates are
given by the classical hydrodynamic theory, and these
solutions can be used to represent approximately the
initial rates of increase of inertia of wings of oval or
elliptic plan form.

The distribution of potential over each chordwise
section of an elliptic plate in normal motion has the
same form as the corresponding two-dimensional
potential. Thus

p=7/T—7 @
where F is the elliptic integral giving the ratio of the
semiperimeter to the span. At the normal velocity
w=UF, the potential distribution over any chord is
represented by a circle having the chord as diameter.
(See fig. 2.) If the edge of the plate distorts into a
slightly wider ellipse, the change in potential arising at
any point will be measured by the difference betweer.
the original and the slightly expanded circles. (The
change in the factor E during widening may be neg-
lected for ordinary aspect ratios.) The pressure dif-
ference across the plate with changing potential is given
by the formula

®3)

2p< an¢ a¢

FIGURE 2.—The wake and the distribution of potential over the chord shortly after
the start.

For w=E
¢=+/1—22=sin @ 4
o9 —x
>z 1/1—_52= —cot 6
and, from the geometry of the circle,
0¢ dAc .09 1 g
Mo 08¢ 7 i~ U%Bhclpe,— C0z 0ty (B)

The pressure across the plate with the normal velocity
w=F and the flight velocity U, is, therefore,

pl=0=PUO<2 cot 6—cot g) (6)

Integration of this pressure over any section gives the
lift coefficient, for angle of attack « of the plate,

G, ”

E Uo ™

with each local center of pressure at the quarter-chord
point.

The start of the plane elliptic wing being equivalent
to a uniform lengthening of each chord, the true elliptic
outline is not preserved. Such a change, however, may
be shown to conform very nearly to a change into
another, slightly larger, ellipse at all points except those
very near the tips. Furthermore, if the wing is assumed
to distort in any of a number of ways into a slightly
different elliptical plan form, the change of aerody-
namic inertia will be-found to be but little affected by
the change in shape and to depend primarily on the
over-all change in size. Each such distortion can be
thought of as representing a certain distribution of the
starting velocity U around the edge of the wing.
Equation (5) is exact for all distortions of this class.
Inasmuch as they may be made to fall on either side of
the distortion represented by U=constant (represent-
ing the start of the rigid wing), the equation is also
considered applicable to this case.

THE DOWNWASH CORRECTION

A reasonably accurate curve of the growth of lift
might now be drawn by connecting the starting value

Basic flow

Transformed flow

FIGURE 3.—Element of circulatory flow.

(equation (7)) asymptotically to the known steady

value given by the Prandtl theory. Calculations have
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shown, however, that, after the wing has progressed a
distance of the order of one semispan, the effect of

. finite width of the wake can be treated simply as a

modification of the angle of attack of the entire wing,
as in the steady-lift theory. A closer approach to the

.true form of the curve may be obtained by proceeding

on this basis. .

Before the three-dimensional problem is considered,
it will be helpful to review certain aspects of the two-
dimensional theory (reference 1). In order to make
the analysis nondimensional, all velocities are expressed
in terms of the flight velocity U, and all lengths, in
terms of the half chord.

Figure 3 shows the elementary two-dimensional flow
used as a starting point by Wagner (reference 1).
This flow is caused by two vortices, representing, re-
spectively, an element of circulation around the wing
and the vortex left in the wake when this circulation
originated. The streamlines of this flow are eccentric
circles. One such circle (of unit radius) is chosen to
represent the wing section and the axes are so placed
that this circle has its center at the origin. The geom-
etry of the resulting pattern is such that, when the
wake vortex is at z, the wing vortex will be at 1/z.
This spacing preserves the unit circle as a streamline
of the flow.

Transformation of the pattern by the formula

25‘22—{—12 ®

flattens the unit circle into a thin-line wing section and
distorts the originally circular streamlines into oval
Joukowski figures. The transformed pattern thus rep-
resents the circulatory flow around a flat wing section
with an associated countervortex in the wake. In the
transformation, the centroid of wing vorticity remains
at the position of the original bound vortex while the
wake vortex is shifted forward somewhat as shown
(fig. 3).

Each elementary flow of the type shown contributes
a certain velocity around the trailing edge of the airfoil.
The flow due to an instantaneous change of angle of
attack of the airfoil may be superposed on these flows
and will contribute a trailing-edge velocity of opposite
sense. On this basis, the problem of circulation with
varying angle of attack may be solved by an inverse
procedure. Assume some convenient distribution of
wake vorticity and calculate (by integration) the trail-
ing-edge velocity at each point along the flight path

" corresponding to the prescribed wake. The particular

variation of angle of attack necessary to cancel this
trailing-edge flow at each instant (Kutta condition) can
then be determined. If a number of such curves are
found, they may be added in various ratios so as to
approximate some prescribed variation of angle of
attack; the corresponding circulation curves are added
in like ratios.

