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Abstract. This paper studies applications of envelopes of piecewise linear functions 

to problems in computational geometry. Among these applications we find problems 

involving hidden line/surface elimination, motion planning, transversals of poly- 

topes, and a new type of Voronoi diagram for clusters of points. All results are 

either combinatorial or computational in nature. They are based on the combinatorial 

analysis in two companion papers [ PS] and [ E2] and a divide-and-conquer algorithm 

for computing envelopes described in this paper. 

1. Introduction 

This paper  cont inues  the study, ini t iated in [PS] and  in [E2], of  envelopes of 

piecewise l inear  funct ions  in two or more variables. The previous papers have 

established tight lower and  upper  b o u n d s  on the combinator ia l  complexi ty of 

such envelopes.  In this paper  we provide efficient algori thms for calculat ing 

envelopes of  this kind,  discuss several extensions and  special cases of  the previous 
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combinatorial bounds, and give a variety of  applications of these results to many 

problems in combinatorial and computational geometry. 

Let us first review the results of[PSI  and [E2]. Let s~, s2 . . . .  , sn be n d-simplices 

in ( d +  1)-dimensional space, none of which is vertical (that is, parallel to the 

( d +  1)st coordinate axis). We can thus view each s, as the graph of a partially 

defined linear function Xd+ 1 = f / ( x i ,  X 2 , . . .  , Xd) , whose domain of definition is a 

d-simplex, namely the orthogonal projection of s, onto the hyperplane xa÷ t = O. 

The upper envelope, M, of the given simplices is the pointwise maximum of these 

functions, that is, 

M ( x l ,  x 2 , . . . ,  xa) = max {f,(xl, x2 . . . .  , xa)}, 
l ~ t < n  

where each f, is assumed to be -oe  outside its domain of definition. The lower 

envelope of the simplices is defined in a symmetric fashion. 

We can associate with the envelope M a polyhedral cell complex, M*, in 

d-space such that over each cell of M* the envelope M is attained by a fixed 

function f~. Intuitively, this is the orthogonal projection of the graph of M onto 

Xd+I = 0 (see Fig. 2.1 which shows the projection of four triangles in d + 1 = 3 

dimensions). The combinatorial complexity of M is the complexity of this 

complex, that is, the total number of  faces (of any dimension) composing it. In 

general, the projection of the faces of  M does not yield a convex decomposition 

of  d-space. However, we can obtain a refined convex decomposition by superim- 

posing M* onto the arrangement of the ( ( d -  1)-dimensional) hyperplanes con- 

taining the ( d -  1)-faces of  the given simplices (see Fig. 2.2 which shows M* for 

a set of  three triangles in d + 1 = 3 dimensions). We measure the complexity of 

M in terms of this refined decomposition. 

I f  instead of simplices we have a collection of arbitrary piecewise-linear 

functions of  d variables, we can decompose the graph of each of them into a 

collection of simplices, and then obtain the upper  envelope of the given functions 

as the upper  envelope of these simplices. 

The two previous papers mentioned above analyse the combinatorial com- 

plexity of  such envelopes in d + 1 dimensions. They show that it is O(naa(n)) ,  

where a(n)  is the extremely slowly growing inverse of  Ackermann's  function. 

Moreover, this bound is tight in the worst case. For d + 1 = 2, we face the special 

case of  the envelope of n line segments in the plane. This case has been studied 

in [HS], [WS], and IS], where it is shown that the complexity of the envelope 

(in this case the number  of subsegments composing it) is O(na(n) ) ,  and that 

this bound is tight in the worst case. The proofs are based on reformulating the 

problem in terms of Davenport-Schinzel  sequences of  order 3. 

As a matter of  fact, in the one-dimensional case, the theory of  Davenport-  

Schinzel sequences yields tight almost linear upper  bounds on the complexity of 

the envelope of any collection of (partially defined) continuous univariate func- 

tions, provided that each pair of  them intersect in at most a fixed number of 

points. In contrast, for collections of n functions of  d -> 2 variables (which satisfy 

appropriate conditions on the pattern of  their intersections), no comparable tight 

upper  bounds on the complexity of  their envelopes is known in general as yet, 
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and the only general bound available so far is the trivial one, O(n~+l). We refer 

to [SS] for a few improved results for certain classes of bivariate functions. 

The proofs of the mentioned bounds for piecewise linear functions use induc- 

tion on the dimension d. The proof  in [PS] is based on a divide-and-conquer 

analysis. We partition the collection of n simplices into two subcollections of 

roughly n/2 simplices each, recursively obtain the envelope of each subcollection, 

and then obtain the overall envelope by taking the pointwise maximum of the 

two subenvelopes. Using arguments based on arrangements of  hyperplanes, 

convexity, and on the complexity of  the envelope restricted to certain lower- 

dimensional spaces, we show that the number  of  additional facets created by 

superimposing the two subenvelopes is bounded by O(ndo~(n)). This leads to a 

recurrence relation whose solution yields the desired bound on the number of  

facets (that is, d-dimensional faces) in the envelope. Using Euler's formula for 

planar maps this yields similar bounds on the total number of faces of M if 

d + 1 = 3. For higher dimensions this proof  has been extended in [E2], where the 

same bound for the overall complexity of the envelope using a different divide 

step is obtained. 

In Section 2 we follow the outline of  the proof  in [PS] to obtain a divide-and- 

conquer algorithm for calculating the envelope of triangles in three dimensions. 

The amount of  time needed is at most proportional to the maximum combinatorial 

complexity of  the envelope, namely O(n2a(n)). Because of the lack of convex 

hull algorithms in four and higher dimensions that run in time proportional to 

their output, we have not succeeded in generalizing this algorithm so that it 

runs in time O(nda(n)) if d + l > - 4 .  We also discuss several extensions and 

special cases of  envelopes of  piecewise linear functions which are needed for the 

applications that we study. 

The major part of  the paper  is devoted to applications of  the combinatorial 

and computational bounds stated above. These applications include the hidden 
line/surface removalproblem which is discussed in Section 3. We give algorithmic 

results that match and generalize previous results of  [Dv] and [M] for d + 1 = 3 

dimensions. We also obtain algorithms for related problems, such as constructing 

an image of a solid defined in Constructive Solid Geometry, and obtaining views 

of a three-dimensional projection of tetrahedra in four dimensions. 

Section 4 considers translational motion planning for polyhedra in three 

dimensions. Here, we calculate the space of free placements of a given polyhedron, 

B, which is free to translate amidst a collection of polyhedral obstacles. We also 

discuss special cases of  the problem, such as where the obstacles form a polyhedral 

terrain (that is, a piecewise linear surface meeting each vertical line at exactly 

one point), and the case where B is allowed to translate from its current position 

along a straight half-line only. The latter special case extends work on movable 

separability of  sets reported in [Tt]. 

The problem of stabbing line segments and polytopes is investigated in Section 

5. Using a standard duality transformation, we show that stabbing hyperplanes 

can be represented by points lying between the upper  envelope of one collection 

of simplices and the lower envelope of another such collection. Our results extend 

previous work on this problem in two dimensions (see [E3]). 
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Voronoi diagrams of point clusters are considered in Section 6. For each cluster 

(that is, finite set o f  points in d dimensions) its distance from a point is 

the maximum Euclidean distance from this point to any point in the cluster. 

The Voronoi diagram of  a collection of  clusters is then defined as the decompo- 

sition of space into maximal domains so that for each domain there is a unique 

nearest cluster for all points in this domain. By transforming the problem 

to (d+ l ) -d imens iona l  space, we can reformulate it in terms of envelopes of 

certain piecewise linear functions. 

We do not regard this list of  applications as exhaustive, and we expect many 

more applications to be found. For example, Tamir [Tr] has recently discovered 

applications of  our results to p-center and obnoxious p-center problems for 

certain trees and graphs. 

