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The upper critical magnetic field of holographic superconductor with conformally
invariant power-Maxwell electrodynamics
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L Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71946, Iran
2 Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha, Iran

The properties of (d — 1)-dimensional s-wave holographic superconductor in the presence of
power-Maxwell field is explored. We study the probe limit in which the scalar and gauge fields do
not backreact on the background geometry. Our study is based on the matching of solutions on
the boundary and on the horizon at some intermediate point. At first, the case without external
magnetic field is considered, and the critical temperature is obtained in terms of the charge density,
the dimensionality, and the power-Maxwell exponent. Then, a magnetic field is turned on in the
d-dimensional bulk which can influence the (d — 1)-dimensional holographic superconductor at
the boundary. The phase behavior of the corresponding holographic superconductor is obtained
by computing the upper critical magnetic field in the presence of power-Maxwell electrodynamics,
characterized by the power exponent ¢. Interestingly, it is observed that in the presence of magnetic
field, the physically acceptable phase behavior of the holographic superconductor is obtained for
g = d/4, which guaranties the conformal invariance of the power-Maxwell Lagrangian. The case of
physical interest in five spacetime dimensions (d = 5, and ¢ = 5/4) is considered in detail, and com-
pared with the results obtained for the usual Maxwell electrodynamics ¢ = 1 in the same dimensions.

PACS numbers: 11.25.Tq, 04.70.Bw, 74.20.-z
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I. INTRODUCTION

The correspondence between the gravity in a d-dimensional anti-de Sitter (AdS) spacetime and the conformal field
theory (CFT) residing on the (d — 1)-dimensional boundary of this spacetime, provides a powerful tool for studying
strongly coupled systems [1]. The gauge/gravity duality, which relates strongly interacting gauge theories to theories
of gravity in higher dimensions, has opened a new window to study many different strongly interacting condensed
matter systems [2]. In Ref. [3], a model for dual description of a holographic superconductor was proposed. The model
was shown to exhibit a critical point T, at which the system goes into a superconducting phase. The properties of
this phase have been thoroughly studied [2, 3], showing a strong resemblance with those of a Type II superconductor.
Till date, a number of attempts have been made, mostly numerical, in order to understand various properties of
holographic superconductors in the framework of the usual Maxwell electromagnetic theory [3-16].

It is important to investigate the issue of response to an external magnetic field in the context of holographic
superconductors [17], which also is of central significance in the general field of superconductivity. It is observed
that when immersed in an external magnetic field, ordinary superconductors expel the magnetic flux lines thereby
exhibiting perfect diamagnetism when the temperature is lowered through 7T, which is called the Meissner effect
[18]. In fact depending on their behavior in the presence of an external magnetic field, the superconductors are
classified into two general categories, namely type I and type II superconductors. In type I superconductors, when
the external magnetic field B reaches a critical value B, there occurs an abrupt (first order) phase transition from
the superconducting phase to the normal phase. On the other hand, in type II superconductors that are directly
relevant to our discussion, there happens to be a continuous (second order) phase transition and the material ceases
to superconduct for B > By, where By is called the upper critical field of type II superconductor. In the case
of the continuous phase transition in type II superconductor, the order parameter is small near B.o and vanishes
continuously as B — Bes.

For the holographic superconductor in the probe limit, we neglect the backreaction of the scalar field on the
background geometry. As a result, the holographic superconductor is not able to repel the background magnetic field,
which holds a strong resemblance with type II superconductor in its mixed phase. Instead the scalar condensate
adjusts itself such that it only fills a finite strip in the plane, thus reducing the total magnetic field passing through
it. In other words, the effect of the external magnetic field is such that it always tries to reduce the condensate. The
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numerical studies indicate that the superconducting phase disappears above an upper critical value of the applied
magnetic field B > Bes [17, 19].

