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Abstract: For any vertex x in a connected graph G of order p ≥ 2, a set S ⊆ V (G) is

an x-monophonic set of G if each vertex v ∈ V (G) lies on an x − y monophonic path for

some element y in S. The minimum cardinality of an x-monophonic set of G is defined as the

x-monophonic number of G, denoted by mx(G). An x-monophonic set S is called a minimal

x-monophonic set if no proper subset of S is an x-monophonic set. The upper x-monophonic

number, denoted bym+
x (G), is defined as the maximum cardinality of a minimal x-monophonic

set of G. We determine bounds for it and find the same for some special classes of graphs.

For any two positive integers a and b with 1 ≤ a ≤ b, there exists a connected graph G with

mx(G) = a and m+
x (G) = b for some vertex x in G. Also, it is shown that for any three

positive integers a, b and n with a ≥ 2 and a ≤ n ≤ b, there exists a connected graph G with

mx(G) = a, m+
x (G) = b and a minimal x-monophonic set of cardinality n.

AMS Subject Classification: 05C12

Key Words: monophonic path, vertex monophonic set, vertex monophonic number, mini-

mal vertex monophonic set, upper vertex monophonic number

1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and q
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respectively. For basic graph theoretic terminology we refer to Harary [3]. For
vertices x and y in a connected graph G, the distance d(x, y) is the length of
a shortest x− y path in G. An x − y path of length d(x, y) is called an x − y
geodesic. The neibourhood of a vertex v is the set N(v) consisting of all vertices
u which are adjacent with v. The closed neibourhood of a vertex v is the set
N [v] = N(v)

⋃

{v}. A vertex v is a simplicial vertex if the subgraph induced
by its neighbors is complete. The closed interval I [x,y ] consists of all vertices

lying on some x − y geodesic of G, while for S ⊆ V, I[S] =
⋃

x,y∈S

I[x, y]. A set

S of vertices is a geodetic set if I [S ] = V, and the minimum cardinality of a
geodetic set is the geodetic number g(G). A geodetic set of cardinality g(G) is
called a g-set. The geodetic number of a graph was introduced in [1, 4] and
further studied in [2].

The concept of vertex geodomination number was introduced in [5] and
further studied in [6]. Let x be a vertex of a connected graph G. A set S
of vertices of G is an x-geodominating set of G if each vertex v of G lies on
an x − y geodesic for some element y in S. The minimum cardinality of an
x-geodominating set of G is defined as the x-geodomination number of G and
is denoted by gx(G). An x-geodominating set of cardinality gx(G) is called a
gx − set.

A chord of a path P is an edge joining two non-adjacent vertices of P .
A path P is called a monophonic path if it is a chordless path. For any two
vertices u and v in a connected graph G, the monophonic distance dm(u, v)
from u to v is defined as the length of a longest u − v monophonic path
in G. The monophonic eccentricity em(v) of a vertex v in G is em(v) =
max {dm(v, u) : u ∈ V (G)}. A vertex v of G such that dm(u, v) = em(u) is called
a monophonic eccentric vertex of u. The monophonic radius, radm(G) of G is
radm(G) = min {em(v) : v ∈ V (G)} and the monophonic diameter, diamm(G)
of G is diamm(G) = max {em(v) : v ∈ V (G)}. The monophonic distance was
introduced and studied in [7].

The concept of vertex monophonic number was introduced by Santhaku-
maran and Titus in [8]. For a connected graph G of order p ≥ 2 and a vertex x
of G, a set S ⊆ V (G) is an x-monophonic set of G if each vertex v of G lies on
an x−y monophonic path for some element y in S. The minimum cardinality of
an x-monophonic set of G is defined as the x-monophonic number of G, denoted
by mx(G). An x-monophonic set of cardinality mx(G) is called a mx − set of
G.

These concepts have interesting applications in Channel Assignment Prob-
lem in radio technologies. Also, there are useful applications of these concepts
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to security based communication network design. In the case of designing the
channel for a communication network, although all the vertices are covered by
the network when considering detour monophonic sets, some of the edges may
be left out. This drawback is rectified in the case of detour monophonic sets
so that considering detour monophonic sets is more advantageous to real life
application of communication networks.

The following theorems will be used in the sequel.

Theorem 1. [8] Let x be any vertex of a connected graph G. Every
simplicial vertex of G other than the vertex x (whether x is simplicial or not)
belongs to every mx − set.

Theorem 2. [8] A graph G is complete if and only if mx(G) = p − 1 for
every vertex x in G.

