
Discrete Comput Geom 9:267-291 (1993) 

e o m e  ry 

The Upper Envelope of Voronoi Surfaces and Its Applications* 

Danie l  P. H u t t e n l o c h e r ,  t K l a r a  K e d e m , t '  2 and  M i c h a  Shar i r  2" 3 

1 Department of Computer Science, Cornell University, Ithaca, NY 14853, USA 

dph~a cs.cornelt.edu 

2 Department of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel 

klara(a math.tav.ac.il 
sharir~a math. tav.ac.il 

3 Courant Institute of Mathematical Sciences, New York University, 

New York, NY 10012, USA 

Abstract. Given a set S of sources (points or segments) in ~d, we consider the surface 

in ~d+ 1 that is the graph of the function d(x) = minp~ s p(x, p) for some metric p. 

This surface is closely related to the Voronoi diagram, Vor(S), of S under the metric 

p. The upper envelope of a set of these Voronoi surfaces, each defined for a different 

set of sources, can be used to solve the problem of finding the minimum Hausdorff 

distance between two sets of points or line segments under translation. We derive 

bounds on the number of vertices on the upper envelope of a collection of Voronoi 

surfaces, and provide efficient algorithms to calculate these vertices. We then discuss 

applications of the methods to the problems of finding the minimum Hausdorff 

distance under translation, between sets of points and segments. 

1. Introduction 

Vorono i  d i a g r a m s  are  a cent ra l  c o n s t r u c t i o n  in c o m p u t a t i o n a l  g e o m e t r y  and  serve  

as an i m p o r t a n t  tool  for so lv ing  m a n y  prac t ica l  p r o b l e m s  in va r i ous  fields [7],  
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[11], [20], [23], [25]. In this paper we investigate several problems in which a 

set of Voronoi diagrams in d-space are "superimposed" on one another. It is 

convenient to replace each such Voronoi diagram, induced by some set S, by a 

corresponding Voronoi surface in (d + 1)-space. The height of this surface at a 

point x is simply the distance from x to the nearest source of S (see [14]). We 

discuss the structure of the upper envelope of m such surfaces, provide bounds on 

the number of vertices on this upper envelope, and develop efficient algorithms 

for computing the vertices. 

Given a set S = {PjlJ = 1 . . . . .  n} of sources (points or line segments) in 9~ d, and 

some metric p(-,.), the Voronoi diagram of S, denoted by Vor(S), is the decomposi- 

tion of91 a into "Voronoi cells" C~ . . . . .  Cn, where each cell Cj contains those points 

of 91d that are closer to pj than to any other source (with closeness measured using 

the metric p). Consider now the function 

d(x) = min p(x, q). (1) 
qeS 

The graph of this function, {(x, d(x))Ix ~ 9~a}, is a surface which we call the Voronoi 
surface of S. Throughout  this paper we use a slight abuse of notation and refer 

to both the function and its graph using the notation d(x). The surface d(x) is at 

a local minimum (of zero) exactly when x is coincident with some source p~ E S, 

and is at a local maximum for certain points that lie along the boundary of cells 

of Vor(S). 
Let {Sili = 1 . . . . .  m} be m sets of sources, let n i = tS~I, i = 1 . . . . .  m, be the 

number of sources in Si, and let n = ~7'= 1 hi. Denote the Voronoi surface of the 

set Si by di(x). The upper envelope of these surfaces is (the graph of) the function 

f ( x ) =  max d~(x). (2) 
i= 1 . . . . .  m 

Thus f (x)  gives the largest distance from x to its m nearest neighbors, one from 

each set Si. We investigate the structure of this upper envelope. Again, we use f(x) 
to refer to both the function and its graph. We show that all the local minima of 

f (x)  are achieved at k-faces of the upper envelope (k < d - 1), and that the number 

of local minima is proportional to the number of vertices of the upper envelope 

(where a vertex is a point at which d + 1 Voronoi surfaces meet). We bound the 

number of such vertices and provide efficient algorithms for computing them, when 

d = 2, 3. These algorithms also yield all local minima on the upper envelope, 

thereby providing the global minimum of f(x), which is needed to solve the 

applications mentioned in the abstract and discussed in this paper. 

Our main results on the upper envelope of Voronoi surfaces are as follows. 
rrl 

Consider m sets of sources, $1 . . . . .  Sin, with ni ISil and n = ~i= 1 hi, and let the 

distance function p(., ') be the L2 norm. 

• If the sources are all points in 912, then the maximum number of vertices, V, 

of f (x)  is O(rnnct(mn)) (where ~(n) is the inverse Ackermann function). 

• If the sources are all points in 913, then V = O(mn2ct(mn)). This result is based 

on a new bound on the complexity of the union of convex polyhedra in 

3-space which share a common point (see the final item below). 
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• If the sources are points and line segments in ~t 2, then V is O(n 2" 2~"~). 

• In two-dimensional cases the vertices of f(x) can be computed in time 

O(V log V). In three-dimensional cases the vertices of f(x) can be computed 

in time O(n2m t +~) for any e > 0 (e appears in the constant). 

• Given s convex polyhedra with a total of t faces, all of which contain a 

common point, we show that the boundary of their union has complexity 

O(sto~(st)). 

The upper envelope of Voronoi surfaces can be used to solve the problem of 

determining the minimum Hausdorff distance under translation between two sets 

A and B of points in the plane [18]. The Hausdorff distance is a max-min distance 

that measures the mismatch between two point sets using some metric p. Thus 

the minimum Hausdorff distance under translation gives us a translation that 

minimizes the largest deviation of any point of one set from the other set. Given 

two sets A and B with p and q points, respectively, using our technique for finding 

the upper envelope of Voronoi surfaces of point sets in the plane, the translation 

minimizing the Hausdorff distance can be found in time O(pq(p + q) log pq). Our 

results also apply to point sets in 9~ 3, and thus provide a solution to the problem 

of finding the translation that minimizes the Hausdorff distance between two point 

sets, A and B, in space. The running time of the method is O((pq)2(p + q)l +~) for 

any e > 0, where p and q are again the number of points in A and B, respectively. 

One generalization of the minimum Hausdorff distance is to compare sets of 

segments rather than sets of points. This problem is not directly reducible to the 

problem of computing the upper envelope of Voronoi surfaces. In fact solving this 

problem calls for computing the upper envelope of uncountably many Voronoi 

surfaces (see Section 3.2 for details). However, for the L 1 and Lo~ metrics we show 

that the problem can be solved by taking the surfaces formed by the Minkowski 

sums of Voronoi surfaces and line segments. This yields an algorithm that 

computes the minimum Hausdorff distance between sets of line segments in the 

plane in time O((pq)2~(pq)), where [AI = p and I B[ = q. Recently (after the original 

submission of this paper), a similar bound has been shown for the L 2 metric, by 

applying Meggido's parametric search technique [1]. These results compare 

favorably with the results of Alt et al. [2], who compute the minimum Hausdorft 

distance under translation between sets of line segments in the plane, under the 

L2 metric, in time O((pq)a(p + q) log(pq)). 

The organization of the remainder of this paper is as follows. In the next section 

we analyze the complexity of the upper envelope of m Voronoi surfaces and show 

how to compute it etficiently. We consider Voronoi surfaces of point sets in 9~ 2 

and 9t 3, as well as line segments in ~R 2. In Section 3 we discuss applications of 

Voronoi surfaces to the Hausdorff distance problems described above. 