2. Computing an Envelope 

This section presents an algorithm for constructing the upper envelope of a set 

o f  n triangles in three dimensions. The algorithm follows the outline of  the proof 

in [PS] that shows that the combinatorial complexity of this envelope is 

O(n2ot(n)). At several points we have to introduce intricate algorithmic tools in 

order to get a worst-case optimal algorithm. For some of  these tools the complexity 

goes up more than desired when we generalize them to four and higher dimensions. 

This explains why we do not have an optimal (or even near-optimal) method for 

computing envelopes in four or higher dimensions yet. After presenting and 

analysing the algorithm, we study a few extensions of  envelope constructions. 

These will lead to several computational and combinatorial results used in later 

sections of  this paper. 

We next present the algorithm that constructs the upper  envelope of  a set, S, 

of  n triangles in three dimensions. Whenever convenient in the discussion we 

will make implicit assumptions about the triangles being in general position. The 

main reason is that we hope to get the point across if we leave out tedious 

complications. We see the general method, called the "simulation of simplicity," 

described in [EM] (see also [El ] ) ,  as a justification of this s loppy attitude. 

First, we need a few definitions. We write M(S) for the upper  envelope of S, 

and M*(S) for the subdivision obtained by projecting the faces of  M(S) vertically 

onto the plane x3 = 0 (see Fig. 2.1 which is borrowed from [PS]). In general the 

regions of  M*(S) are not convex. To make them convex we refine M*(S) by 

projecting all triangles vertically onto x3 = 0 and extending the 3[S I triangle edges 

to unbounded lines. The arrangement ~ defined by these lines is denoted by A(S), 

and /~r (S)  denotes the refined subdivision that we get by superimposing M*(S) 
and A(S). See Fig. 2.2 taken from [PS]; it shows the projection of three triangles 

and the extension of their edges yielding an arrangement of nine lines. In order 

1 The arrangement defined by a finite set of lines in the plane is the subdivision of the plane that 
we get by drawing the lines. It consists of vertices (points where lines intersect), edges (pieces of 
lines that connect vertices), and regions (connected components of the plane reduced by all lines). 
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Fig. 2.1 

to make M(S)  a viable representation of M(S) we associate each region o f / ~ ( S )  

with a pointer to the triangle that assumes the maximum height over this region. 

Since ~ t (S)  is a refinement of M*(S) this triangle is unique in any case. M*(S) 
and also M(S) can be obtained from M(S)  by merging adjacent regions above 

which the maximum height is assumed by the same triangle. By construction, the 
envelope vertically above a region of A(S) is a convex function. 

Algorithm 1 (constructs ~ t (S)  as a representation of the upper envelope of S) 

if [S[ -  < 1 then Construct M(S)  directly else 

Step 1. Partition S into sets $1 and $2 of sizes [IS]/2J and HSI/2]. 

Step 2. Cons t ruc t /~(SI )  and M(S2) recursively. 
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Step 3. Superimpose /~t(Sl) and A(S2) and, symmetrically, superimpose 

~t(S2) and A(SO. We denote the thus created subdivisions by hT/(St) 
and hT/(S~). 

Step 4. Construct A(S) which is A(S~) and A(S2) superimposed. Thus, 

hT/(S0 and/~/($2) are refinements of A(S). 
Step 5. For each region r of A(S) and for i = 1, 2 construct set S~.r_ Si that 

contains all triangles of St assuming the maximum height over a region 
of hT/(S~) contained in r. 

Step 6. For each region r of A(S) construct /~t(S) restricted to r by 

intersecting the half-spaces bounded from below by the planes that 

contain the triangles in S~.ru S2,r. h4(S) restricted to r is the vertical 

projection of the boundary facets of this convex polyhedron clipped at 

the boundary of r. 

endif. 

Let us now discuss the various steps of Algorithm 1 in further detail. At the 

same time we analyse the time-complexity of each individual step which will 

then lead to the recurrence relation 

T(n)= 2T(2)  + O(n:a(n)) 

for the amount of time, T(n), the algorithm takes. This recurrence relation solves 
to O(n2a(n)) (as in [PS]). 

The first nontrivial step of Algorithm 1 is step 3 which superimposes /~(Si) 

and A(S3-i), i=  1,2. The combinatorial analysis in [PSI guarantees that the 

number of faces in the resulting subdivision, hT/(S~), is O(n2a(n)), n = Isd ÷ ts21. 
Since all regions in both subdivisions, h~t(S~) and A(S3_i )  , a re  convex we can 

use the superimposition algorithm of Guibas and Seidel [GS] which takes time 

linear in the size of the output. Thus, step 3 takes O(n2a(n)) time. 
Step 4 superimposes two arrangements which can te  done in O(n 2) time, 

n = fs l+ ts2t, using again the same superimposition algorithm. Alternately, we 

could construct the resultant arrangement, A(S), from scratch which also takes 

only O(n 2) time (see [El]). 

To understand step 5 it is important to recall that subdivision hT/(Si), for 

i = 1, 2, as constructed in step 3 is a refinement of arrangement A(S) which is 

constructed in step 4. Thus, each region of A(S) contains several regions of 

hT/(Si). Recall also that each region of ~(/(S~) records the triangle that assumes 

the upper envelope above this region. The goal of step 5 is to collect, for each 

region r of A(S), the triangles associated with regions in hT/(St) and AT/(S:) 

contained in r. This can be done by visiting all regions of hT/(S~) using a graph 

traversal algorithm that first exhausts all regions contained in a common region 

of the arrangement and then goes to an adjacent arrangement region. This is a 

straightforward application of depth-first search (see [Tn]) which takes time 

proportional to the number of regions and edges of hT/(Si). Thus, step 5 also 

takes time O(n2a(n)). 
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Finally, we consider step 6 which is the most subtle part of  Algorithm 1. For 

each region r of  A(S) it constructs the intersection of  the half-spaces that are 

bounded from below by the planes that contain the triangles in Sl . ru  S2,r. I f  r 

is the ith region of A(S) and m,=lS,,rl+ls2,rl, then this can be done in 

O(rn~ log m~) time (see, e.g., [PrS]). Unfortunately, we only know that the sum 

of the ml is O(n2ct(n)) which does not imply anything better than that the sum 

of the rn~ log2 m~ is O(n2a(n) log n). Thus, to achieve O(n2ct(n)) running time 

we have to intersect the half-spaces in a somewhat more intelligent manner. To 

describe such an alternate algorithm define the slope of a triangle as the slope 

of the line of  intersection between the plane spanned by the xl- and the x3-axis 

and the plane that contains the triangle. I f  the slopes of  all triangles in St,r were 

smaller than the slopes of  all triangles in $2,, we could construct the intersection 

of the half-spaces by merging the recursively constructed polyhedra for S~,r and 

S2.r in linear time (see [PrS]). Unfortunately again, the recursion is such that the 

polyhedra constructed are not exactly those for the regions of  A(S) but for the 

regions of  A(SO and A(S2). For example, let r~ be the region of A(S~) that 

contains region r, for i = 1, 2. It is not advisable to use the polyhedron representing 

the subenvelope above r~ as a substitute for r 's polyhedron since it might have 

many facets that belong to half-spaces redundant above r. The combinatorial 

bound on the sum of the rn~ does not generalize to these larger numbers; thus it 

is crucial not to be generous at this point. 