Throughout this paper G denotes a connected graph with at least two ver-
tices.

2. Minimal Vertex Monophonic Sets

Definition 3. Let x be any vertex of a connected graph G. An x-
monophonic set Sx is called a minimal x-monophonic set if no proper subset
of Sx is an x-monophonic set. The upper x-monophonic number, denoted by
m+

x (G), is defined as the maximum cardinality of a minimal x-monophonic set
of G.

It is clear from the definition that for any vertex x in G, x does not belong
to any minimal x-monophonic set of G.

Example 4. For the graph G given in Figure 2.1, the minimum vertex
monophonic sets, the vertex monophonic numbers, the minimal vertex mono-
phonic sets and the upper vertex monophonic numbers are given in Table 2.1.
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Remark 5. For any vertex x in a connected graph G, every minimum

x-monophonic set is a minimal x-monophonic set, but the converse is not true.

For the graph G given in Figure 2.1, {t, y} is a minimal u-monophonic set but

it is not a minimum u-monophonic set of G.

Vertex x Minimum x-monophonic sets mX (G) Minimal x-monophonic sets m+
X
(G)

u {w}, {r} 1 {w}, {r}, {t, y} 2
v {z}, {y} 1 {z}, {y}, {t, r} 2
w {z},{y}, {u} 1 {z}, {y},{u} 1
r {z}, {u} 1 {z}, {u}, {v, t} 2
y {v}, {w} 1 {v}, {w}, {u, t} 2
z {v}, {w}, {r} 1 {v}, {w}, {r} 1
t {r, u}, {r, v}, {y, u}, {y, v} 2 {r, u}, {r, v}, {y, u}, {y, v} 2

Table 2.1

Theorem 6. Let x be any vertex of a connected graph G.
(i) Every simplicial vertex of G other than x (whether x is simplicial vertex or
not) belongs to every minimal x-monophonic set.
(ii) No cut-vertex of G belongs to any minimal x-monophonic set.

Proof. (i) Let x be any vertex of G. Since x does not belong to any minimal
x-monophonic set, let y 6= x be a simplicial vertex of G. Then y is not an
internal vertex of any monophonic path and so y belongs to every minimal x-
monophonic set of G.

(ii) Let y 6= x be a cut-vertex of G. Let U and W be two components of
G − {y}. For any vertex x in G, let Sx be a minimal x-monophonic set of G.
Suppose that x ∈ U . Now, suppose that Sx

⋂

W = ∅. Let w1 ∈ W . Then
w1 /∈ Sx. Since Sx is an x-monophonic set, there exists an element z in Sx such
that w1 lies in some x− z monophonic path P : x = z0, z1, ..., w1, ..., zk = z in
G. Since Sx

⋂

W = ∅ and y is a cut-vertex of G, it follows that the x − w1

subpath of P and the w1 − z subpath of P both contain y so that P is not a
path in G. Hence Sx

⋂

W 6= ∅. Let w2 ∈ Sx

⋂

W . Then w2 6= y so that y is an
internal vertex of an x− w2 monophonic path. If y ∈ Sx, let S = Sx − {y}. It
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is clear that every vertex that lies on an x− y monophonic path also lies on an
x−w2 monophonic path. Hence it follows that S is an x-monophonic set of G,
which is a contradiction to Sx a minimal x-monophonic set of G. Thus y does
not belong to any minimal x-monophonic set of G. Similarly, if x ∈ W , then y
does not belong to any minimal x-monophonic set of G.

Since every end-vertex is a simplicial vertex, the following theorem is an
easy consequence of the definition of the upper vertex monophonic number of
a graph and Theorem 6.

Theorem 7. (i) For any non-trivial tree T with k end-vertices, m+
x (T ) =

k − 1 or k according as x is an end-vertex or not.
(ii) For any vertex x in the complete graph Kp of order p ≥ 2, m+

x (Kp) = p−1.

Theorem 8. (i) For any vertex x in the cycle Cp of order p ≥ 4,
m+

x (Cp) = 1.
(ii) For the wheel Wp = K1 + Cp−1(p ≥ 5), m+

x (Wp) = p− 1 or 1 according as
x is K1 or x is in Cp−1.

Proof. (i) Let Cp be a cycle. For any vertex x in Cp, let y be a non-adjacent
vertex of x. Clearly every vertex of Cp lies on an x − y monophonic path and
so {y} is a minimal x-monophonic set of Cp. Since no adjacent vertex of x lies
on a minimal x-monophonic set of Cp, we have m+

x (Cp) = 1.
(ii) Let x be the vertex of K1. Clearly S = V (Cp−1) is the unique minimal

x-monophonic set of Wp and so m+
x (Wp) = p− 1.