2. The Upper Envelope of Voronoi Surfaces 

Recall from (1) the definition of the Voronoi surface of a set of sources, S, which 

we denote (together with its graph) by d(x). By projecting d(x) onto its domain 

(the xy-plane in the planar case and the xyz-space in the three-dimensional case) we 
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obtain a decomposition of this domain into cells. By definition, this decomposition 

is exactly the Voronoi diagram of S. We define the combinatorial complexity of 

d(x) to be the number of k-faces of Vor(S) (over all k < d - 1). We similarly define 

the combinatorial complexity of the upper envelope of m Voronoi surfaces, f ( x )  

(equation (2)), to be the number of k-faces (over all k < d - 1) of the projection 

of f ( x )  onto its domain. In this case a face is a connected component of the 

intersection of any fixed subset of faces of the surfaces d~(x), that appears on f(x).  

We now determine the combinatorial complexity of f(x), so defined, for sets of 

points in ~R 2, for sets of line segments in 9~ 2, and for sets of points in 9~ 3. 

2.1. Point Sets in the Plane 

Let S 1 . . . . .  S m be a collection of m sets of points in the plane. Here we determine 

the complexity of the upper envelope of the m Voronoi surfaces, d~(x), defined by 

these sets of points. In order to characterize the complexity of f ( x )  we make use 

of the following key observation, which follows immediately from the definition. 

Observat ion 1. At  a given point Xo, f ( xo)  = di (xo)  exactly when the nearest source 

to x o in Vor(Si) is farther from x o than is the nearest source to Xo in any other 

diagram Vor(S~). 

We use this key observation to determine the (possibly empty) portion of each 

cell of Vor(S/) over which f ( x )  = di(x). The union of these portions of all the cells 

of the m Voronoi diagrams then defines the (xy-projection of the) entire surface 

f (x ) .  The combinatorial complexity of the surface is by definition that of its 

xy-projection, and the surface is completely determined by this projection. 

Fix one Voronoi diagram Vor(Si), and let F be the Voronoi cell of a given 

source q e S i. Now consider all the Voronoi diagrams Vor(Si w S j) for all j :~ i. 

Clearly, q is a source in each of these diagrams. Denote by Q~ the Voronoi cell of 

q in Vor(SiwSj) (see Fig. 1). It is easy to see that Q~_~F for each j. Let 

Q = ~ j , i  Qj. 

The cells Q~ in the Voronoi cell F of a given source q ~ S i. Fig. 1. 
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Lemma 2. Using the above notation, the upper envelope f (x )  is equal to di(x) for 

x E F if and only if x ~ F -- Q. 

This result follows immediately from Observation 1 and the definition of the 

Voronoi diagram. 
Let cj denote the number of edges of each Voronoi cell Q~, j ~ i, where Qj is 

the cell of Vor(Si u St) containing the point q e Sl. Let CF = ~ Cj. Since each 

Voronoi cell is star-shaped with respect to its cource, we can introduce polar 

coordinates (r, 0) with q as the origin, and regard the boundary of each Q~ as the 

graph of a function r = ~,j(0). The boundary of Q = Ui~i Qj is then the upper 

envelope of these functions. 

Lemma 3. The combinatorial complexity of the boundary of Q is linear in CF for 

Voronoi diagrams based on L 1 and Lo~ metrics; it is O(cF~(ce))for all other Lp metrics. 

Proof. For Voronoi diagrams based on the L 2 metric the Voronoi edges are line 

segments in arbitrary directions. Since any pair of them intersect at most once, 

their upper envelope is of complexity O(cFot(cr) ) [16]. In the case of L 1 and L~ 

metrics, the cell boundaries consist of line segments at only four orientations. 

Using a divide-and-conquer algorithm for computing upper envelopes [6] we 

combine the four families of segments (merging in pairs three times) to obtain an 

upper envelope whose complexity is linear in c r. 

For Lp, p v ~ 1, 2, oo, we show that any pair of edges of two Voronoi faces Qk 
in Vor(Si u Sk) and Qt in Vor(Si u St), each containing q, can intersect at most 

once. Thus the complexity of the boundary of Q is just as for the L 2 metric. Indeed, 

let e k _c t3Qk and e 1 _~ OQt be two Voronoi edges. Assume qk, ql are the respective 

points in Sk, Si that together with q induce the edges ek, e l in Vor(S/u SR), 

Vor(Si u St), respectively. Any intersection of ek, el is thus a vertex of the Voronoi 

diagram Vor({q, qk, ql})" The three Voronoi cells in this diagram can have exactly 

one common vertex: if the points are coUinear, then the vertex is at infinity, 

otherwise the three point sources determine exactly one position where the convex 

shape of Lp touches all the three points, and this determines the only possible 

Voronoi vertex. [] 

Let N = ~F ce denote the total number of edges bounding the faces Q~, summed 

over all the Voronoi cells in all the diagrams. 

Lemma 4. N = O(mn). 

Proof. For one Voronoi diagram, Vor(Si), we take all the Voronoi diagrams 

Vor(Si w S j), j ¢: i, to create all the boundaries of all the Q/s within each face of 

Vor(Si). The number of Voronoi edges of each Vor(Si w S j) is O(n i + n). Summing 

over all indices j ~ i, gives 

F ~ Vor(S~) i 

Summing this over all Si, i = 1 . . . . .  m, we get ~ i  O(mni + n) = O(mn). [] 
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The main result of this section now follows immediately from Lemmas 2-4. 

T h e o r e m  5. The combinatorial complexity of the upper envelope of Voronoi surfaces 

of m point sets in the plane, with a total of n points, is O(mn) when using the L t or 

L~ metrics, O(mnot(mn)) for all other Lp metrics. 

We now proceed to show a lower bound  on the number  of  vertices of  f (x)  in 

the worst case. 

L e m m a  6. The number of vertices on the upper envelope of Voronoi surfaces is 

D(mn) in the worst case. 

Proof The construct ion we demonstra te  here is for L~,-Voronoi diagrams, but 

it can be easily adapted for Voronoi  diagrams based on other metrics. 

The sets Si are created in the following manner.  We take all the sets Si to have 

the same number  of  sources n i = n/m. We fix two parameters,  H >> 6 > 0. We first 

construct  S~, placing its points on two parallel rows (see Fig. 2). 

In the first row, lying on a line y = Yo, there are n~/2 points, 2H apart 

f rom each other. The second row also has nff2 points which lie on the line 

Y = Yo - 2(H - 6), for some sufficiently small 6 > 0, and are placed 2(H - 6) apart 

from each other. Vor(S0 thus consists of  two sets of parallel vertical edges (each 

having (n I - 1)/2 edges), a set of  nl/2 horizontal  Voronoi  edges, and other edges 

which are not  impor tant  for the construction. (We choose the points on the two 

parallel lines to be slightly differently spaced in order to avoid degenerate edges 

in the construction.) Given this set of sources, the Voronoi  surface d~(x) has 

constant  height on each vertical and hoizontal  Voronoi  edge. For  the vertical 

edges separating sources in the first row, dl(x)= H. For  the vertical edges 

separating sources in the second row, dl(x) = H - &. For  the horizontal  Voronoi 

edges, dl(x) is also H - 6. 