In essentially the manner described, Wagner (refer-
ence 1) calculated the two-dimensional flow around a
wing section following a sudden unit change in angle of .
attack. The integrated pressures over the airfoil give
a lift coefficient that asymptotically approaches the
known steady value 27; whereas the starting lift
coeflicient is found to be exactly one-half this value.
The center of pressure remains at the quarter-chord
point throughout the motion. '

In the case of the finite wing, an element of the wake
will be as depicted in figure 3 but will, in addition,
contain vortices completing each circuit to the wing
through the tips. The length of the tip vortices may
be approximated by assuming that they extend to the
chordwise centroid of the wing circulation. After some

Woke vortex

Equivalent | ..-
wing vortex

. 1
0 1.0
FIGURE 4.—Position of the centroid of discontinuity in the wing for different positions
of the wake vortex.

calculation, the equivalent length z of the tip vortices
in terms of the distance traveled s reduces to

r=/s(s-+2) 9)

Figure 4 illustrates the rapid travel of the centroid of
discontinuity within the wing subsequent to its initial
position at the trailing edge.! It is seen that, after a
travel of several chord lengths, the centroid may be
taken at the middle of the wing section. This assump-
tion will later be used.

Figure 5 shows how an elementary loop vortex in the
wake of a finite wing can be formed by cancelation from
an element of the wake of an infinite wing. The
downwash induced by segments CD and FH accounts
for the aspect-ratio effect. Since a uniform distribu-
tion of the downwash flow is assumed, the calculations
will be restricted to the center of the wing. By the
application of Biot-Savart’s rule, the downwash velocity
due to elements CD and FH is found to be

SCI S, [

This expression for downwash may be integrated in

1 At $=0, the tip vortices arc lengthening at an infinite rate and, although the vortex
strength is zero at the beginning of the motion, the limiting calculation shows that the
induced downwash flow has a certain rate of acceleration at this instant. As a result,
the starting lift of the finite wing is diminished, in accordance with the result of the
previous caleulation.



4
—y—
¥ A il o o
LY A () A
B G
o x
F .
r D ‘ E 4 H — J,
1

T
FIGURE 5.—Superposition of vortices to obtain finite loop.

the case of elliptic spanwise loading. Let v represent
the circulation around any chordwise section; then

(11)

v=T sin 6

where y=g cos 8, and T is the value of v at the center

oo (oo

. where k= —1+(m>

Then the induced velocity due to a series of finite loops
of the form CEF (fig. 5) is given by

section.

(12)

b/2 cos?

Lf <b\/ 1+<b/2) \/ 1+<b/2
g (e

kK(k)+b/2|:K k)(lck>+E<k) |

where K (k) and E (k) are the complete elliptic integrals.
(See Peirce’s table.)

Subtracting the two-dimensional vortex E gives the
effect of a series of segments of the form of DC and FH,
distributed along the span according to the elliptic
loading.

) JI—k%sin®0

=57 (13)

B —wn= Il m ) + 2 (- ) o

1) = 1]} (14)
Figure 6 shows the variation of downwash velocity
with increasing length of the wake as determined by
this formula. Some additional rough calculations have
shown that the downwash becomes practically uniform
over the entire wing before the wake has attained a
length of one semispan.
~ TFigure 7 shows downwash curves derived from equa-
tion (14) for elliptic wings of aspect ratios A of 3 and 6.
In this derivation, the unit of length was taken as half
the central chord of the wing. Thus, the wings have
the same chords (¢,...=2) but are of different spans. In
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Asymplote
2 ———
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E L]
v
% 4 .8 L2 16 20 24 2¢€

Length of wake, semisparns

FIGURE 6.—Growth of downwash with increasing length of the wake. I';=1.0;

elliptical span load.
order to define the later portions of the curve, the wake
was assumed to start with length equal to the mean
chord 5/A in each case. This assumption, though
somewhat arbitrary, makes allowance for the curvature
of the trailing edges of the wings.