It is well known that the properties of holographic superconductor depend on the behavior of the electromagnetic
field coupled with the charged scalar field. The effects of nonlinear electrodynamics on the critical temperature and
condensation parameters of s-wave holographic superconductors have been investigated in [20-22]. Motivated by the
recent studies [23-29], and the fact that within the framework of AdS/CFT correspondence a different electromagnetic
action is expected to modify the dynamics of the dual theory, in this paper we investigate the behavior of holographic
superconductor with power-Maxwell field in the background of a d-dimensional Schwarzschild AdS black hole, bearing
in mind that in d-dimensional spacetime the energy-momentum tensor of conformally invariant Maxwell field is
traceless provided we take ¢ = d/4 where ¢ is the power parameter of the power-Maxwell electrodynamics [30, 31].
In the absence of external magnetic field, and in the background of d-dimensional AdS black hole, the properties of
s-wave holographic superconductors coupled to power-Maxwell electrodynamics have been explored in [32-34]. Other
studies on the holographic superconductors have been carried out in [35].

The rest of this paper is organized as follows. In Sec. II, we present the holographic dual of d-dimensional
Schwarzschild AdS black hole by introducing a complex charged scalar field coupled with the power Maxwell field and
explore the relation between critical temperature and charge density. In Sec. III, the magnetic field effect on holo-
graphic superconductor with power Maxwell electrodynamics is considered. The paper is concluded with a discussion
and summary in section IV.

II. HOLOGRAPHIC SUPERCONDUCTOR WITH POWER MAXWELL FIELD

We consider the d-dimensional action of Einstein gravity in the presence of power-Maxwell field and a charged
complex scalar field which is given by

5= / dzy/=g [R — 27 — B(Fu F"™)? — |V, — igAup|> — m?[y[? |, (1)

where R is the Ricci scalar, F),, is the electromagnetic field tensor, A, and v are the gauge and scalar field, 3 is the
coupling constant, ¢ is the power parameter of the power-Maxwell field, and the cosmological constant is

A _W7 2)

where [ is the AdS radius of spacetime. For § = 1/4 and ¢ = 1 the power-Maxwell Lagrangian £ = —J(F,, F"")4
reduces to the usual Maxwell Lagrangian. Besides, for ¢ = d/4, the energy-momentum tensor of the power-Maxwell
Lagrangian is traceless in all dimensions [30]. It is also easy to check that, under a conformal transformation which acts
on the fields as g, — Q%g,, and A, — A, the power-Maxwell Lagrangian £ = —3(F},, F*")9 remains unchanged
provided ¢ = d/4 [30]. The metric of a planar Schwarzschild AdS black hole in d-dimensional spacetime is

dr?

2 r 2
ds? = — f(r)dt * 70

+ r2dada’, (3)

where

Ti_l
= (1- 1), @
r4 is the horizon radius, and we have taken the AdS radius equal to one, i.e. [ = 1. The Hawking temperature is
given by

frry) _ (d=1)ry

= ir dr 5)

We consider the following ansatz for the gauge and the scalar fields, respectively [3]

Ap=o(r)dt, P =1v(r). (6)
From the action in Eq. (1), the equations of motion are given by
d—2 d)/ ¢w2¢/2—2q
/! + < ) + — O, 7
¢ 20—1)r  (=2)1Bq(2q—1)f ™
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where the prime denotes derivative with respect to r. At the event horizon of the black hole r = r, the regularity
gives the boundary conditions for ¢(r) and ¢(r) as [3]

d—1r
o) =0, v = LDy, )
At the asymptotic AdS boundary (r — o0), the solutions of Egs. (7) and (8) behave like
Y- Yy
(GRS o + ISV (10)
prp—Lo—, (11)
qu—l
with
1
/\iZQ[(d—l)i (d—1)2+4m?|, (12)

where p and p are interpreted as the chemical potential and charge density in the dual field theory, respectively [3].
By changing the variable z = r, /r, the equations of motion (7) and (8) become

11 4q —d (b/ ¢¢2¢/2—2qriq B
o (2q— 1) ERS TSV oy T (13)
1" f! d—4 / 7"3 (252 m? .
v *(f‘7)¢+z4(p—f>¢—0» (14)

where the prime now indicates the derivative with respect to the new coordinate z. The asymptotic boundary
conditions for the scalar field ¥(z) and the scalar potential ¢(z) now become

1

T

6= n— Lo (15)
rit

Y= J_ 2+ T2 (16)

Following [3, 6], we can impose the boundary condition that either J, or J_ vanishes. Hereafter, we consider the case
with Jy = 0. The case with J_ = 0 was already studied in [29], although their final expression for critical magnetic
field seems to be in error.