The way out of this di lemma is to remember that the subdivision of r~ in/~/(S~) 

can be viewed as a representation of the polyhedron of r,. The separation of the 

triangle slopes implies that the intersection of the boundaries of the two polyhedra, 

the ones of  rt and r2 restricted to the area above region r in A(S), is a connected 

and piecewise linear curve. Figure 2.3 displays r~, r2, r, and the curve without 

showing the decompositions of  the regions. Keep in mind, however, that this 

curve can merge into the boundary of r and leave it again an arbitrary number 

of times. Because of  the slope condition, this curve has the property that it 

intersects any plane normal to the x2-axis in a single point. Using standard 

methods for merging two subdivisions along a monotone curve (see [PrS] and 

papers on merging Voronoi diagrams referred to in [PrS]), the total amount of  

effort is linear in the number  of  edges of  r plus the number  of  regions that 

subdivide r in hT/(S~) and /~/($2). In order to make this all work we have to 

provide the appropriate  subdivisions of  the regions of A(S). But these are 

provided by the superimposition of  M(Si)  and A(S3_~) which decomposes the 

I 
X 

Fig. 2.3 
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subdivision of r~ into smaller pieces coinciding with regions in A(S). Thus, this 

superimposition in step 3 implicitly constructs the proper polyhedra (or suitable 

representations by subdivisions thereof) which can then be merged in linear time 

each. 

The only unresolved problem now is how we can guarantee that the slopes of  

the triangles in S~.r are smaller than the slopes of  the triangles in S2.r. But this 

can be achieved if the initial partitioning step of  Algorithm 1 constructs S, and 

S2 intelligently rather than arbitrarily. Just take the [IS[/2J triangles with smallest 

slopes, call this set S,,  and define $2 = S -S~ .  

We thus have an optimal algorithm for constructing the upper  envelope of n 

triangles in three dimensions. This is Algorithm 1 with two changes. First, the 

partition of the set of  triangles takes into account the slopes of the triangles. 

Second, step 5 is now superfluous and can be removed. This implies the main 

result of  this section. 

Theorem 2.1. The upper envelope of a set of n triangles in three dimensions can 
be constructed in O(n2ct(n)) time and storage. This is optimal in the worst case. 

We remark that Algorithm 1 can be modified so that it constructs the upper 

envelope of  n line segments in two dimensions in O(na(n)log n) time and 

O(na(n)) storage. The amount  of  storage is optimal since the envelope can 

consist of  O(nc~(n)) edges; whether or not the time bound is optimal is still an 

open problem. There is no difficulty in generalizing Algorithm 1 to four and 

higher dimensions, however, it is still an open problem whether or not this can 

be done such that the running time is o(nda(n)) for n d-simplices in d + l  

dimensions. This would then be optimal since the combinatorial complexity of 

the envelope is O(nda(n)) in the worst case. The main obstacle in obtaining this 

result is step 6 which intersects half-spaces. Currently there is no algorithm 

available that takes less than fl(m 2) time, where m is the number of  half-spaces, 

no matter how many or few faces the resulting polyhedron has. The combinatorial 

results in [PS] and [E2] only bound the sum of  the m, (where m, is the number 

of  nonredundant  half-spaces above the ith cell of  the d- dimensional arrangement) 

and not the sum of the m~. Indeed, there are cases where the sum of  the m~ is 

f~(n d÷l) and thus contradict the desired O(ndc~(n)) upper  bound. An approach 

that might be worth pursuing is to design an algorithm that follows the outline 

of  the divide-and-conquer proof  in [E2]. The main difference between Algorithm 

1 and such a hypothetical algorithm would be that the latter recurs for a constant 

number  of  nondisjoint subsets o f  d-simplices rather than for two disjoint subsets. 

The remainder of this section studies three extensions of the envelope problem 

which have algorithmic as well as combinatorial applications later in the paper. 

The first extension considers the region of  points that lie above the upper  envelope 

of  a finite set S of d-simplices and below the lower envelope of another finite 

set T of d-simplices in d + 1 dimensions. From the combinatorial results in [PSI 

and [E2] we know that both envelopes have complexity O(ndc~(n)), with n = 

I sl +ITI, and by Theorem 2.1 we can construct both envelopes in O(n2a (n)) time 

if d + 1 = 3. But how can we be sure that the intersection of the two envelopes 
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does not exceed these complexity bounds? In fact, it does not. One way to see 

this is to go through the proofs of  the o(ndot(n)) upper bounds for upper  

envelopes and to make one crucial change: rather than constructing the two 

envelopes above a cell of  the d-dimensional arrangement separately, we construct 

the region of  points between the two envelopes. Restricted to the area above a 

cell r of  the arrangement,  this region is the intersection of half-spaces and thus 

convex. It  follows that its complexity is bounded by the sum of the complexities 

o f  the two regions between the two corresponding upper  and lower subenvelopes. 

This is all we need to get the desired combinatorial result; also Algorithm I still 

works nicely in this extended case if d + 1 = 3. 

The second extension considers the special case where each d-simplex in d + 1 

dimensions is a half-hyperplane, that is, a portion of a hyperplane h restricted to 

one side of  a ( d - 1 ) - f l a t  in h. In d + l  = 2  dimensions a half-hyperplane is a 

half-line. For n such half-lines it is not difficult to show that the number  of  edges 

in the upper  envelope is at most 2n (see [E3]). This two-dimensional result can 

now be used as the base case of  the inductive analysis of  upper  envelopes in 

higher dimensions. Recall that the only reason for the a(n) factor in the com- 

plexity of  general upper  envelopes is that the base case considers line segments, 

and the upper  envelope of line segments has worst-case complexity O(na(n)). 
The reduction for half-hyperplanes in d + 1 dimensions leads to a linear number 

of  sets of  half-hyperplanes in d dimensions whose upper  envelopes have com- 

plexity O(n d-~) by inductive assumption. This leads to an upper  bound of  O(n d ) 
for the complexity of  n half-hyperplanes in d + 1 dimensions. Note that this 

bound also holds for the combinatorial complexity of  the region of points above 

the upper  envelope of one set of  half-hyperplanes and below the lower envelope 

of another set of  half-hyperplanes. Furthermore, Algorithm 1 takes only O(n 2) 

time if its input consists of  n half-planes in three dimensions. This is because 

the only step where the a(n) factor sneaks in (step 3) now has complexity O(n2). 
It is interesting to note the similarity between the upper  envelope of  a set of  

half-hyperplanes and the so-called zone of  a hyperplane in an arrangement of  

hyperplanes in d + 1 dimensions (see Chapter  5 of  [El]) .  In both cases, the 

combinatorial complexity is O(rl d) but the known proofs of  those two results 

are very different. 

Finally, we consider the case where the n d-simplices in d + 1 dimensions are 

pairwise disjoint (assuming they are relatively open). In this case, the maximum 

height above a cell of  the d-dimensional arrangement is assumed by only one 

d-simplex. The combinatorial complexity of  this arrangement is O(n d) which 

implies the same upper  bound for the envelope. The more dramatic effect of  the 

nonintersection assumption is that it simplifies Algorithm 1 significantly and thus 

allows us to generalize it to higher dimensions without loss of  worst-case optimal- 

ity. Steps 3 and 4 are now the same since /~t(S1)= A(S~), A4r(s2)= A(S2), and 

therefore .r~ir(S1) = ~7/($2) = A(S). In step 5 set Si.r is the singleton set that contains 

the highest simplex in St above the region in A(S~) containing region r in A(S). 
Thus, step 6 simplifies to a comparison between the simplex in Sl.r and the one 

in S2.r, for every r. The most expensive step of  this algorithm is now the 

superimposition of  arrangements A(SI) and A(S2) which can be done in quadratic 
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time if d + 1 = 3. In arbitrary d + 1 dimensions, this operation takes O(n d) time, 

for n = I S~I+ I S2t (see [El i ) .  Thus, we now have an algorithm that runs in arbitrary 

dimensions and takes O(n d) time. 

A similar effect (namely that the combinatorial complexity of  the envelope is 

O(n d) rather than O(nda(n))  can be observed when the n d-simplices in d + t  

dimensions intersect in a certain restrictive manner. For example, if intersections 

occur only on the highest level of  the recursion (talking in terms of the divide-and- 

conquer algorithm) then this is true. This proves that the upper  envelope has 

complexity O(n d) if the set of  d-simplices is the union of two sets with the 

property that any two d-simplices in the same set are pairwise disjoint. Unfortu- 

nately though, the computational complexity in this case might deteriorate to 

O(n 2 log n), d + 1 = 3, if the first divide step separates the union into the two sets 

rather than discriminating by slope. 