[ T T T :
0 T ENEEEN
i A=3l | -
/_r,‘.j—ﬂ“’T'r—’ % }
O U O | ‘
.08 mp ‘/V/' - | i
- T T
7 _
.06
w —7/
4 fa)
(@ e ——
.04 = miin
LA =
02 o .
o AF,DIPOX/mm‘e expressions ——|
| [ I
| 11 [
g 2 4 6 & 10 2 /4

s, /70//" chords

FI1GURE 7.—Downwash functions, w NOB

The induced downwash w; with any variation of
circulation I'(s) along the ﬂight path may be deter-
mined from the curves given in figure 7 by superposmon,
thus

Wao(8) =11 () T (0) 4 L we(s—s) T’ (s)dsy (15

The growth of circulation following a sudden start of
the motion will be determined from the two-dimen-
sional theory by using the effective normal velocity

Wy =W - Wi==1—wy (16)

Let I'gw be the rise of circulation following a sudden
start with unit normal vclocity as given by the two-
dimensional theory. Then, for the {inite wing,

T(8) = Loy (8) — Tou(s)w:(0) — ﬁ)s Tow(8—89)w; (So)dse (17)

The determination of the effective normal velocity
and the circulation for the finite wing thus depends on
the simultaneous solution of integral equations (15)
and (17). This solution may be conveniently obtained
by operational methods.
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OPERATIONAL SOLUTION OF INTEGRAL EQUATIONS

Let D represent the operator d/ds and let 1=1(s)
represent the unit jump function, that is, a function of
s haying the value zero at s<0 and having the value

1 at s2>0. A function of s ~may be represented by a

combination of operations on the unit ]ump function
<I’(S)—<I>(D)l (18)

"The combination of operations $(I)) necessary to
reproduce the function ®(s) is called the operational
equivalent of the function ®(s).

Rules for finding such equivalents are discussed in
reference 6. The most general rule for proceeding
either from § to ®, or vice versa, is:

8@ =a | "oz
®(a) =2imf ?i 5—(—;)5“%2

— i

The rule needed in the following development is
the Heaviside expansion theorem:

(D) f(0) JN)
FOy L =F7(0) +2fo(>\) ¢

where f and F are algebraic polynomials and the \'s
are the roots of F'(\)=0.

The operational treatment of integral equations is
based on the proposition that an integral of the form
of (15) may be regarded as the linear superposition of
the eflects of a succession of small jump functions.
The operational form of (15) is

() =a(D)1=

(19)

WD) =wr (D) T (D) (20)
and that of (17)
Ty (D) =Tou (D) [1—w,,r(D)] 21)
Solving algebraically for wy, (D):
_ . ZU.I‘ (D)TOM‘ (D) |
Wi (D) = o0 (D) Tou(D) #2)

The induced velocity w:,(s) gives the variation of
the effective angle of attack of the finite wing when the
geometric angle of attack is held constant. The lift at
later stages of the motion is then found by combining
" the effective angle-of-attack variation

Wer(8) =1 — Wy, (5) (23)

with .the two-dimensional indicial-lift function given
by Wagner. Let Cp,(s)=Cy(s) be the lift in two-
dimensional flow following a sudden unit jump of angle

(the curve given by Wagner is for e=1/27); then, for
the finite wing:

)= Cion(5) — Crg (6) W30 (0) — f Ol (5—50) e (50)dso

(24)

or, in operational form:
ZYLa (D ) 2_61.0,, (D ) _'ZYLO,, (D)_'L_—l}tw (D) (2 5)

Substitution of the expression for w, (D) from equation

(22) gives the operational form of the lift function for

the finite wing in terms of the known funetions
_awy(8), Tou(s), and OLOa(S)

Because no concise expressions of the required func-
tions are known, approximate formulas must be devised.
The function e** has a simple operational equivalent,
namely,

e)\s =

D
=l (26)
and, since the curves to be fitted are asymptotic in
character, series of such functions were chosen as

follows:
Tou(s) =5.75—3.75¢70295 1 50¢—1-970s
Choo(8) =27 —0.330me 00455 — 0670 mg 03005

Wr(8) 4=3=0.096—0.053¢0-281s

wr(8) 4s==0.045—0.032¢~0-2035

Figures 7 and 8 show the degree of exactness attained

with these expressions. It was considered not im-
portant to fit the curves accurately near the origin.

@7)

I
&
il il
4 L~
P
17
2 7 ;
/ e Ap;lnr‘oxmlmil‘e expressions ——|
[] NN
[ ] CLE T
0 2 4 & 8 10 2 4

s, half chords
FIGURE 8.—Growth of circulation in two-dimensional flow, Tp.(s).