Now, anticipating the matching technique [5, 7, 10, 36-38], first we consider the solutions of the gauge field ¢(z)
and the scalar field ¢(z), using the boundary conditions from Egs. (9) and (10) near the horizon (z = 1). Both ¢(z)
and ¢(z) are Taylor expanded near the horizon (z = 1) as

Bz) = 6(1) = $ ()1~ =)+ 29" (D1~ + ..

~ —# (- 2) + 58" (1)1 - 2P (17)

U(z) =9(1) —¢(1)(1 - 2) + %l/f”(l)(l — 22+ (18)

where without loss of generality we choose ¢'(1) < 0 and (1) > 0. On the other hand, near horizon (z = 1) from
Egs. (13) and (14), and using f/(1) = —(d — 1)r% and f”(1) = 6r2 — (d — 3)(d — 4)r%, we obtain

_ 2 742(172
o) = (5= + e OF (19)
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ey M m? ¢ (1)p(1)
v (1)d—1<1+2(d—1))w(1)27ﬁ(d—1)2' 20)
Substituting Egs. (19) and (20) in Egs. (17) and (18), we finally obtain
o)~ = (11— ) + ;{‘jqff e }¢’(1)(1 o 1)

W(z) ~ (1 n d"i 1) W(1) — d"i -zp(1) + ;{d”il (1 n 2((;”_ 1)) ~ 2r2+¢(’d(i)1)2 }¢(1)(1 ~ )2, (22)

Now by matching these two sets of asymptotic solutions at some intermediate point z = z,,, namely matching Egs.
(15) and (16), respectively, with Eqgs. (21) and (22), we arrive at the following set of equations,

1
p2q71 d—2

_ 2q—2
42 1]d—4q a?(—w)? 2qr+ 5
T =0 - 1= 2m)%,
po et =eleen) 2{2q1+<1>3q2wq<2q1><d1> =)
+

(23)
2 2 2 2 2
A m Y 1) m” m - d — zm)?

where we have defined o = ¢(1) and w = —¢/(1) (a,w > 0). Note that according to the matching method, not only
functions ¢(z) and v (z) should match at z,,, but their derivatives must also match at intermediate point z,,. The
latter implies that we have the following two equations

1
d—2 2q-1  d=2 d—4 20 \2-2q,.29—2
< -1 1) 672 1 Zm = — ! _ ?q (q 2 _T+ — w(l = 2m), (25)
-1 ) 3 201 (C1p2iBg(2 — 1){d 1)

(26)
d-1
From Eq. (25), after using Eq. (5), we find
- (573 (31)
o (=1)°7129¢5(d - 1) T\ 2T T 2t
= —Dd—1+(6—4 -9 1— (= 2
@ (1 _ Zm)(I)Q(l_q) [(Zm )d + (6 Zm)q] T T. ) ( 7)
where @ = w/r4, and T, is obtained as
T, = kp2, (28)
where
d742<1 2g—1
. (dfl)QzT_n1 { (d—2¢—1) ] (29)
dra=z  L(zm —1)d =1+ (6 — 4zm)q
From Egs. (24) and (26), we have
O = /mt+ 2d = 1) m2( A_(22, — 4z +3) — 22 (2m — 2) | +2A_(d — 1) (30)
(I —2m)(22m + A (1 — 2)) o " mm B ’
2(d—1 21— 2zm
J= 71)( ) +m* (1~ 2m) a. (31)
zm . (d—=1)2zm + A-(1 — 21m))
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Near the critical point T ~ T, after using Eq. (27) and the definition of distance parameter t =1 — T/T,, we get
d—2
= —t 32
a=VA g 1" (32)
where
(=1)°7127¢B(d - 1)
- m—1)d =14 (6—4z,)q]. 33
i e = [ A 33)
Finally, combining Egs. (5), (31), and (32) near the critical temperature, the condensation operator can be calculated
as
T
<O >=V2rJ_ =T /1— o (34)
where

_AV2VA [d-2  2(d—1)+m*(1 - zp) (35)
(d=12\20 =10 D22 A (1-20)

q K

1 10.142
5/410.197
6/410.231
7/4 10.259
81| 2 |0.285
Table 1: The values of k = Tc/pl/(dfz) for different values of power parameter ¢ = d/4, with z,, = 0.5 and m? = —2.