We summarize these results. 

Theorem 2.2. Let S be a set of  n d.simplices in d + 1 >- 3 dimensions and let T be 

another such set whose cardinality is at most n. 

(i) The region of points above the upper envelope of  S and below the lower 

envelope of  T has combinatorial complexity O(nda(n)) .  In d + l = 3  

dimensions it can be constructed in O(n2a(n))  time and storage. 

(ii) I f  all d-simplices in S are half-hyperplanes, then the combinatorial complexity 

of the upper envelope o r s  is O(nd),  and it can be constructed in O(n 2) 

time i f  d + 1 = 3. I f  all d-simplices in T are also half-hyperplanes, then the 

same complexity bounds hold for the region of  points above the upper envelope 

of  S and below the lower envelope of  T. 

(iii) I f  the d-simplices in S are pairwise disjoint, then the combinatorial complexity 

of  the upper envelope is O(n a) and it can be constructed in O(n d) time. 

(iv) I f  S is the union of  two disjoint sets with the property that any two d-simplices 

in the same set are disjoint, then the combinatorial complexity of  the upper 

envelope is O( n d ). 

The remainder of  this paper  considers applications of  Theorems 2.1 and 2.2 

to several problems in computational and combinatorial geometry. 

3. Hidden Line and Surface Removal 

Imagine that we take a picture of  a three-dimensional scene from a point at 

infinity. To compute what this picture looks l ike--assuming opaque objects--is 

commonly known as the hidden line/surface removal problem. Because of the 

importance of this problem for practical applications there are many algorithms 

in the literature that were suggested for the problem (see, e.g., [SSS] for a 

classification of several such algorithms). It is usually assumed that the objects 

in the scene are determined by their piecewise linear boundaries (they are 

polytopes) and that they do not intersect. We would like to mention that there 

is no essential difference between the view from a point at infinity (a parallel 
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view) and the view from a finite point (a perspective view). Indeed, for every 

plane through a finite viewpoint there is a projective transformation that maps 

the plane to the infinite plane and therefore the viewpoint to infinity. The polytopes 

are mapped to polyhedra such that the parallel view from the new point is equal 

to the perspective view from the old point on one side of the plane. Note, however, 

that this transformation moves points to infinity and lets them come back on the 

other side of  space. In other words, polytopes gradually disappear on one side 

and, at the same time, come back on the other side of space. Thus, in order to 

get a valid picture we need to make sure that the viewpoint is shielded from the 

polytopes that come into the picture by traveling through infinity. Such a shielding 

mechanism is provided if we map the original infinite plane to a finite plane, 

using the same transformation, and use this plane as a background screen when 

we take the picture. 

In this section we adopt a generalized definition of the hidden line/surface 

removal problem which is neither restricted to three dimensions nor to noninter- 

secting objects. We first discuss the more standard case of nonintersecting objects 

and later we extend the analysis to handle intersecting objects. We also give some 

applications for this extension. 

In d + 1 dimensions, the objects in the scene are modeled by a collection of 

d-dimensional simplices; for convenience we assume that they are relatively open. 

The problem is now the same as computing the upper  envelope of the d-simplices 

assuming that the viewpoint is in the direction of the positive (d + 1)st coordinate 

axis. We can thus use the algorithms of Section 2 to solve the hidden line/surface 

removal problem. Since we presently assume that no two d-simplices intersect 

(although their relative boundaries might intersect which it is important to allow 

if we model a polytope by d-simplices), we can use Theorem 2.2(iii) to get the 

following result. 

Theorem 3.1. Let S be a set o f  n pairwise nonintersecting relatively open d-simplices 

in d + 1 dimensions. The combinatorial complexity o f  a view is O( n d ) which is best 

possible in the worst case. Furthermore, it can be constructed in O( n d ~- n log n) time. 

In three dimensions, that is, if d + 1 = 3, the same time complexity was pre- 

viously obtained by [Dv] and [M] who use known algorithms for constructing 

arrangements in the plane. 

Note that the O(n  d) bound for the combinatorial complexity holds even if 

we make the d-simplices translucent. Rather than computing only the topmost  

d-simplex above a given point we determine the topmost  l, for some constant l, 

and the "color"  at this point is a function of all l simplices. 

Consider next generalizations of  the hidden line/surface removal problem that 

arise when the given d-simplices are allowed to intersect. In this case, the problem 

is exactly the envelope problem studied in Section 2. As an example where this 

extension is needed we mention an operation that is useful in visualizing a 

four-dimensional scene given by n pairwise disjoint relatively open tetrahedra. 

Project these tetrahedra onto three dimensions and compute various views of 

this three-dimensional scene. Since we lose one dimension when we go from four 
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to three dimensions, the tetrahedra in three dimensions will, in general, intersect. 

An alternate interpretation of this operation is that we compute views of the 

four-dimensional scene by moving vertical lines in a given direction until they 

hit an object. The "view" shows the first object hit by any such line. Note that 

this visualization of the four-dimensional scene is different from a projection 

onto a two-dimensional plane along a predefined direction. 

Another application where intersections occur is in Constructive Solid 

Geometry (CSG) where an object is constructed from simple building blocks by 

means of intersection and union. The object is then represented by the tree whose 

leaves are the building blocks and each inner node stands either for the union 

or the intersection of the objects defined in its subtrees. A view of the object can 

be computed by postorder traversat of the defining tree. A special case in which 

Algorithm 1 is most effective is when the object is simply the union (or intersection) 

of  many (polyhedral) building blocks, or when its CSG tree has at most two 

levels. For an arbitrarily defined object, however, Algorithm 1 may not be very 

efficient. 

4. Translating a Polyhedron in Three Dimensions 

An object, B, in some space cannot be moved to any arbitrary position if there 

are obstacles present which it has to avoid. The motion-planning problem for B 

is to calculate the space of  all placements of  B, called the free placements of/3, 

in which it does not collide with any obstacle (see [HSS] for a recent compendium 

of work done on motion planning). In this section we consider special cases of 

motion planning in which B is allowed to translate but not to rotate. The problems 

that we address make sense in arbitrary dimensions but for simplicity and also 

because it is the most important setting, we discuss only the three-dimensional 

case. The much simpler two-dimensional case has been studied in [KLPS], [LS], 

[PSS], and [GSS]. I f  the object as well as the obstacles are polyhedra, that is, 

their boundaries are piecewise linear, then these motion-planning problems lead 

to certain envelope questions as we will see below. 

Let B be an open three-dimensional polyhedron bounded by k facets and let 

A1, A2 . . . .  , Am be closed convex polyhedral obstacles bounded by a total number 

of  n facets. It is not essential that B is open, only the description of our results 

is slightly easier this way because, otherwise, we have to allow B's boundary to 

intersect the boundary of an obstacle--only the interiors have to be disjoint. All 

results are true for B closed if we change the phrasing of the results accordingly. 

We assume that the Ai are convex; so any nonconvex obstacle is split into convex 

pieces beforehand (see [C]). Our goal is to calculate the set of  all translates of 

B that avoid the obstacles. The standard approach to solving this problem, initially 

proposed in [LW], uses Minkowski differences between the A+ and B. A translate 

B' of  B is determined by its translation vector b, that is, 

B ' = B + b = { x + b l x e B  }. 
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We interchangeably think of  b as a vector and as a point. B' intersects obstacle 

A, if and only if there is a point y ~  A, and a point  x e  B such that x + b  =y ,  

which is equivalent to b = y - x .  Another  way to say this is that B' and A~ are 

disjoint as long as b is not  in the set 

K , =  A , - B = { y - x [ y 6 A ,  and x e B } .  