The operational equivalents Ty,(D), ww (D), ete.,
are easily written down from (26). The substitution
of these equivalents into equations (22) and (25) and
the evaluation of the resulting operators by the Heavi-
side expansion theorem are quite lengthy and will not be
reproduced. The resulting expressions for (g, (s)
were found to be

-={).300s

Yoy = [ 1.288--0.190¢09% |.0.055¢"

+-0.043¢7295-1-0.915¢ 7% cos 0.095(s—19. L35)]
Oy =[1.589—0.242¢0155 — .403¢0 3005 (@8)

+-0.008¢71-9%5-1-0.872¢7°-2¥5 c0g 0.0724 (s —21.117)]

Because the curves given by these formulas are
considered invalid near the start of the motion, new
curves having the correct starting values given by
equation (7) were drawn in as shown (fig. 9). These
final curves have the useful approximate expressions:

Ci,, (s)=1.2007(1.000—0.283¢°-54)

29
Cr . (8) =1.487(1.000—0.361¢70-35%%) &9
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An analogous expression for infinite aspect ratio is

Cr.(8) =27 (1.000—0.165¢70-0455__(.335¢7030)  (30)
IR EENN A=
giEEnEEEEE NS
Wagner's curve, e e L
\ - Hlssner’s curve 5 s o e T L AR
/5 LT
/?I”——C'L = :_— j;-—___:___ e e e g
- B,
N 1k _ 3
G A -+
G,
2 17 —
i
i
0 z 4 & 8 10 2 Vi

s, half chords
FIGUuRE 9.—Indicial lift functions, Cr,(s) and Cre(s).

LIFT IN VARIABLE MOTION

In addition to the lift given by the lift function
C,(s), the airfoil experiences a reaction equal to the
instantaneous rate of change of the normal-velocity
component times the virtual additional mass of the
wing in normal motion. In coefficient form:

T do
E ds
Furthermore, if the wing is rotating in pitch, the effect
of an additional relative camber is introduced. A
simple integration, making use of well-known results
of thin-airfoil theory, shows

AOLinertia: (31)

do
Ao .=la—s

pitching

(32)

where the factor [ is % for a straight rectangular wing.

For the elliptic wing, § >SI>T 3 approximately, being
somewhat smaller than % because the rotation intro-
duces a smaller relative camber at the narrower sections
toward the tip.

The effects of combined vertical motion a:%’,)
0

and rotation (a=60) may be conveniently treated by the
use of moving axes as shown in figure 10. With these
points in mind, the following operational formula for
the total lift may be derived:

(33)

Cr(5) =7 Dexls) + O (D)ex(s) +1D0 )]

5

Up <—

G~
\
w

FiGURE 10,—Moving axes, a=w/ Uo

LIFT FUNCTIONS FOR AN OSCILLATING AIRFOIL

The lift in sinusoidal motion where

a=¢"™ and =0 (34)

is given by

Cp (8)= Ew,inei"s —l—@La (D)ets (35)
Since

eins___ D 1
—in
Y ins__ 3 D
Cro(D)et =0, (D) =71 (36)

Expansion of this operator gives, with the exception of
transient terms,

OLn (S) :ULQ ('l:n) gtns (37)

The function Cy, (in) corresponds to the lift func-
tion C(n) introduced by Theodorsen (reference 2) for
the oscillating two-dimensional airfoil, that is, in

Theodorsen’s terminology
., (in) =270 (n) =27[F(n) +1G(n)] (38)

-The expressions for F-i@ found from the operational
equivalents of (29) are:

(F416) 423=0.600—0. 17OW .
m
(F—f—’LG)A 6_0 740—0.2 967-—_T_m—

Figure 11 shows these functions plotted against the
wave length 2z /n of the oscillation.
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FIGURE 11.—Oscillating-lift functions, Cr,(in) =2r(F+iG) and Ty (in) =P+iQ.

Relation (37) is especially interesting (see reference
7) because it shows a connection between the Fourier
and the operational analyses. Thus, if the response of
a linear system to a continuous sinusoidal excitation is
known,

R, (s)=f(in)e"s (40)

then, the function f immediately furnishes the opera-
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tional equivalent of the unit response so that, for any
variable excitation 2(s),

RB(s)=fD)z(s)=f(D) 2(D) 1 RNCYY

LIFT IN GUSTS

“*"The foregoing calculations provide the basis for the

determination of lift under any prescribed conditions

-of motion of the wing. These results may also be used

in conjunction with the equations given by Theodorsen
(reference 2) to predict the air forces on wings with
hinged flaps.

In all cases treated, the airfoil has been considered
as moving in air that would otherwise be at rest. An-
other problem of considerable interest is the prediction
of lift during passage of the airfoil through gusts.
The two-dimensional theory for this case was developed
by Kiissner (reference 3) and has since been corrected in
certain details by von Kérmén and Sears (reference 8).