~N| S [ U,

We see from Table 1 that the critical temperature increases with increasing power parameter ¢ = d/4, or dimensions
d, that is consistent with the general theory of critical phenomena. There are two cases of physical interest in Table 1.
The case of d = 4 corresponds to the (2+ 1)-dimensional holographic superconductor in the usual Maxwell field ¢ = 1.
The other case of physical interest is d = 5, which corresponds to a (3 + 1)-dimensional holographic superconductor
with conformally invariant power-Maxwell field ¢ = 5/4.

IIT. EFFECT OF EXTERNAL MAGNETIC FIELD

According to the gauge/gravity duality, the asymptotic value of magnetic field in the bulk, corresponds to the
magnetic field in the boundary field theory: B(z) = Fyy(xz,z — 0) [17, 23]. Considering the fact that near the
upper critical magnetic field of the continuous phase transition B.o, the condensate order parameter is small, we can
therefore consider the scalar field v as a small perturbation near B.s. This allows us to adopt the following ansatz
for the gauge field and the scalar field [17, 23, 24, 29]

A =¢(z), A, =Bz, ¢Y=1(z,z2). (36)

With this, the equation for the scalar field ¥ becomes

" f/<z) d—4 / m2r%r (wvz) Tidﬁ(z)w(l‘?'z) 1 2 2,..2 _
e + (5 -5 e - P BER @ - Bt —0 6
In order to solve Eq. (37), we take the following separable form
P(z,z) = X(x)R(2). (38)

Substituting Eq. (38) into Eq. (37), we arrive at

7 ! _ / 2 12 2,.2 "
e e e R
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X (x) is governed by the equation of a harmonic oscillator with frequency determined by B:
~X"(x) + B*2*X (z) = \, BX (z), (40)
where A, = 2n + 1. For n = 0, R(z) satisfies
! _ 2,.2 R 2 42 R
R'(2) + f'(z) d—4 R(2) m*ry R(z) N 3¢ (2)R(2) _ BR(z). (41)
f(2) z 2 f(2) 24 f2(2) 22 f(2)

Now at the horizon z = 1, and using Eq. (41), ¢(1) =0, f/(1) = —(d — 1)r%, and f”(1) = 6r% — (d — 3)(d — 4)r2, we
obtain

m2
R(1) = <(d —B1)7~3 + = 1>R(1), (42)
()= b m? B? ¢(1)
R'(1) = {d—1<1 + (d— 1)7“%r + Q(d_ 1)> + 20d — 1)2764+ - 2<d— 1)27"1 }R(l) (43)

In the asymptotic region (z — 0), the solution behaves as
R(z) = J_z*= + Jp 2. (44)

In the presence of external magnetic field, we use the matching method and the Taylor expansion of R(z) near the
horizon

R(z)=R(1)— R'(1)(1—2)+ %R”(l)u —2)% 4 (45)

Substituting Egs. (42) and (43) in Eq. (45), we have

R(z) ~ R(1)+(1_Z>((d31)r3 +dm1)1-z(1)
1[ m2 B m? B? ¢”(1) 2
"3 [d—l (1 T T 1)) T d 0BT 2 1)2&}}%(1)(1 -2 (46)

The two solutions given in Eq. (44) and Eq. (46) are connected smoothly at an intermediate point z,,. Thus, we find
that

A B m? 1] m? B m?
Tz = R+ (1= Z’”)<(d— Dz T d- 1>R(1) L 2{d— 1 (1 a0 T 1))
B? ¢"(1) 2
+2(d*1)27"i - Q(dl)zTi}R<1)(1—2m) ) (47)
A1 B m? m? B m?
A-d-zm <(d— 02 T as 1)3(1) {d— 1 (1 T e 1))
BQ ¢/2(1)
+2(d — 1)t o 2(d —1)2r% }R(l)(l — Zm)- (48)
From the above equations, we get
B? 4+ 2nr3 B + priy — ¢(1)rl =0, (49)
where
_ 2 A—(l - Z’H’L) + Zm
= *2“‘”{(1—%) [<2—A>zm+u}’ (50)
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bt 2(d—1) [22-(d — 1) + m? ((3 — 4zm + 22) A= — 22 (2m — 2))] ' (51)
(1= 2m) [(2 = A-)zm + A_]
It is easy to see that Eq. (49) has a solution
B= \/¢’2(1)ri + 74 (n2 —p) —nri. (52)