K, is known as the Minkowsk i  difference of  A, and B and is sometimes referred 

to as the " expanded"  or "g rown"  obstacle. It is clear that B'  lies in a free position 

if and only if b does not belong to K = U~=~ Ki. We can thus represent the set 

of free positions by its complement ,  K c. 

To get a handle on the combinatorial  complexity of  K c assume that obstacle 

A, is bounded  by n, facets; thus, ~ _ j  n, = n. Except  for degenerate cases, each 

facet o f  K, is the Minkowski difference o f  a facet o f  A, and a vertex o f  B, of  an 

edge o f  Ai and an edge of  B, or of  a vertex o f  A, and a facet of  B. The number  

of such pairs is O ( k .  n,), in contrast to the planar  case where this number  is 

only O ( k +  n,) (see [GRS]) .  This implies that K~ is bounded  by at most  O ( k .  n~) 

faces. As a matter o f  fact, the number  o f  facet-vertex and vertex-facet  pairs is 

O ( k + n , ) ,  only the number  o f  pairing edges can be quadratic. Thus, the K~ 

altogether can be modeled by O ( k .  n) triangles which implies that the number  

of faces needed to describe K c, the set o f  free placements of  B, is O ( k  3 • n3). I f  

B is nonconvex  there are cases where the boundary  of  K c consists o f  f l (k  3 • n 3) 

faces (see Fig. 4.1: the "triple fork"  of  size k can be locked into the "three-sided 

cage" of  size n in f l (k  3 • n 3 )  different ways) which shows that the trivial bound  

is asymptotically tight. I f  B is convex, then no such example is known and a 

plausible conjecture is that  K c is bounded  by at most O ( k  2 • n 2 • c~(k. n))  faces. 

It is rather easy to give examples where the complexity in question is f l (k  2 • n2). 

Our goal is to show that the complexity o f  K c is much lower than propor t ional  

to k 3 • n 3 in certain important  cases, or failing that, to show that the complexity 

of a single connected componen t  o f  K c (which is often all we need to consider) 

is small. 

Consider  first the general case. If  we are interested in the set o f  free placements 

that can be reached by B from its initial posit ion without ever interfering with 

Fig. 4.1 
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obstacles, then we actually ask for the connected component  of  K c that contains 

the origin--rather  than for the entire K c. To get an upper bound on the com- 

binatorial complexity of  this connected component  we can use Theorem 4 in 

[PS] which shows that there are at most O((k .  n) 3-1/49) faces in its boundary. 

Unfortunately, the proof  of this result is nonconstructive and does not lead to 

an algorithm that constructs the connected component  in o ( k  3 • n 3) time. Hence, 

in the general case, even though this result sheds light on the problem structure, 

no satisfactory solution is yet available. Improvements  over these results have 

recently been obtained in [AS]. 

Things are much improved, however, when we consider the special case in 

which the obstacles A~ collectively form a so-called polyhedral terrain. This is a 

piecewise linear surface that intersects every vertical line in exactly one point. B 

is still assumed to be an arbitrary, thus not necessarily convex, polyhedron and 

we wish to find all free placements of  B above this terrain, E. Again, we represent 

such a placement B' by the point b such that B' = B + b and use the preceding 

analysis to obtain the space of  free placements K c, with K defined as above. Of 

course, in this restricted case the resulting set K ~ is connected: B can be translated 

from any free placement to any other in a canonical manner by first moving 

upward to a sufficiently high position, then translating horizontally to a position 

above the target position, and, finally, descending to the desired position. 

Nevertheless, the calculation of  K ~ is significant in certain applications. Such an 

example occurs when B is required to maintain a fixed maximal vertical distance 

from E, for example, when B surveys E from close distance as it flies over it. 

Also, by preprocessing the boundary of K c into a data structure which supports 

fast point location queries, we can decide in logarithmic time whether or not a 

given placement of  B is free (see Chapter 11 of [El  ] for an optimal data structure 

that supports point location queries). This method can also be used to determine 

the point(s) of  contact of  B's closure with E as it is lowered until it touches E. 

I f  the obstacles together form a polyhedral domain, then the boundary of K c is 

the upper  envelope of the expanded obstacles K~ = A~-  B. Theorem 1' in [PS] 

and the algorithmic results in Section 2 of this paper  now imply the following 

result. 

Theorem 4.1. Let B be a polyhedron bounded by k facets and let ~, be a polyhedral 

terrain with n facets. Then the number of  faces bounding K c, the set o f  free placements 

of  B, is O(k  2. n 2 • ct(k.  n)) and it can be constructed in the same amount of  time. 

The preceding arguments can be generalized to cases where we allow B to 

translate only along a single half-line from its current position. Two-dimensional 

variants of  this problem have been studied extensively by Toussaint and others 

(see [Tt] for a survey). By applying an appropriate projective transformation 

(similarly as in Section 3) we can assume that B is initially at infinity and is 

allowed to descend along vertical lines only. For an arbitrary collection of 

obstacles Ai we only need to find the upper  envelope of  the expanded obstacles 

Ki = A ~ - B  (again, remembering to add the transformed image of the "back- 

ground" plane at infinity). For each vertical line, this envelope gives the first 
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obstacle hit by B if it moves along this line. If no obstacle is in the way of B's 

vertical movement, then the envelope shows the former infinite plane as the 

obstacle hit first. In the untransformed space this corresponds to B moving to 

infinity without ever hitting an obstacle. Using our combinatorial and computa- 

tional knowledge about envelopes we get the following result. 

Theorem 4.2. Let B be a polyhedron bounded by k facets and let A~ , A2, . . . , A,,  

be (possibly intersecting) convex obstacles bounded by a total o f  n facets. The set 

of free placements of  B that are reachable by translating B along all possible half-lines 

is bounded by O(n2ct(n)) faces and can be constructed in O(n2a(n))  time. 

We conclude this section with an argument that supports our conjecture that 

the combinatorial complexity of K c is only nearly quadratic in k. n if B is convex. 

Here we do not assume that the obstacles form a polyhedral terrain. We show 

that this is true if B is a line segment. To show this it suffices to demonstrate 

that there are only O(n 2) free placements of B in which it simultaneously makes 

contact with three obstacles. These triple contacts correspond to the vertices of  

KL In each such triple contact one of the contacts must be at a point of  B 

different from its two endpoints. This point must touch an edge of an obstacle 

provided we ignore degenerate cases. Fix such an obstacle edge e and consider 

the plane h through e that is parallel to B. When B translates within plane h, 

maintaining contact with e, it can reach at most O(n)  placements at which it 

makes two more contacts with the obstacles (see [KLPS]). From this the claim 

follows readily. 

5. Stabbing Line Segments and Polytopes 

Finding transversals of a finite set of objects is the first of two problems discussed 

in this paper that relate to envelopes by means of a geometric transformation. 

The second such problem deals with certain Voronoi diagrams for sets of point 

clusters. In Section 6 we show that this problem is in fact closely related to the 

stabbing problem of this section. 

Let S be a finite set of  connected objects in d + 1 dimensions. (We use d + 1 

to denote the dimensionality, rather than d, in order to be consistent with the 

notation in Section 2.) A hyperplane is a transversal of S if it intersects each 

object in S; we also say that it stabs S. Since a hyperplane intersects a connected 

object if and only if it intersects its convex hull, we can assume without loss of 

generality that all objects in S are convex. We consider the problem of finding 

all transversals of S, or a representation of this set, assuming that S is a collection 

of convex polytopes. The complexity of a solution will be measured in terms of 

n, the total number of vertices of the polytopes. In three dimensions, Euler's 

relation implies that n is proportional to the number of edges and facets bounding 

the polytopes. This is no longer true in four or higher dimensions. For this reason 

we restrict most of our discussion to d + 1 = 3 dimensions and comment on the 

difficulties encountered in four and higher dimensions at the end of this section. 
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Earlier results on this problem can be found in [E3] which gives an O(n log n)- 

time algorithm for S a set of n line segments in the plane, and in [AD] which 

gives an O(mnd)-time algorithm for m polytopes bounded by n edges in d +  1 

dimensions. Alternatively, O(nd+')- t ime algorithms are possible for the case of 

polytopes in d +  1->3 dimensions using known algorithms for constructing 

arrangements of  hyperplanes in d + 1->3 dimensions (see Chapter 7 of [Eli) .  