We now make  m copies of S r The first m/2 copies are translates of  S1 to the 

right, in increments of  some small amount  e, where e > 26 (so that  the lower 

horizontal  edges will be visible on the upper envelope) and e.m/2 < 2H. To get 

the set S,,/2+~, we translate S~ by H - 6  in the positive x direction; each S~, 

i = m/2 + 2 . . . . .  m, is a translation of  Si_ 1, in the positive y direction by e. 

Fig.  2. 

2H i 2H i 2H i 2 H - - T -  
I 

2(H - 6) ~- • • • • • 

t- • • • • qlJ 

I I I - i i 

2(H - ~) 

The lower bound construction (the circles are points of $1). 
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Fig. 3. The upper envelope f(x) of the worst-case construction, 

The upper envelope f(x) of these surfaces is depicted in Fig. 3. The solid lines 

are (a view from above) of the surface dl(X) (the Voronoi diagram of SO, and the 

dashed lines are all the other surfaces, each of which is a translated copy of d~(x). 
There are ®(n/m.m) vertical edges over which the height of f(x) is H. In addition, 

the surfaces di(x ) have ®(n) slightly lower (height H - 6) horizontal edges, arranged 

along m horizontal lines. On f(x), these lines disappear below the vertical edges 

and reappear at small intervals between them. This produces f~(mn) edges on f(x). 
Although the value of d~(x) on the vertical and horizontal edges is not constant 

for other Lp metrics the same construction of points leads to the same lower bound 

for these metrics as well. [] 

As a corollary, we obtain a worst-case lower bound on the combinatorial 

complexity of the upper envelope of Voronoi surfaces for all Lp metrics. In 

particular, we obtain: 

Corollary 7. The worst-case combinatorial complexity of the upper envelope of 
Voronoi surfaces of m point sets in the plane, with a total of n points, for the L 1 and 
L~ metrics, is O(mn). 

We next turn to efficient computation of this envelope: 

Theorem 8. The upper envelope f(x) can be computed in time O(mn log ran). 

Proof The proof of Theorem 5, which bounds the complexity of f(x), is 

constructive. The algorithm follows this construction and has two basic steps. 

First, compute the "pair-diagrams" Vor(S i w Sj) for each 1 _< i < j < m. Second, 

for each source q in each Si, 1 < i < m, compute the boundary of Q = UJ~ QJ, 
where each Qi is the cell about the source q in Vor(Si w Si). The boundary of Q 

is then just the upper envelope of segments in polar coordinates about q. This 

boundary specifies the structure of f(x) as described in Lemma 2. 

The first step takes total time O(mn log ran), because the total size of all pairs 
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S~ w S t is ~i.~(n~ + n~) = O(mn). The second step takes time O(c v log cv) for each 

source q [17]. Summing over all sources of all Voronoi diagrams, and making use 

of the fact that ~ r  cF = O(mn), yields the stated running times. [] 

Lemma 9. Let q e Si be some source, let F be the Voronoi ceil of Vor(Si) containing 

q, and let Q be the region around q as defined above. Then the local minima off(x),  

for x ~ F - Q, are obtained on the boundary of Q. 

Proof. The Voronoi cells Q1 and F are star-shaped with respect to q (convex 

polygons in the case of L2); see Fig. 1. Q is therefore also star-shaped with 

respect to q, and Q ~ F because each Q~ ~ F. The function d~(x) is unimodal for 

x e F, with the minimum d~(x)= 0 at x = q. Thus the local minima of .f(x) for 

x e F - Q must occur as close to the source as possible and due to the star-shaped 

property of Q this happens on the boundary of Q. Note that the boundary of Q 

may partially coincide with the boundary of F, and that this fact does not change 

the argumentation. [] 

Hence, the local minima of f ( x )  are all obtained on its edges or vertices. This 

enables us to obtain all local minima (and thus the global minimum) of f(x) at 

no extra cost. 

2.2. Sets of  Line Segments in the Plane 

Let $1 . . . . .  Sm be m sets of line segments in the plane, such that the segments in 

each set have pairwise disjoint relative interiors. Let the number of segments in 

each set S i be ni, and let n = ~"=1 nl. Since segments can share endpoints, we 

regard each Si as a collection of (pairwise disjoint) open segments and their 

endpoints, and define the Voronoi diagram of such a new collection as in [25]. 

(The distance functions we consider here are the L~, L 2, and L~ metrics.) Actually, 

this analysis applies to any collection of pairwise disjoint open line segments and 

points, provided that the endpoints of the segments are included among the points. 

We define d~(x) and f (x )  as in Section 1. Let q be a given open segment of some 

set Si (the case where q is a point is simpler and is left for the reader), and let F 

be the Voronoi cell of q in Vor(S~). Let S t, j yt i, be another set of segments. As 

before, we examine the face related to q in Vor(S~ w St). However, the open 

segments of S~ and S t are not necessarily pairwise disjoint. In fact, the source q ~ Si 

can be intersected by all the n~ segments of S t in the worst case. Since the 

complexity of the Voronoi diagram is determined by the number of its pairwise 

disjoint sources, we decompose each open segment in Si w S t into the new open 

subsegments and the new endpoints formed by the intersections of segments in Si 

and S t- 
We also make use of the following fact: 

Fact 10 [20]. A Voronoi cell of a "line-segments Voronoi diagram" has the weak 

star-shape property, in the sense that if x is a point in the cell F of a source q, and 
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(a) 

(b) 

Fig. 4. Qi,~ in F. 

if the point q' on q is the point closest to x, then the segment xq' is wholly contained 
in F. 

Let k~ denote the number of new sources into which q is decomposed by 

segments of S t, let the new sources themselves be denoted by qj.~, and let the cells 

of qj.z in Vor(S~ ~ Sj) be denoted by Qj, t for l =  1 . . . . .  kj (it actually suffices to 

consider only the new subsegments of q, because the new points along q have 

trivial cells in Vor(S i w Sj), as is easily checked). It is easy to see that Qj.t ~- F for 

each j # i and for all I. Figure 4 illustrates this decomposition. Figure 4(a) shows 

the face F of q in Vor(S~) and Fig. 4(b) shows the decomposition of the segment 

q into segments q~,s, the dividing segments of S t, the boundary of F, and the 

boundaries of Qj.z. We denote by Q the union of all cells involving subsegments 

of q in all the Voronoi diagrams Vor(S~ w S j), j ¢: i, that is 

kj 

Ue.- 
j , i  l= 1 

Lemma 11. Using the above notation, f ( x ) =  di(x) for x e F  if and only if 
. x ~ F - Q .  

Proof. We prove first that if x E F - Q, then f (x )  = d~(x). Again we apply the key 

observation from Section 2.1. Let x ~ F, so the source closest to x in Si is q. Due 

to Fact 10, all faces F and Qj, t have the weak star-shape property with respect to 

q. If x ¢ Q, then x ~ Q j,i for each j # i and for each l = 1 . . . . .  kj. Let q' be the point 

on q nearest to x. For  each j ~ i let qja be the subsegment (or endpoint) of q in 
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the decomposition of S~ u S~ which contains q'. Since x ¢ Q~.t, it follows that there 

is a source q* in the decomposed set S~ u S t such that q* is closer to x than q~.~ 

is. However, q* cannot be a subsegment of a segment in S~; indeed, since x is in 

F, the only way in which this can happen is when q* is a subsegment of q; but 

then since it is disjoint from q~.t, it does not contain q', so the distance of x from 

q* is strictly greater than its distance from qj.~, a contradiction. Hence q* is a 

subsegment of some qj ~ Sj or a point qj ~ S~. Therefore, for each j # i, 

dj(x) = p(x, q~) <_ p(x, q*) < p(x, q) = di(x). 