Now consider the case for which the value of the external magnetic field is very close to the upper critical value, i.e.
B ~ Bgy. This implies a vanishingly small condensate, and therefore we can ignore all the quadratic terms in ¥. With
this approximation, from Eq. (13) we obtain

1/d-2
"(2) — = —21é'(2) =0. 53
o)~ 1 (=5 ~2)#0a 53)
From the above equation and using Eq. (15), we arrive at
2 2 T d 2 2
212 = £ 7~4< - —1). 54
¢ ()+ 22(2:5) + 2(]_1 ( )

From Egs. (28) and (29), we have
[47T.(0)]" 72 @2a-1

2q—1
(d—4q) _ d—2q—1
2 q (d — 1)(d 2) |:(zm1)d1(jr(64zm)q:|

p= (55)

On substituting Egs. (54) and (55) into Eq. (52), we finally obtain

Bo(T) _ 16w (T \NBE [ @ (G- 1)d—14 6 —dzm)e® , (T \FH
T20)  (d-1)? <Tc(0)> { (2 — )2t +(n*=p) <Tc(0)>

. <Tfo)> i } (56)

This result makes clear the dependence of the upper critical field on the temperature and the power parameter of the
power-Maxwell electrodynamics. The phase diagram given by Eq. (56) is plotted in Figs. 1 and 2 for different values
of dimensionality d (or power parameter ¢ = d/4) and different m?, respectively. It is clear from Figs. 1 and 2 that,
consistent with the phenomenology and the Ginzburg-Landau theory of superconductivity, Be2(T') vanishes linearly
as T — T.(0). Figure 3 shows the behavior of By as a function of T for different values of T,(0), i.e. the transition
temperature in absence of magnetic field. It is evident from Fig. 3 that B.2(0) increases with T,.(0), which is again
consistent with the phenomenology of superconductivity. It is worth noting that the reasonable behavior of B in
Figs. 1-3, which is consistent with the phenomenology of superconductors, is observed provided we take ¢ = d/4.
For example in d = 5 dimensions that corresponds to a (341)-dimensional holographic superconductor, we should
take ¢ = 5/4 in order to have reasonable B in the range of T < T.(0). This implies that among all power-Maxwell
theories with various parameters ¢, those which are conformally invariant lead to the magnetic field behavior of
physical interest for holographic superconductors. This may be understood as follows. For the conformally invariant
power-Maxwell theory, not only the energy-momentum tensor is traceless, but also the electromagnetic fields in higher
dimensions have the same behavior as in the (well established) case of (2+1)-dimensional holographic superconductor
dual of 4-dimensional gravity [31]. For example, for the usual Maxwell field in d dimensions, the electric field of
charged point-like particle behaves as E(r) ~ 1/r%=2 while for the conformally invariant power-Maxwell field in d-
dimensional spacetime, the electric field of point charge is independent of the dimensionality and varies as E(r) ~ 1/r2,
exactly like in four dimensions [31]. In other words, for conformally invariant Maxwell field, the magnetic field in
the d-dimensional bulk and on its (d — 1)-dimensional boundary has the same behavior as in the usual holographic
superconductor in d = 4 spacetime.

In order to clarify the above argument, let us have a closer look at expression (56). For conformally invariant case
g = d/4, the critical magnetic field in d-dimensions reduces to

BT'?((OT; - (d167r12)2 {\/”2 HoEr) <TCT<0>>4 B "(TCT(O)ﬂ ' 0
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T/T,0)

FIG. 1: The behavior of Bea/T2(0) in terms of T/T.(0) for different values of ¢ and d, with z, = 0.5 and m? = —2.

0)

2
[

B,/T

0 0.2 0.4 0.6 0.8 1
T/T (M

FIG. 2: The behavior of Beo/T2(0) in terms of T/T.(0) for different values of m? and z, = 0.5, with d = 5 and ¢ = 5/4.
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S o N ————— T(0)=12

FIG. 3: The upper critical field B.2 as a function of temperature T' for different values of T.(0), with z,, = 0.5, d =5, ¢ = 5/4,
and m? = —2.

1000

800

200

0 0.2 0.4 0.6 0.8 1
T/T,0)

FIG. 4: The behavior of Be2/T2(0) in terms of T/T.(0) for different values of m? and 2z, = 0.5, with d =5 and ¢ = 1.
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120 ~
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100 |- ‘.