The basic solution required in the gust problem is
the solution for a unit sharp-edge gust of uniform up-
ward velocity. In order to obtain this solution, it is
useful to substitute for the change in direction of the
relative air velocity an equivalent fictitious bending of
the airfoil in still air such that it has at every point an
angle of attack equal to the angle that would otherwise
‘be produced by the gust.

The effect of a bend progressing along the chord of
the airfoil may be calculated by thin-airfoil theory
(reference 9, chs. IT1 and IV). A part of the effect
appears as & change in angle of attack of the airfoil as
a whole, namely:

1_cos“(s—l})—1~w/s(2—s)

™

Aa,= 42)
The corresponding part of the lift is obtained from the
indicial-lift function C; (s) by superposition. In
addition, a reaction caused by acceleration of the non-
circulatory potential flow exists during the time the
airfoil is partly immersed in the gust. In two-dimen-
sional flow, the additional reaction is '

Ay, =245E—5) (43)

No corresponding expression for the finite wing is
known, but it may be reasoned that the maximum cor-
rection will be no greater than that indicated by the
inertia factor of the rigid elliptic disk, 1/E. Hence, the
formula

I r) (44)

was used for the finite wings.as an approximation.

The consideration of wings with curvature or sweep-
back introduces another difficulty into the analysis,
since the sections of such wings will not strike the edge
of the gust simultaneously. It is obviously impractical
to attempt to include in the analysis the effects of the

many possible variations of plan form, and the calcula-
189817——40——2

tions were therefore made on the assumption that all
sections entered the gust simultaneously. Such an
analysis may be considered sufficiently exact for the -
usual variations of plan form but is, of course, not ap-
-plicable to wings with considerable sweep.

Figure 9 shows the functions, designated C;, (s), thus
calculated. These curves have the useful approximate
expressions:

OL‘,(S)A=3—_—- 1.2007(1.000—0.679¢~05%8s— (0,227 ¢~3205)
Cy,(8) 4=s = 1.5007(1.000 — 0.448¢ 0205

—0.272¢7072 —(.193¢~3.905))(45)
1, () 4==2.0007(1.000—0.23 60055

—0.513¢703045—(,171¢7>4%)
As in the case of the functions C;,(s), the exponential

forms were used to give simple operational equivalents.
The operational equivalents of the indicial-gust func-

tions, 5%, give directly functions determining the al-

ternating lift of a stationary wing in an oscillating air
stream. Thus

Cr(s)=0Cy, , tn)et™ =[P (n) +-iQ(n)]e*" (46)

Figure 11 shows these functions in comparison with the
corresponding functions for the oscillating airfoil.
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FIGURE 12.—Variation of the lift during passage through unit sharp-edge gust. A4=6.

MOTION OF AIRPLANE IN GUST

In most problems that arise in practice, the motion
of the airfoil, or airplane, will not be prescribed before-
hand but must be determined from dynamical equa-
tions. The rising motion of an airplane (or, as it shall
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be considered here, a loaded wing) while entering a
sharp-edge gust presents such a problem and will be used
to illustrate the application of the operational formulas.

The dynamical equation for this case (neglecting
pitching motion) is:

m‘%’+resisting force=impressed force 7
where the impressed force is that part of the lift caused
by the gust. Since

dw__ Uy da
dt  ¢/2 ds
dw_ﬁ 2m p e UP? da prr Ao
T op 20 e ds M 20a% (48
2
where p=-— 2m - In coefficient form,
S—c
uDa—ﬁpa (D)a=—aL”(D) oy (49)
2 T T T T
Asymprtore: A=co
13x 3
Aﬁw e
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FI1GURE 13.—Maximum-lift increments developed in flying through a unit sharp-edge
gust.

where a, is the change in angle of attack represented by
the gust.

For a unit sharp-edge gust, a,=1; then (solving
for a),

- 0,,(D)
8) = ——=—=——>—-1 50
“© = Dra, D) 50)
P 4+l [ S - 18 Y. S . S
By the use of the approxim § given 1ior

10
Cr,and C, (equations (29) and (45)), this operator may
be reduced to the form (19).

Figure 12 shows the lift coefficient Op(s)=pDa(s)
computed from equation (50) for several values of the
density ratio p and for A=6. Figure 13, derived from
similar ealculations, gives maximum lift loads attained
in the sharp-edge gust as functions of the relative

density.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NaTronarl Apvisory COMMITTEE FOR ABRONAUTICS,
Laxerey Fiewp, Va., June 15, 1939.
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