The other direction of the proof follows from similar arguments. [] 

Note that in the case where q is an endpoint, there is only one cell Qj.~ around 

q for any single Voronoi diagram Vor(S~ ~ St), but the rest of the analysis remains 

the same. 

We now proceed to estimate the number of vertices of f(x). We denote by CF 
the total number of edges of the cells Qj.l f o r j  # i and I = 1 . . . . .  kj (i,e., the cells 

Oj.t - F). 

Lemma 12. The combinatorial complexity of the boundary of Q is O(cre(cr)).fi~r 
the L1, L,,~ metrics, and is O(CF" 2 ~(~F~) for the L z metric. 

Proof As above, we only concentrate on the case where q is an open segment. 

For  each segment q ~ S~, the star-shape property stated in Fact 10 allows us to 

interpret the boundary of each Qj.~ as a pair of graphs of partially defined functions 

over q, one graph on each side of q. In the case of L1 and L~, the Voronoi edges 

are straight line segments in arbitrary directions, so the upper envelope of the 

boundaries of the Qt.l's has complexity O(CF~(CF) ). For the L z metric, the Voronoi 

edges are either straight lines or parabolic arcs, hence each pair of edges intersect 

at most twice, and the complexity of the boundary of Q is therefore 

0(24(cr)) = 0(%" 2~tCF)). D 

Again we sum these bounds over all faces F of all the Voronoi diagrams Vor(Si) 

in order to obtain the complexity of f(x). If N = ~ v  cv, then we get that the 

complexity of f (x )  for sets of points and line segments is O(No:(N)) for the metrics 

L1, L~, and is O(N. 2 ~tN~) for the L 2 metric. 

Lemma 13. N -- O(n2). 

Proof The number of Voronoi edges of each Vor(Si w S j) (with segments de- 

composed as above) is O(ni'nj). Summing this over all indices j # i gives 

F e V or(S~) 
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This lemma and the previous arguments yield: 

Theorem 14. The combinatorial complexity of the upper envelope of Voronoi 
surfaces of m sets of points and line segments in the plane, with a total of n sources, 
is O(n2~(n)) when using the L1, L~ metric, and is O(n 2" 2 ~t")) for the L 2 metric. This 

upper envelope can be computed in time O(n 2 log n) for the L l, L~ metrics, and in 

time O(nZ~(n) log n) for the L z metric. 

Note that, as in Section 2.1, the algorithmic bounds also follow directly from 

the previous lemma (we use Yap's algorithm [25] to construct the pair diagrams 

Vor(S~ w S~)). 

Remarks. The results of this section also hold for m sets of convex polygonal 

sources (rather than segments), for which the total number of edges of all of the 

sources is n. Moreover, the results for all the planar problems described above 

can be extended to convex polygonal distance functions instead of Lp metrics. A 

convex distance function is a pseudometric defined in terms of a convex body C, 

such that the distance from p to q is the smallest 6 such that, if a reference point 

in C is placed on p, then q e 6C [9], [15], [20]. 

2.3. Point Sets in 3-Space 

We now consider the case where the sets S t . . . . .  S,, are point sets in 3-space. The 

Voronoi surfaces, di(x), and their upper envelope f(x) ,  are defined as in the previous 

sections, though now they are surfaces in four-dimensional space. We restrict 

ourselves to the L 2 metric only. The key observation of Section 2.1 applies here 

too and the analysis is similar to the previous two sections. However, the Voronoi 

cells are now three-dimensional convex polyhedra. Let q E S i be a source point, 

then F, the Voronoi cell of q in Vor(Si), is the set of all points such that each x E F 

is closer to q than to any other source in Si. Such a three-dimensional Voronoi 

cell can have up to ni - 1 faces, where ni = ISil. 
Following the previous sections, we construct all the pairwise Voronoi diagrams 

Vor(Si u Sj), j = 1 . . . .  , M, j # i. We denote by Qj the cell associated with q in 

Vor(S~ w S j). Clearly, Qj ~ F, and the number of faces of a given Voronoi cell Qj 

is bounded by n i + nj. We further observe that only at most n~ of these faces are 

contributed by the sources of  Sj, the rest being portions of the original faces of 

the cell F. We define Q = ~)~¢~ Qj, and, as in the planar case, the upper envelope, 

f(x), equals d~(x) for x ~ F if and only if x ~ F - Q. Moreover, the local minima 

of f(x), for x ~ F - Q, are again obtained on the boundary of Q. 

We turn to estimating the combinatorial complexity of f(x). We fix q and F 

as above. Let cj denote the number of faces of each cell Q~, j # i, and let 

cF = ~ cj. There is a simple way to get an upper bound on the combinatorial 

Complexity of Q. This bound is not the best possible, as is argued later, but we 

derive it anyway as a "warm-up"  exercise. 

We introduce spherical coordinates (r, 01, 0~) with q as the origin, and regard 
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the boundary of each Qj a s  the graph of a function r = )'j(01, 02). We replace the 

graphs of these functions by a collection of O(c r) triangles, which form triangula- 

tions of the boundaries of the Q~. The upper envelope of these triangles (in our 

spherical coordinate system) gives the boundary of Q. An easy adaptation of the 

analysis given in [13] and [22] for the standard envelope of triangles implies that 

the maximal combinatorial complexity of Q is O(c2~(cv)), and that it can be 

computed in time O(c2~(cv)). 
We next improve this upper bound to O(mCFCt(CF)). To obtain this bound, we 

first prove the following result, which may be of independent interest: 

Theorem 15, The combinatorial complexity t~f the union of m convex potyhedra, 

all containing a common point 0 and haviny a total of t.faces, is O(mt~(mt)). 

Proof Let Kx . . . . .  K,, be m convex polyhedra in 3-space, all containing a 

common point, say the origin. Let K = UT~= 1 Ki. Denote by t i the number of faces 

ofKi,  i = 1 . . . . .  m, so that t = ~"= 1 tl. We divide the polyhedra into two subcollec- 

tions of approximately equal size, referred to as the "red"  polyhedra and the 

"blue" ones. Let R, B denote the union of the red and of the blue polyhedra, 

respectively; obviously K = R w B. 
Our goal is to express the complexity of K in terms of the complexities of R 

and B; the resulting recurrence gives us the desired bound. For  this, we estimate 

the increase in the number of red faces caused by the addition of the blue polyhedra 

to the already existing union R, and vice versa, using a modified "combination 

lemma" (see [13]). Assume we start with R-- the  union of the red polyhedra. We 

add the faces of the blue polyhedra one at a time, exhausting the faces of each 

blue polyhedron before starting a new one, thus constructing K incrementally. 

Denote by ~' the unbounded cell in the arrangement of the faces of all the red 

polyhedra and the blue faces added up until the previous step. At the end of the 

insertion process 0//coincides with the complement of K. 

Let F be the currently added blue face. Let G be a red face appearing on dug. 