80 - N\,

20

I .
0 0.2 0.4 0.6 0.8 1

T/ T

FIG. 5: The behavior of B2 /TZ2(0) in terms of T/T.(0) for different non-zero boundary conditions J_ and J, with 2, = 0.5,
d=5,q=>5/4, and m? = =2 .

It is important to note that in this case the functional dependence of B.o(T) is the same as that of four-dimensional
Maxwell case. This is an expected result since for conforamally invariant Maxwell field, the magnetic field in all
dimensions has the same behavior as in four dimensions. For d = 5, expression (57) becomes

st o) (o)}

On the other hand if we consider the Maxwell case (¢ = 1) in five dimensions (d = 5), then Eq. (56) becomes

o (atn) {0000 la) i) }

The main difference between expressions of critical magnetic field given in Eq. (58) for the conformally invariant
Maxwell field (d =5, ¢ = 5/4) and the usual Maxwell field (d = 5, ¢ = 1) given by Eq. (59), is the appearance of the
[T/T,(0)]" term in the latter case. Clearly this term diverges as [T/T.(0)] — 0. The behavior of By in terms of
T/T.(0) for ¢ =1 and d = 5 is shown in Fig. 4. From this figure, it is obvious that the critical magnetic field diverges
as T'— 0. This behavior is unacceptable and as we mentioned only the conformally invariant Lagrangian with ¢ = d/4
leads to the desired form of critical magnetic field consistent with the phenomenology of superconductors. Finally,
Fig. 5 shows the phase diagrams obtained by imposing the different boundary conditions of non-zero J_, as expressed
by Eq. (56), and non-zero J;, also considered in Ref. [29].

IV. CONCLUSIONS

In this paper, the properties of (d—1)-dimensional s-wave holographic superconductor in the presence of conformally
invariant power-Maxwell correction to the usual Einstein-Maxwell action, were investigated. It must be noted that
the power-Maxwell Lagrangian in d dimensions is invariant under conformal transformation, i.e. g,, — QQg#,, and
A, — A,, provided we take the power parameter as ¢ = d/4.

https://mc06.manuscriptcentral.com/cjp-pubs
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In the absence of external magnetic field, we have found the critical temperature T, to vary as p'/(4=2) for all
values of the power parameter g, with a proportionality constant s that increases with g or the dimensionality d, as

expected. The variation of order parameter with the temperature is found to be < O >x /1 — Tl with a critical

exponent 8 = 1/2, which is characteristic of systems with mean field behavior, the prime examples of which are the
superconductors.

Furthermore, an analytic investigation of the effects of an external magnetic field was made by employing the
matching technique. We considered the probe limit in which the scalar and gauge fields do not affect the background
metric. The phase behavior of the (d — 1)-dimensional holographic superconductor was obtained by computing the
upper critical magnetic field in the presence of conformally invariant power-Maxwell electrodynamics. It was found
that consistent with the phenomenology and Ginzburg-Landau theory of superconductivity, the upper critical field
Beo(T') vanishes linearly as T — T,.(0). Also, it became evident that B.2(0) increases with T.(0), which is again
consistent with the phenomenology of superconductors. The case of physical interest in d = 5 spacetime dimensions,
corresponding to (3+1)-dimensional holographic superconductor, was considered in detail with both the conformally
invariant ¢ = 5/4 and the usual power-Maxwell parameter ¢ = 1, and plotted in the figures. Interestingly enough,
we observed that in the presence of power-Maxwell electrodynamics, the critical magnetic field B.s has reasonable
behavior consistent with the phenomenology of superconductors provided we consider the conformally invariant case,
i.e. ¢ = d/4. This may be due to the fact that for the conformally invariant power-Maxwell theory, the electromagnetic
fields in higher dimensions have the same behavior as in the four-dimensional gravity dual of the well established (241)-
dimensional holographic superconductor [31]. In particular, we found that for ¢ = 1 and d = 5, the critical magnetic
field Bgo diverges as T' — 0. This behavior is physically unacceptable and comes from the fact that in the case
g =1 and d = 5, the power-Maxwell Lagrangian is not conformally invariant. This point, however, deserves further
investigation.
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