We show in this section that this straightforward bound can be improved to 

O(n 2) in the case of  line segments and to O(n2a(n)) in the case of  convex 

polytopes in three dimensions. These results are optimal in the worst case in a 

sense that will become clear later. 

Our development is based on a dual transform, 9 ,  that maps a point to a 

plane and vice versa. I f  p = (rr,,  rr,, rr3) is a point in three dimensions, then we 

define the plane 

~ ( p ) :  X3=27rtxl+27r~X2--Tr3. 

Notice that 9 ( p )  is nonverticai, that is, it intersects the x3-axis in a unique point. 

If  h is a nonvertical plane we define 9 ( h ) = p  such that h = 9 ( p ) .  Thus, ~ is 

involutary by definition. It is fairly easy to show that 9 preserves incidence 

relations (p 6 h if and only if 9 (h) ~ @ (p))  and order relations ( p lies vertically 

above h if and only if 9 ( h )  lies vertically above 9 ( p ) ) .  

We next extend 9 to point sets and, in particular, to polytopes. For ~ a point 

set in three dimensions we define 

9(g' )  = U 9(x) ,  
xC ;~  

that is, 9 ( ~ )  is the set of  all points that belong to at least one plane dual to a 

point of  ~. We call 9 ( ~ )  the stabbing region of ~. Since 9 preserves incidences 

we have p c  9 ( ~ )  if and only if plane @(p) intersects ~. Figure 5.1 illustrates 

these definitions. It shows ~ as a convex pentagon in two dimensions and displays 

the stabbing region of ~. It also shows a line intersecting the pentagon and its 

dual point which, of course, belongs to @(~).  I f  ~ is a (connected) polytope, 

then 9 ( ~ )  is the set of  all points that are neither vertically below all planes 

corresponding to vertices of  ~ nor vertically above all such planes. This is because, 

for such a point x, its dual plane, 9 ( x ) ,  stabs ~ and thus must separate at least 

l lmtIRll 

Fig. 5.1 
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one pair of  vertices of  ~. For ~ a line segment there are only two vertices and 

thus only two dual planes. Consequently, ~ ( ~ )  is the double wedge of points 

that lie vertically between the two planes corresponding to the line segment's 

two endpoints. 

By definition, a transversal is a plane that cuts all polytopes in S. It follows 

that plane h is a transversal of S if and only if its dual point, ~ ( h ) ,  belongs to 

~(s)= N ~(~). 

This intersection is termed the stabbing region of S. It is a representation of all 

transversals of  S. Notice that the transformation, as currently defined, excludes 

vertical planes which thus have to be treated separately. One way to do this is 

to vertically project the polytopes onto the plane spanned by the xi- and x2-axis 

and to solve a two-dimensional stabbing problem for this set. Every transversal, 

which is now a line, corresponds to a vertical transversal, a plane, of the original 

set, S. 

For a given polytope ~, @(~)  is the set of  points below or on 0//~ and above 

or on ~ p ,  where ~//~ (resp. ~op) is the upper  (lower) envelope of the planes dual 

to the vertices of  ~. These are piecewise linear bivariate functions. Thus, the 

stabbing region, S#(S), is the set of  points below or on the lower envelope of all 

functions ~//~ and above or on the upper  envelope of all functions ~ .  Using 

results from Section 2 we can give bounds on the combinatorial complexity of  

b~(S) and on the amount  of  time needed to construct it. 

In order to analyse 5e(S) we model each function ~/~ and ~ by a collection 

of  triangles in three dimensions. If  m is the number of  vertices of ~, then ~//~ 

and ~ can be decomposed into O(m) triangles. This puts us into the situation 

described in Theorem 2.2(i). The upper bound on the combinatorial complexity 

can be improved from O(n2a(n))  to O(n 2) if S is a set of  n line segments. This 

is because each ~/~ and ~ is composed of  two half-planes that meet at a common 

line. The improvement now follows from Theorem 2.2(ii). 

Theorem 5.1. Let S be a set of  convex polytopes in three dimensions and let n be 

the total number of  vertices. 

(i) The number of  faces bounding b~(S) is O(n2a(n))  and so is the amount of  

time needed to construct bD( S). Both bounds are tight in the worst case. 

(ii) The number of faces bounding AD(S) is O(n 2) if  all polytopes in S are line 

segments. In this case, O(n:) time suffices to construct b~(S). Both bounds 

are tight in the worst case. 

Using the lower bound examples indicated in [PS] it is not difficult to prove that 

all bounds are asymptotically tight in the worst case. In this context it is interesting 

to note that examples with fl(n2t~(n)) faces can be modeled even with the 

restriction that all polytopes in S are triangles in three dimensions. 

If  we specialize the computational results of  Theorem 5.1 to d + l  = 2  

dimensions, we get an algorithm that constructs the stabbing region of polygons 
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with a total of  n vertices in O(na(n) log n) time, and in O(n log n) time if all 

polygons are line segments. The former result is new although it follows easily 

from the combinatorial analysis of  two-dimensional envelopes in [HS] and the 

algorithmic techniques in [E3]. The latter result dates back to [E3]. Note the 

log n term in the time-complexity that comes up in two dimensions. The reason 

for this extra term is that the homogeneous solution of the recurrence relation 

that describes the time-complexity is essentially the same as the additive term 

(see Section 2). In three dimensions the additive term is significantly larger than 

the homogeneous solution which explains why the log n term disappears. 

We conclude this section with a few remarks about the generalization of our 

methods to d + 1->4 dimensions. The first difficulty that arises is combinatorial 

and concerns the decomposit ion of  the °/19 and Lt'~ into d-simplices. The total 

number  of  vertices of  the input polytopes, n, is proportional to the number  of  

facets of  the o//~ and ~ ,  but it might very well be that the number  of  lower- 

dimensional faces of  the ql~ and Leg by far exceeds O(n). Indeed, in d +  1 = 4 

dimensions their number  is f~(n 2) if S consists of  a constant number of  cyclic 

polytopes. Such constellations need more than O(n) simplices to model the 

boundary of the stabbing region by two envelopes of  simplices. This weakens 

our bounds on the combinatorial complexity of  stabbing regions which use 

envelope bounds. Even if we had a method that circumvents the sketched 

difficulty, there is no algorithm known that constructs the stabbing region in time 

o(n d+l) because of  reasons explained in Section 2. But O(n d+l) is straightforward 

if we use arrangement algorithms as mentioned above. 

6. Voronoi Diagrams of  Point Clusters 

In this section we consider applications of envelopes to a certain generalization 

of  Voronoi diagrams. This generalization can be defined in any number of 

dimensions, and we will do so, but our discussion of  the combinatorial and 

computat ional  complexity is mostly confined to the plane. The diagram that we 

have in mind bears close relationship to the notion of  complete linkage clustering 

(see, e.g., [H]). For this clustering method, the distance between any two clusters 

is defined as the maximum distance between any two points, one of  each cluster. 

We come back to this clustering method at the end of  this section. 