Suppose that G is affected by the addition of F. Since we want to estimate the 

increase in the number of red faces in 8q/we are only interested in intersections 

of F and G that divide G into two or more subfaces which still show up on 3~//; 

only in this case do we experience an increase in the number of relevant red faces. 

Figure 5 shows such an intersection as seen on G: F n int(G) consists of six edges 

et . . . . .  e 6. G is split by F into six subfaces. The dashed face does not show up on 

8~# (assume it just got hidden by adding F to the arrangement), and G1,.. . ,  G5 

do show up on 8q/. We refer to each subface of G that shows up on d°ll after the 

addition of F as a "surviving subface." We refer to each edge of F c~ int(G) as a 

"splitting edge." 
We now show how to charge (all but one of) the surviving subfaces of G uniquely 

either to a splitting edge or to a reflex corner of G, and then we bound the number 

of such edges and corners. 
The surviving subfaces of G can be thought of as forming the vertices of a 

"connectivity graph" whose edges connect pairs of surviving subfaces adjacent 

along a splitting edge (see Fig. 5). For  each connected component of the con- 

nectivity graph we pick one node O and perform a depth-first search from 9. Each 
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G2 Gs 

Fig. 5. An intersection as seen on G. 

time the search reaches a new node we charge that surviving subface to a splitting 

edge e through which we have crossed (if there are several such splitting edges, 

we charge one of them arbitrarily). 

This accounts for all subfaces except the starting node of each connected 

component of the connectivity graph. If there are k connected components, then 

there must be some hidden subfaces of G dividing it into these components, so 

that each hidden subface touches two or more surviving components at splitting 

edges, and all surviving components are connected to each other in this manner 

by hidden subfaces. It follows that these hidden subfaces must have k - 1 pairwise 

disjoint paths along their boundaries, where each such path connects together the 

endpoints of two splitting edges (like the path connecting e+, P, and e5 shown by 

the bold line in Fig. 5). Each such hidden boundary path must have a reflex corner 

that has just disappeared from the unbounded cell and will never be seen again 

(like the corner marked P in Fig. 5). We charge the starting node of all but one 

of the k connected components of the connectivity graph to these k - 1 reflex 

vertices. 

Thus we have charged uniquely the increase in the number of surviving faces 

(the total number minus one) to splitting edges and to reflex vertices. The number 

of charges of the second kind is clearly O(mt) these vertices are formed as 

intersections of original polyhedra edges with polyhedra faces, and convexity 

implies that each edge intersects at most two faces of any other polyhedron. 

Lemma 17, established below, shows that the number of charges of the first kind 

is O(mt~(mt)). 
We thus obtain the following recurrence: 

I K[ _< JR[ + [BI + cmt~(mt) 

for some absolute constant c > 0, where [K[, [R[, and [BI denote the number of 

faces of these polyhedra. Unwinding this recurrence through our divide-and- 

COnquer process yields a total of O(mt~(mt)), as is easily checked. Since every vertex 

of K has degree at least three, Euter's formula implies that the overall combina- 

torial complexity of K is also O(mt~(mt)). [] 
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We turn to bounding the number of charged splitting edges (charges of the first 

kind). Consider the arrangement A t on the blue face F, currently being added, 

which is induced by the straight line segments formed by intersecting F with all 

original red faces and previously added blue faces. Every splitting edge is an edge 

of At. We assign each charged splitting edge e to that face tp e of A t that is incident 

to e, such that q~e is on the boundary of the unbounded cell "ll (it is easily checked 

that only one of the two faces incident to e has this property). We thus obtain a 

collection of "marked"  faces on F. 

The following lemma is a crucial step in our analysis: 

Lemma 16. All marked faces q~e belong to the zone in A F of the boundary ofF, 

where the zone of a line in an arrangement is all the cells in the arrangement adjacent 

to this line (see [12]). 

Proof Suppose to the contrary that there exists a marked face q~e that is internal 

in A F. Let e be the charged splitting edge to which q~e is assigned---e splits a red 

face G into two pieces, say G1 and Gz, such that both G1 and G2 appear on the 

boundary of q/. Let C be the cone spanned by all line segments connecting the 

origin to points on q~. Since q~ is an internal face on A r, each edge on its boundary 

is in the intersection of F with some red polyhedron or some previously added 

blue polyhedron. It follows that the boundary of the cone, not including ~p~, is fully 

contained in the union of all red and previously added blue polyhedra (excluding 

the one containing F), because it consists of segments connecting the origin to 

points on the boundaries of these polyhedra (see Fig. 6 where the segments labeled 

F and G are the cross section of the respective faces). Adding tpe "closes" the cone 

such that C is in the union of all the polyhedra, added up until now. Since the 

origin is contained in the polyhedra bounded by G and since ~0~ lies on ~ ' ,  it is 

easy to conclude that either G~ or Gz must be contained in the cone (at least 

locally near e), hence in the union of the previous polyhedra, which contradicts 

the definition of e as a charged splitting edge. [] 

We now obtain the final lemma needed in the proof of Theorem 15. 

Lemma 17. The total number of charged splitting edges is O(mtct(mt)). 

Proof Fixing the blue face as above, let tF denote the number of segments forming 

the arrangement At, The combinatorial complexity of the zone in AF of the edges 

o 

o 

Fig. 6. A cross section of F, G, q~e, and the cone C. 
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of F is O(tr~(tF)) (see [12]). If we sum this over all blue faces F, we obtain that 

the total number of charged splitting edges, over the insertion of all blue polyhedra, 

is O(Nct(N)), where N = ~F tF. 

We claim that N = O(mt). Indeed, fix a blue polyhedron K j, and consider the 

sum Nj = ~F~K, tr. Every segment counted by one of these tv'S is an edge of the 

intersection of Kj with some red or previous blue polyhedron K~. By Euler's 

formula, the number of such edges for a fixed K~ is O(t~ + t j). Summing this over 

all i, we obtain Nj = ~ i  O(tl + t2) = O(rat~ + t), and summing that over all j we 

thus obtain N = ~ j  O(mt~ + t) = O(mt), as asserted. [ ]  

We next outline an algorithm for computing the union K. We apply a 

divide-and-conquer scheme: partition the given collection of polyhedra into r 

roughly equal sets ~ t  . . . . .  ,U r, so that each set consists of roughly s/r polyhedra; 

here r is a sufficiently large constant, to be determined later. Let t i denote the 

overall number of faces on the polyhedra in o~, for i = 1 . . . . .  r, where ~ =  l tl = t. 

For each 1 < i < j < r define the subcollection o,~ i = ~ w ~ .  We compute 

recursively the unions Uij of the polyhedra in each of the subcollections :,'f~j, and 

then merge them together to form the overall union K. 

Assume we have computed all the unions U~j. The merge step is performed as 

follows. Let v be a vertex on ~3K. It is either a vertex of an original polyhedron 

(which we call a vertex of type (i)), an intersection of an edge of some original 

polyhedron with a face of another (a vertex of type (ii)), or the intersection point 

of the relative interiors of faces of three distinct polyhedra (type (iii)). It is easy to 

compute vertices of OK of the first two types. We simply take each vertex v of the 

given polyhedra and test whether any of the other polyhedra contains v in order 

to determine the vertices of the first type. Similarly, we take each edge e of the 

given polyhedra and compute its intersection with each of the other polyhedra. 

Then we compute, for each edge e, the union of the corresponding intervals along 

e. The vertices of that union are vertices of type (ii) on 0K. 

The more difficult part is computing vertices of type (iii). Let v be such a vertex, 

which is an intersection point of three faces on the boundaries of three distinct 

polyhedra, K 1, K2, K3. If these polyhedra belong to just one or two of the families 

~ff~, then v will appear as a vertex of at least one of the unions U~. So suppose 

that these three polyhedra belong to three distinct subfamilies, and we may assume, 

with no loss of generality, that Ki ~ ~ for i = I, 2, 3. To find all vertices v of this 

form, we merge U 1 z with U 13 as follows. For  each face F of any polyhedron (say, 

K1) of J,(', we consider the portions F12, F~3 of F that lie on 0.U12, c~U~3, 

respectively. We compute the complement of the union FIz w F13 within F, using, 

e.g., the standard line-sweeping technique of [8], and this yields the portion of F 

that lies on the boundary of the union U12 3 of Jf'l w ~2  w ~r  3. Repeating this 

procedure for all faces of polyhedra in o,~ffl, we clearly obtain all vertices v of the 

form we seek. 

However, the set of type (iii) vertices that we have computed in this manner is 

a superset of the set of actual type (iii) vertices of OK, and we still need to sift 

away spurious vertices. This is done as follows. We consider the collection of all 

edges e formed by the intersection (or union) of any two original polyhedra. We 
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also include in this collection edges of the original polyhedra. Let e be an edge in 

this collection, and suppose that e is formed by the intersection of two polyhedra, 

Kl, K2, which, with no loss of generality, we assume to belong to :'~(1, ~ff2, 

respectively (the cases where KI and K 2 belong to the same family ,~ ,  or where 

e is an edge of an original polyhedron, are simpler to handle). Our task is to 

compute all portions of e that appear on the boundary t~K. In the union U12, the 

edge e may have already been split into several subintervals, so that the comple- 

ment of their union lies strictly inside U~2. In addition, the merging procedure of, 

say U~2 with Ull, for any i = 3 . . . . .  r, will produce additional subintervals along 

e, which lie strictly inside the union U12i- We can thus collect all these subintervals, 

and compute their union along e; its complement gives all portions of e that appear 

on OK, and thus also all vertices of OK that appear on e. Repeating this over all 

edges e yields the collection of all actual vertices and edges of OK. 

This almost produces the complete structure of OK. What remains is to "hook" 

together different connected components of the boundaries of nonsimply con- 

nected faces of OK, but this is also easily done, within the same time bound as 

above, by performing sweep over each original polyhedron face; we leave details 

of this procedure to the reader. 

Using the method just described, we obtain 

Theorem 18. The union of m convex polyhedra in 3-space with a total of t faces, 
which have a point in common, can be computed in time O(ml+*t) for any e > 0 

(where the constant of propertionality depends on e). 

Proof. We follow the algorithm outlined above step by step. We first estimate 

the cost of the merge step. The vertices of 0K of types (i) and (ii) can easily be 

computed in time O(mt log t). For vertices of type (i) we take each vertex v of the 

given polyhedra and test whether any of the other polyhedra contains v. Each 

such test is done in logarithmic time, and there are a total of O(mt) such tests to 

perform. Similarly, for vertices of type (ii), for each of the t edges e of the given 

polyhedra, we compute its intersection with each of the other polyhedra in time 

logarithmic in t. We get a total of O(mt) intervals, over all edges e. Computing the 

union of these intervals, for each edge e, is done in overall time O(mt log t). 

For vertices of type (iii), the cost of computing F12 a = F12 k.) El3  is 

O((IF121 + IFIal + l f1231) log  t) 

[8], where [F~I denotes the complexity of the planar map F~. We sum this over 

all faces F of polyhedra in JT 1. Applying Theorem 15, we observe that 

• ~,r IF121 is bounded by the complexity of U12, which is 

0 ( ~  ( t l +  t2)ct(mt) ) .  

, Similarly, ~F IFla[ is bounded by O((2m/r)(t I + ta)Ct(mt)). 
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• )'~r ]F1231 is bounded by the complexity of U123, which is 

0 ( 3 ?  ( t l + t 2 +  t3)a(mt)). 

We now repeat this procedure for all triples of distinct collections ~ ,  :,ugh, ~k,  

and sum up the above bounds, to obtain a total running time of 

O(mrtot(mt) log t) = O(mt~(mt) log t). 

Sifting the spurious vertices from the superset of vertices of type (iii) is done in 

time O(mt~t(mt) log t): We have a total of O(mt) original edges of the polyhedra 

and edges formed by the intersection of any two original polyhedra. The latter 

can all be computed in time O(mt log t). Let e be an edge in this collection, and 

assume, without loss of generality, e e )~r 1 w ~2 .  We gather all the subintervals of 

e which are in the union U 12 and, throughout the merge process, we gather all 

the subintervals of e in U12 i, i = 3 . . . .  , r; if the number of subintervals is x, then 

computing their union along e is done in time O(x log x). Since the total number 

of subintervals on all the edges in the collection is O(mt~(mt)), we have established 

the time bound claimed for the sifting operation. 

Hence, if T(m, t) denotes the time needed to compute the union of m convex 

polyhedra (sharing a common point) with a total of t faces, then we get the 

following recurrence: 

T(m, t) < ~, T ( ~ ,  ti + tj) + cmtct(mt) log t, 
1 <_i<j<_r 

where c is an absolute positive constant. The first term in the equation above is 

the time needed for computing all the pairwise unions Uij, and the second term 

(the overhead), is the time needed to compute all the (~ ) t r ip les  U~jk by merging 

the relevant pairs. 

We unfold the recurrence into a tree-like structure. At the second level of the 

tree a collection ~,. u ~ is subdivided into r subcollections ~ 'x,  x = 1 . . . .  , r. t'x 

denotes the total number of faces of the polyhedra in J,f ' .  Thus at the second 

level we have inequalities of the form 

, , tk + t~ + C ---- (t~ + tj)ot(mt) log t. 
I < k < l ~ r  r 

The sum of the overhead terms at the second level of the tree is therefore 

2m 2m 
c--~= (t, + tj)o~(mt) log t = c - et(rat) log t ~ (t, + t j) 

l~ i<j<_r  r r I <_ i<j<_r 

2(r-- 1) 
- - -  cmt~(mt) log t. 

r 
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The sum of the overhead terms at the jth level is similarly bounded by 

( 2 ( r - l ) )  i-tcmt~(mt) l ° g t ' r  

so the total cost at all levels is thus 

where h is the depth of recursion, and is given by (r/2) h = m. It follows that 

T(m, t) = O((r - 1)nt~t(mt) log t) = O(ma'~t~t(mt) log t), 

where e(r) = log(r - 1),dog(r~2), which we can make arbitrarily close to 1 by making 

r sufficiently large. [] 

Returning to the combinatorial complexity of f(x), we now conclude 

Theorem 19. The complexity of the upper envelope, f(x), of Voronoi surfaces in 
four dimensions is O(mn2~(mn)), and it can be computed in time O(n2m 1 +~) Jbr any 
e > 0 .  