Let B denote the Euclidean distance function. For a set of  points, C, called a 

cluster, and for a point p, define 

8(p, C) = max{8(p, x)lx ~ C} 

as the distance between p and C. In most cases we let C be finite and, whenever 

it is convenient to have C infinite, it will be the convex hull of  a finite number 

of  points in which case the maximum of  the distances between p and points of 

C is well defined. The definition of 8(p, C)  implies that the closed ball with 

center p and radius 8(p, C) contains cluster C. In fact, it is the smallest ball 

centered at p for which this is true. Now let S be a finite set of  clusters. The 
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Voronoi diagram of S, °U(S), is a partition of space into maximal (but not 

necessarily connected) domains, one for each cluster, such that a point p belongs 

to the domain associated with cluster C if 6(p, C)< ,~(p ,  D) for all clusters 

D # C in S. See Fig. 6.1 for an example. It is convenient to replace a cluster C 

by its convex hull which is all right since the distance of a point p from C is the 

same as its distance from the convex hull of  C. The clusters in Fig. 6.1 are A 

(two points), B (two points), and C (three points). The domain of B consists of 

two connected components which we call regions. The solid lines show the Voronoi 

diagram and the dashed lines decompose each region using the furthest point 

Voronoi diagram of the cluster. This is the diagram that associates with each 

point the part of  the domain for which the point is the furthest point of  the 

cluster. The significance of this decomposition is that it shows which point of  

the cluster attains the distance to the cluster and where it does so. 

Below, we discuss some properties of this kind of Voronoi diagram. First, we 

demonstrate that they are closely related to envelopes and thus derive general 

upper bounds on their complexity. Second, we study the special case where the 

convex hulls of  the clusters are disjoint. It turns out that this condition reduces 

the combinatorial complexity of  the diagrams dramatically. For simplicity, we 

restrict our  attention to the two-dimensional case. Three- and higher-dimensional 

cases can be treated in the same way as the stabbing problem in four and higher 

dimensions (see Section 5); we thus omit all details pertaining to these extensions. 

Specifically, we prove the following theorem. 
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Theorem 6.1. Let S be a set of  clusters in the plane and let n be the sum of  the 

cardinalities of  the clusters. 

(i) The number of  faces of°V(S) is O(n2a(n)) .  

(it) I f  each cluster consists o f  one or two points, then the number of  faces of  

~V(S) is O(n2), and this is tight in the worst case. 

(iii) I f  the convex hulls o f  any two clusters are disjoint, then ~ ( S )  contains at 

most ]S[ regions. The number of  edges and vertices in this case is O(n). 

Proof The proof  consists of  three fairly independent steps. First, we demonstrate 

the upper  bounds in (i) and (it) by means of envelopes in three dimensions. 

Second, we construct an example that proves the lower bound on the maximum 

complexity stated in (it). Finally, we show that the domain of a cluster is connected 

if the convex hulls of any two clusters are disjoint. This leads to a proof  of  (iii). 

In order to relate ~V(S) to an envelope of triangles in three dimensions we 

use two geometric transforms. Let p = (7r1,7r2) be a point in the two-dimensional 

plane which we associate with the plane x3 = 0 in three dimensions. The first 

transform, U, projects p vertically onto the paraboloid of revolution given by 

X 3 = X 2 - ~ X  2 , that is, 

u(p) = I ~,, ~~, ~~ + ~~). 

The second transform, ~, maps p to the unique plane that touches the paraboloid 

in point U(p) ,  that is, 

(~rl+ 7r2). ~ (p) :  x3= 2rrlxl + 2n.2x2_ 2 2 

These transforms can be used to express distance information in two dimensions 

as combinatorial information in three dimensions. The crucial property here is 

that 62(p, x), the square of  the distance between points p and x in the plane, is 

equal to the vertical distance between point U(x)  and the vertical projection of 

x onto plane g~(p) (see Chapter  1 of  [El]) .  The distance from x to a point p is 

thus the square root of  the vertical distance from point U(x)  down to plane 

g~(p). Consider now a cluster of  points, C, instead of a single point. The distance 

from x to C, 6(x, C), is equal to the square root of the largest vertical distance 

from U(x)  to any of the planes ~(p) ,  p ~ C, that is, to the lower envelope, ~<-, 

of  all these planes. If  C contains m points, then this envelope is the boundary 

of a convex polyhedron consisting of at most m facets which can be decomposed 

into O(m)  triangles. Let M be the upper envelope of all the surfaces Lec, C ~ S. 

Then a point x lies in the domain of cluster C exactly when ~7c is vertically 

nearest to U(x)  among all ~qo, D ~  S. Since U(x)  lies above all surfaces ~D, 

this is equivalent to ~ c  attaining the upper envelope M at x. Thus, we get °V(S) 

by constructing the upper  envelope of the surfaces ~ o ,  or more specifically of 

the triangles composing these surfaces, and then projecting the faces of the 

envelope vertically onto the plane x3 = 0. The upper  bound of (i) now follows 

immediately from Theorem 1' in [PS]. I f  each cluster consists of  at most two 

points each, the ~ o  are either single planes or two half-planes glued together 

along a common line. For these functions we have an upper  bound of O(n 2) for 
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Fig. 6.2 

the combina to r i a l  complex i ty  as a rgued in Sect ion 2. This proves  the u p p e r  b o u n d  

in (ii). 

We next  show the lower  b o u n d  in (ii). Assume  wi thout  toss o f  general i ty  that  

n = 4 k  for  some  in teger  k. We descr ibe  a set S o f  2k clusters,  each conta in ing  

two points ,  such that  ~ ( S )  has  ~ ( n  2) regions.  This example  is i l lus t ra ted in Fig. 

6.2. It consists  o f  k po in t  pai rs  on the x~-axis such that  the  ith pa i r  can be 

ob ta ined  by  moving  the ( i - 1 ) s t  pai r  a d i s tance  e to the right,  for 2 ~  i ~ - k and  

e > 0 sufficiently small .  More  specifically,  we choose  the first pa i r  o f  points  at 

locat ions ( - 1 ,  0) and  (1 - ( k  - 1) • e, 0), with k .  e ~½. Note  that  this impl ies  that  

the x2-axis is a symmet ry  axis o f  the 2k points .  The Voronoi  d i ag ram of  these 

clusters only  consists  of  k -  2 vert ical  slabs o f  width e, one for  each pa i r  except  

for the first and  the last,  and  two hal f -p lanes ,  one for the first po in t  pa i r  and  one 

for the last.  N o w  add  ano the r  k poin t  pairs  on the  x~-axis. To descr ibe  how these 

points are  to be  chosen,  we take  a po in t  p and  move it upward  inside one  o f  the 

slabs. F o r  each loca t ion  o f  p we cons ider  the smal les t  disk with center  p that  

contains the hor izonta l  po in t  pa i r  co r r e spond ing  to the slab. By cons t ruc t ion ,  the 

disk conta ins  no o ther  hor izon ta l  cluster.  Since the hor izonta l  clusters are a lmost  

identical ,  the  wander ing  d isk  is a lmost  the same for po in t  p moving in any other  

slab. Thus,  we can choose  po in t  pairs  on the x2-axis such that  the disk a l ternates  

between con ta in ing  one vert ical  cluster  and  conta in ing  no vert ical  cluster.  Each 

slab is then d e c o m p o s e d  into 2k + 1 pieces,  k + 1 of  which define the d o m a i n  of  

the co r r e spond ing  hor izonta l  cluster.  The lower  b o u n d  in (ii) fol lows.  

F ina l ly ,  we prove  tha t  each d o m a i n  is connec ted  if  the convex hul ls  o f  the  

clusters are  pa i rwise  dis joint .  The  p r o o f  takes  two steps. First ,  it verifies tha t  the 

skeleton o f  the furthest  po in t  Voronoi  d i ag ram 2 o f  a cluster ,  for  shor t  the  skele ton 

2 The  skeleton of a cluster C is the set of points x such that there are at least two points c ~ C 
that maximize ~(x, C). It is a straight line tree with at most m - 2  vertices and 2m -3  edges, if m is 
the number of points in C. For convenience we define the skeleton to be the point c itself if C = {c}. 
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of  the cluster, intersects the domain of the cluster in a connected tree. Second, 

it shows that an arbitrary point of  the cluster can be connected to this tree by a 

straight line segment that lies entirely within the domain of  the cluster. We do 

the second step first because it is simpler than the first step. Let p be a point that 

belongs to the domain of  a cluster C (see Fig. 6.1). By definition, C is the only 

cluster that is fully contained in the closed disk with center p and radius 8(p, C). 