Proof. The proof is immediate. We use the notations from the beginning of this 

section. By Theorem 15, the complexity of Q is O(mcr~(cr)) and, by Theorem 18, 

we compute the boundary of Q in time O(m t +*cr). Computing Q for all the sources, 

and using the fact that ~ r  cr = n 2, yields the stated bounds. [] 

3. Applications of the Envelope of Voronoi Surfaces 

We now describe some applications that involve locating the global minimum on 

the upper envelope of Voronoi surfaces. We consider the problem of comparing 

two shapes, specified as sets of points or line segments. This is a central problem 

in pattern recognition, computer vision, and robotics. We use the minimum 

Hausdorff distance under translation (defined below) to determine the degree to 

which one shape differs from another. This technique both specifies a distance 

(shape difference) and specifies the best relative position (translation) of a "model" 

set A with respect to an "image" set B. 
The Hausdorffdistance between two sets, A = {a 1 . . . . .  ap} and B = {bt, . . . ,  bq}, 

where each a~, bj is either a point or a line segment, is given by 

H(A, B) = max(h(A*, B*), h(B*, A*)), (3) 
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where A* (resp. B*) is the union of all points and segments in A (resp. B), 

h(A*, B*) = max min p(a, b), (4) 
a~A* beB* 

and p(a, b) is the underlying metric. The function h(A*, B*) is the directed Hausdorff 

distance from A* to B*, and measures the distance of the point of A* that is 

farthest from any point of B* (under p). It is well known that the function H(A, B) 
is a metric over the set of all closed, bounded sets. The Hausdorff distance, H(A, B), 
can be trivially computed in time O(pq) for two point sets of size p and q, 

respectively; with some care, this can be improved to O((p + q) log(p + q)) [2]. In 

the special case where the sets A and B are respectively the vertices of a convex 

p-gon and a convex q-gon in 912, it has been shown that H(A, B) can be computed 

in time O(p + q) [5]. 

Without loss of generality we fix the set A and allow only B to translate. Thus 

we define the minimum Hausdorff distance, D(A, B), between the sets A and B as 

D(A, B) = m i n  H(A, B + x), (5) 
x 

where B G  x = {bj + xtbj~ B} (vector sum for point sets and Minkowski sum if 

b~ is a segment) and H is the Hausdorff distance as defined in (3). For example, 

Fig. 7 shows two sets of points in the plane, where the set A is illustrated by small 

circles and the set B by crosses. H(A, B) is large because there are points of A that 

are not near any points of B and vice versa. D(A, B) is small, however, because 

there is a translation of B that makes each point of A very close to some point 

of B and vice versa. For point sets in 911, it has recently been shown that D(A, B) 
can be computed in time O((p + q) log(p + q)) [24]. Here we investigate problems 

for sets of points in 9t 2 and 913, as well as for sets of line segments in 912 

We note that, for pattern-matching applications, it is desirable that the cost 

function used to compare two shapes should be a metric on shapes [4], [20]. A 

straightforward substitution argument establishes that D(A, B) is indeed a metric. 

An additional discussion of the Hausdorff distance and its applications is given 

in [2] and [18]. 

+r 

• ¢ . H ( A ,  B )  

B 

Fig. 7. 

o 

° ....___~(A, B) 
o 

t 1- ° 

Two sets of points illustrating the distances H(A, B) and D(A, B). 
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A problem closely related to computing D(A, B) is that of finding the best 

approximate congruence under translation for two sets of p points, A and B [3]. 

Formally, the problem is to find the translation t of B and the bijection l: B ~ A 

that minimizes 

d = max p(b + t, l(b)). (6) 
bEB 

In [3] p(.,.) is assumed to be either L 2 o r  L®. For point sets in the plane, the 

bijection, the translation, and d can be computed in time O(p 6 log p) (compared 

with O(p 3 log p) using the method described below for the minimum Hausdorff 

distance under translation). 

3.1. Minimurn Hausdorff Distance for Point Sets 

We now describe how to compute the minimum Hausdorff distance 

D(A, B) = min H(A, B • x) 
X 

for sets of points in 9t 2 and 913 The main idea is to consider the distances defined 

in (4) as functions that depend on the translation x of the set B. These functions, 

as we show below, are simply the Voronoi surfaces of the sets that result from 

translating B by each a~, and from translating A by each bj. Note that, because 

the sets A and B contain only points, in this section the unions A* and B* can be 

indentified with A and B, respectively. 

In more detail we can express the distance between a pair of points a~ ~ A and 

bj e B, as bj undergoes a translation x, by 

6i,~{x) = p(at, b~ + x) = p(ai - bj, x). 

We then define the function di(x ) to be the lower envelope of the functions 6i, jlx) 
for a fixed point aie A and over all b~s B: 

di(x) = min 6i,j(x). (7) 
bj~B 

If we denote the set ai @ B by Si (i.e., Si = {a~ - bilbj~ B}), then we obtain 

di(x) = min p(p, x), 
p~S,  

which is by definition (equation (1)) the Voronoi surface of Si. Similarly, denoting 

the set A @ bj by S~, the function 

d~x) = min ~,,j(x) = min p(p, x) 
a~A p~S~ 
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is the lower envelope of the functions 6~.j~x) for a given b~ e B and over all a i ~ A. 

If we denote by f (x)  the upper envelope of the functions di(x), d~x), then 

Hence 

f ( x ) : m a x ( m a x d i ( x ) , m a x d ' j ( x ) ) =  H ( A , B ~ x ) .  
\ a ~ e A  b , ~ B  

min f (x)  = min H(A, B • x) = D(A, B). 
x x 

(8) 

Thus, in order to determine the minimum Hausdorff distance between two sets A 

and B, where the set B is translated by x, we have to identify the value of x that 

minimizes the upper envelope of all the Voronoi surfaces defined by the sets 

Si = ai 0 B and S~ = A G b~. Hence we obtain 

Lemma 20. The number of local minima o f f (x )  is O(pq(p + q)) for the metrics L1 
and L~, and O(pq(p + q)ct(pq)) for all other Lp metrics. 

Proof Using the notation in Section 2.l, we substitute in the proofs of Lemma 

6 and Theorem 5 m = p + q, n~ = p for the first q indices and n~ = q for the last 

p indices. Thus n = 2pq and the result then follows immediately. []  

In order to determine D(A, B) we must identify the global minimum of f (x)  
which can be done by calculating all the local minima and inspecting each of them. 

Applying Theorem 8, we obtain the first main result of this section: 

Theorem 21. The minimum Hausdorff distance under translation between two sets 
of points in the plane (and the translation that achieves this minimum) can be computed 

in time O(pq(p + q)log pq), where p and q are the sizes of the two sets being 
compared. 

When the sets A = {al . . . . .  ap} and B = {b 1 . . . . .  b~} consist of points in ~3 and 

the metric is L 2, we use the analysis of Section 2.3. The sets a i G B are all of size 

q and the sets A Q bj are all of size p. Thus, in the terminology of Section 2.3, we 

have m = p + q and n = 2pq, leading to 

Theorem 22. The minimum Hausdorff distance under translation between two sets 
of points in ~3 based on the L 2 metric (and the translation that achieves this minimum) 

can be computed in time O((pq)2(p + q)l+~) for any e > 0 (where the constant 

proportionally depends on e); here p and q are the sizes of the two sets being compared. 

3.2. Minimum Hausdorff Distance for Sets of Segments 

The problem of computing the minimum Hausdorff distance for sets of line 

segments and points can also be solved by the technique of upper envelopes of 
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Voronoi surfaces, although some extra care is needed here. The reason for the 

new difficulties is that now there is a substantial difference between the finite sets 

A, B and the infinite sets A*, B* (the unions of the elements of A and of B, 

respectively). Thus our technique would call for computing the upper envelope of 

uncountabty many Voronoi surfaces, each having a set of sources obtained as the 

Minkowski differences of segments in A and a point in B*, or of a point in A* 

and the segments of B. However, if the underlying metric is L1 or Lo~, we show 

that it suffices instead to form the upper envelope of only a finite number of 

surfaces, each obtained by computing the Minkowski sum of the Voronoi surface 

of Vor(A) with a segment of B, or the Minkowski sum of the Voronoi surface of 

Vor(B) with a segment of A. 

Let A = {al . . . . .  ap} and B = {b 1 . . . . .  bq} be two sets of points and segments 

in the plane, where we require that the segments are all open, and that if a set 

contains an (open) segment it also contains its endpoints; in other words, each 

closed line segment appears in a set as three distinct (and pairwise disjoint) 

sites--its relative interior and its endpoints (note that segments can share end- 

points). 

Define as above A* = Ua~a a and B* = Ub~8 b. We want to compute 

D(A, B) = min H(A, B ~ x) 
x 

= min m a x ( m a x  min p(y, z + x), max min p(z + x, y)), 
x \ y E A *  zEB* zEB* yEA* 

where p is the underlying metric, which we assume in this section to be L1 or L~, 

only. 

The above min -max-min  expression is equal to 

/ "x 
min m a x ( m a x  max min p(x , y - - z ) ,  max max min p ( x , y - z ) ~ .  

x ",,a~EA y~.a~ zEB* bjeB zebj yeA* / 

Note that for any point y e at and for every x we have 

min p(x, y - z) = min p(x, y - b j), 
zEB* bjEB 

and that the right-hand side of this equation is the Voronoi surface of the line 

segment Voronoi diagram of (the reflected) B translated by y ~ A*. Similarly, for 

the other minimization, we have, for any point z ~ b~ and for every x, 

min p(x, y - z) = min p(x, ai - z), 
yEA* a ~ A  

which is the Voronoi surface of Vor(A) translated by z ~ B*. That  is, in the inner 

minimization portions of these expressions, we can minimize over (translated) 
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objects in A or in B and not over their unions. We denote these Voronoi surfaces by 

dy(x) = min p(x,  y - b j), 
bj~a 

d~(x) = min p(x, a i - z) 
a,~ A 

for each y e A*, z e B*. 

Next we define the upper envelope f(x) of the surfaces dy(x ) and dz(x) over all 

yeA* and zeB*: 

f(x) = max(max dr(x), max d~(x)), 
\ y e A *  z~B* 

which we can rewrite as 

f ( x ) =  max(max max dy(x), max max dz(x)). 
X,a~e-A y ~ a ,  b~eB z~bj 

It follows that f(x) is the upper envelope of at most p + q surfaces, each defined 

either by Di(x)= maxy~a, dy(x) or by Dj(x)= maxz~b dz(x). Di(x) is the upper 

boundary of the volume obtained by sweeping the surface of V o r ( -  B) horizontally 

along at; Dr.(x) has a similar interpretation. 

Let us fix a segment al e A. Denote the endpoints of this segment by a' and a". 

For each face F of da,(X), when y e ai moves from a' to a", the face F is swept 

horizontally along the segment al = a" - a'. The resulting swept volume is simply 

the Minkowski sum F 0) al, which we denote by 0~-. For general metrics, including 

L 2, the structure of the swept volume is rather complicated, but in the L1 and Loo 

metrics the structure is quite straightforward. In these cases each such face F is a 

polygon, hence the boundary of ~" is a prism whose two bases are parallel to F 

and all its other sides are parallelograms whose parallel edges are parallel to a~. 

It follows that we can represent the swept surfaces as a collection of O(pq) triangles: 

every Di, for i = 1 . . . . .  p, has O(q) triangles, and every D r, fo r j  = 1 . . . . .  q, has O(p) 
triangles, hence a total of O(pq). 

The upper envelope f(x) is the upper envelope of O(pq) triangles, so its 

complexity is O((pq)2o:(pq)) [22], and it can be computed in time O((pq)2~z(pq)) 

[13], getting us to: 

Theorem 23. The minimum Hausdorff distance under translation between two 
planar sets A and B, of p and q line segments respectively, based on the LI or L~ 

metric, can be computed in time O((pq)2~t(pq)). 

This result has recently been extended to computing the minimum Hausdorff 

distance between sets of line segments under the L2 metric [1]. That paper uses 

Meggido's parametric search technique to obtain a running time of 

O((pq) 2 log3(pq)). 
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It is interesting to compare the above theorem and the results of [1] with those 

of [21, that compute the minimum Hausdorff distance, under translation, between 

sets of line segments in the plane, in time O((pq)3(p + q) log(pq)). It is argued in 

[21 that approximation methods are needed because of the high complexity of the 

problem. However, our results and those of [11 already improve these bounds 

considerably and further improvements might still be possible. 

4. Summary 

We have investigated the combinatorial complexity of the upper envelope of m 

superimposed Voronoi surfaces under various metrics, where each surface is 

induced by some set of sources Sv For example, in the Euclidean metric, we have 

shown that when the sources are points in 9t 2 and the total number of sources is 

n = ~ I S~I, then the combinatorial complexity of the upper envelope of m Voronoi 

surfaces is O(mn~(mn)). This bound is relatively tight, as we have exhibited an 

D.(mn) lower bound. For points in 913, the corresponding complexity of the upper 

envelope is O(mn2~(mn)). Establishing this latter bound involves a new result on 

the complexity of the union of m convex polyhedra containing a common point. 

If the total number of faces of the polyhedra is t, then the complexity of the 

boundary of their union is O(mt~(mt)). 
The upper envelope of Voronoi surfaces can be used to solve min-max-min 

optimization problems efficiently. In particular, we considered the problem of 

computing the minimum Hausdorff distance between two sets under translation. 

Recently there has been progress on improving the running time of methods 

for computing the minimum Hausdorff distance under translation. For the L1 and 

L~ metrics, and two sets A and B with, respectively, p and q points in the plane, 
the distance can be computed in time O(pq log2(pq)) [10]. This raises the question 

whether the L 2 problem can also be solved in nearly quadratic time. The technique 

of [101 does not seem to extend to the L 2 case. 
There have also been some recent results on the problem of computing the 

minimum Hausdorff distance for sets of points under Euclidean motion (as 

opposed to just translation). In [191 an O((p + q)6 log(pq))-time method was 

presented for planar point sets, which is based on bounding the number of changes 

in the dynamic Voronoi diagrams of unions of the sets Sv This involved the 

derivation of a new bound on the complexity of dynamic Voronoi diagrams of 

unions of k rigidly moving subsets of sources. The resulting bound for the 

Hausdorff distance is still much too large to be of any practical use. Thus another 

interesting open question is to obtain better bounds for computing the minimum 

Hausdorff distance under rigid motion, and to obtain tight bounds for any of the 

minimum Hausdorff distance problems. 
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