Let c be the point in C such that ~(p, c) = ~(p, C). I f  c is not unique, then p 

already belongs to the skeleton of  C. Otherwise, move p straight toward c until 

it runs into an edge of the skeleton. The disk at every intermediate location of p 

lies strictly inside p 's  original disk which implies that it contains no other cluster 

besides C. It is clear that p must run into an edge of the skeleton for, otherwise, 

the disk of  p would eventually vanish, which can only mean that c is the only 

point in C and thus is equal to the skeleton of C by definition. 

We now prove that if two points, x and y, on the skeleton of C belong to the 

domain of  C, then all points between x and y on the skeleton of C also lie in 

this domain. Note that the set of  points between x and y is well defined since 

the skeleton is a tree. Let us introduce some definitions. For z an arbitrary point 

of  the skeleton of C we write d~ for the smallest closed disk with center z that 

contains C, and we let 0~ denote the circle bounding dz. Since z belongs to the 

skeleton of C there are at least two points in C that maximize the distance from 

z; by definition these points lie on 0~. The line segment connecting such two 

points in C n 0z is called a C.chord of 0~ (see Fig. 6.3(b) which shows the C-chord 

of Oz). 

We now come back to proving that if x and y are two points on the skeleton 

of C that belong to the domain of  C, then any point z between x and y belongs 

to the domain of C. By definition, the only cluster contained in dx is C and 

similarly C is the only cluster contained in dy. Consider d~, the smallest disk 

around z that contains C. I f  d~ is to contain another cluster, D, at least one point 

of  D must lie in d~ - d~ and at least one point of  D must lie in dz - dy; otherwise, 

D is contained in d~ or dy too. We prove below that d ~ -  dx and d~-dy  are 

s'X\ 

\\ 

(a) (b) 

Fig. 6.3 
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separated from each other by a C-chord of 0~ (as in Fig. 6.3(b)). This implies 

that the convex hulls of  C and D intersect, a contradiction. 

We first consider the slightly simpler case that z is not a vertex of the skeleton 

and thus belongs to an edge of the skeleton. In this case, 0z has only one C-chord 

which we call s; the endpoints of s cut 0~ into two arcs. Both dx and dy contain 

s (as they contain C) which implies that s separates dz-  dx from d~-dy unless 

both 0x and Oy intersect 0~ in the same arc. We now prove that this is not 

possible. 

Think of a point ~" continuously moving on the skeleton from x to y, and let 

z be this point at some instance of time. When ~ moves away from z its circle, 

0;, moves too. It still goes through the endpoints of s, the common C-chord of 

0~ and 0~, but d~ grows along one arc of 0~ and it shrinks along the other arc. 

We call the former the growing arc and the latter the shrinking are of 0;. As long 

as ~" moves on the same edge of  the skeleton the growing arc and the shrinking 

arc do not change, that is, they are always determined by the endpoints of the 

same line segment, s. The shrinking arc hits another point, c, of C at the same 

instance of time when ~" encounters a vertex of the skeleton. (Note that the 

growing arc cannot hit a point of C since all points of C are inside the circle.) 

Now 0; contains three points of C, the endpoints of s and point ¢. When ~" moves 

on, one of the two line segments connecting c with the endpoints of s becomes 

the unique C-chord of O~. Since c lies on the shrinking arc of O~ when ~ encounters 

the vertex, the new shrinking arc can only be smaller than before, and the new 

growing arc can only be larger than before. This proves that d¢ - dx strictly grows, 

that is, if z is a point between x and y and z' is a point between z and y, then 

d z -  dx ~-d~,-d~. By a symmetric argument, d ~ - d r  strictly shrinks as r moves 

from x to y. Consequently, 0x cannot intersect the shrinking arc of 0~ and 0y 

cannot intersect the growing arc of 0~. This implies the claim for z being a point 

of an edge of  the skeleton. 

Finally, if z is a vertex of the skeleton then 0~ contains three points of C which 

cut O~ into three arcs. One arc is growing when ff is immediately before and 

immediately after z, and one arc is shrinking both times. The third arc changes 

from shrinking to growing. Since d~ - d~ is strictly growing 0~ intersects neither 

the shrinking nor the status-changing arc, and since dc-d~, is strictly shrinking 

Oy neither intersects the growing nor the changing arc. 3 Thus, d~-  d~ and d~--dy 

are, again, separated from each other, in this case by two C-chords of 0~. 

Thus we have shown that the domain of each cluster in S is connected (it can 

be empty, though) if their convex hulls are pairwise disjoint. The first part of 

claim (iii) follows. This does not imply that the number of edges and vertices 

of ~'(S) is also O(ISI). By Euler's relation for planar graphs this is, however, 

true for vertices of ~ (S )  that are incident to at least three edges. A vertex of 

degree 2 must also lie on an edge of the skeleton of the cluster in one of  the two 

adjacent domains. Since each edge of the skeleton meets the boundary of its 

cluster's domain in at most two points (this follows from the above argument) 

3 In degenerate cases 0. can contain k > 3 points of C These k points cut 0z into k arcs, k - 2 of 
which change from shrinking to growing and thus intersect neither 0z nor 0,. 
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we conclude a linear upper bound on the number of  degree 2 vertices and thus 

of edges of  °F(S), [] 

We remark that ~ (S )  can be further refined by decomposing each region of 

~ ( S )  into subregions by the corresponding skeleton. This yields a refined convex 

subdivision of the plane so that a point x belongs to a subregion corresponding 

to point c of  cluster C if and only if x is nearest to C and its distance to C is 

attained by c. In the special case where the convex hulls of the clusters are 

disjoint, the domain of  cluster C is thus decomposed into at most I Ct subregions. 

Euler's relation implies that the numbers of edges and vertices of  the refined 

subdivision are O(n),  n the total number of  points in all clusters. 

To construct T'(S) for an arbitrary collection S of clusters we can use the 

three-dimensional envelope algorithm of Section 2 which implies the following 

result. 

Theorem 6.2. Let S be a set of clusters where n is the sum of the cardinalities of 

the clusters. 

(i) Y(S) can be constructed in O(n2a(n))  time. 

(ii) I f  each cluster is of  size one or two, then O(n 2) time suOices and this is 

optimal in the worst case. 

There are two major open problems concerning cluster Voronoi diagrams that 

remain. Is O(n2a(n))  for the combinatorial complexity of  T'(S) tight? A better 

upper bound (maybe O(n2)) would also improve the time bound in Theorem 

6.2(i). Second, can ~ (S )  be constructed in less than quadratic time (maybe 

O(n log n)) if the convex hulls of the clusters are pairwise disjoint? An affirmative 

answer to the second question could also be relevant to complete linkage clustering 

of n points in the plane. In this method, the points are considered to be individual 

clusters initially, and at each stage the two nearest clusters are merged until all 

points belong to the same cluster. As mentioned at the beginning of  this section, 

the distance between two clusters is defined as the maximum distance between 

any two points, one from each cluster. The most efficient algorithm known for 

this problem takes O(n 2) time and O(n) storage for the entire sequence of  merges 

(see [Df]). At each stage, the set of  points is partitioned into a collection of  

clusters. The Voronoi diagram of these clusters is potentially useful since the two 

nearest clusters also have a common edge in the diagram. The problem is now 

to maintain the diagram through a sequence of n - 1 cluster merges. In the case 

of  single linkage clustering, where the distance between two clusters is the 

minimum distance between any two points, one from each cluster, a similar 

approach yields an O(n log n)-time algorithm (see [El]) .  The latter clustering 

method is intimately related to the notion of  the minimum spanning tree of the 

points. 
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