Let Cp−1 : u1, u2, ..., up−1, u1 be the cycle in Wp. Let x be any vertex in
Cp−1. Let y be a non-adjacent vertex of x in Wp. Then any vertex v in Wp

lies on an x− y monophonic path and so {y} is a minimal x-monophonic set of
Wp. Since no adjacent vertex of x lies on a minimal x-monophonic set of Wp,
we have m+

x (Wp) = 1.

Theorem 9. Let Km,n(m,n ≥ 2) be a complete bipartite graph with bi-

partition (V1, V2). Then m+
x (Km,n) =

{

m− 1 if x ∈ V1

n− 1 if x ∈ V2

Proof. Let V1 = {u1, u2, ..., um} and V2 = {w1, w2, ..., wn} be a partition of
G. Let x ∈ V1, say x = u1. Since the vertex ui(2 ≤ i ≤ m) does not lie on
any monophonic path starting from x and every vertex of V2 lies on an x− u2
monophonic path, we have Sx = V1 −{x} is the unique minimal x-monophonic
set of G. Hence m+

x (G) = |Sx| = m − 1. Let x ∈ V2. Then by a similar
argument, we get m+

x (G) = n− 1.
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Theorem 10. For n ≥ 2, m+
x (Qn) = 1 for any vertex x in Qn.

Proof. Let x be any vertex in Qn. Let y be a non-adjacent vertex of x in
Qn. It is easily seen that every vertex of Qn lies on an x− y monophonic path
in Qn. Hence {y} is a minimal x-monophonic set of G and so m+

x (G) = 1.

Theorem 11. Let G be a connected block graph with number of cut-

vertices k. Then m+
x (G) = p− k or p− k − 1 for any vertex x in G.

Proof. Let G be a connected block graph. Then every vertex of G is either
a cut-vertex or a simplicial vertex and hence by Theorem 6, m+

x (G) = p− k or
p− k − 1 for any vertex x in G.

Theorem 12. For every non-trivial tree T , m+
x (T ) = p−dm or p−dm+1

for any vertex x in T if and only if T is a caterpillar.

Proof. Let T be any non-trivial tree. Let P : u = v0, v1, ..., vdm = v be
a monophonic diametral path. Let k be the number of end-vertices of T and
let l be the number of internal vertices of T other than v1, v2, ..., vdm−1. Then
dm − 1 + l + k = p. By Theorem 7(i), m+

x (T ) = k or k − 1 for any vertex x in
T and so m+

x (T ) = p − dm − l + 1 or p − dm − l for any vertex x in T . Hence
m+

x (T ) = p− dm +1 or p− dm for any vertex x in T if and only if l = 0, if and
only if all the internal vertices of T lie on the monophonic diametral path P , if
and only if T is a caterpillar.

3. Bounds and Realization Results for m
+
x
(G)

Theorem 13. For any vertex x in G, 1 ≤ mx(G) ≤ m+
x (G) ≤ p− 1.

Proof. It is clear from the definition of x-monophonic set that mx(G) ≥
1. Since every minimum x-monophonic set is a minimal x-monophonic set,
mx(G) ≤ m+

x (G). Also, since the vertex x does not belong to any minimal
x-monophonic set, it follows that m+

x (G) ≤ p− 1.

Remark 14. The bounds for mx(G) and m+
x (G) in Theorem 13 are sharp.

For the cycle Cp(p ≥ 4),m+
x (Cp) = 1 for any vertex x in Cp. For the graph G

given in Figure 2.1, mt(G) = m+
t (G) = 2. Also, for the complete graph Kp,

m+
x (Kp) = p − 1 for every vertex x in Kp. All the inequalities in Theorem 13

can be strict. For the graph G given in Figure 2.1, mv(G) = 1,m+
v (G) = 2 and

p = 7. Thus mv(G) < m+
v (G) < p− 1.
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Theorem 15. Let x be any vertex in a connected graph G of order p ≥ 3.
If mx(G) = 1, then m+

x (G) ≤ p− 2.

Proof. Let Sx = {y} be a minimum x-monophonic set of G and let Tx be
a minimal x-monophonic set of G with maximum cardinality. Then y 6= x. If
y ∈ Tx, then Tx = Sx and so m+

x (G) = 1 ≤ p − 2. If y /∈ Tx, then m+
x (G) =

|Tx| ≤ p− 2.

Theorem 16. Let x be any vertex in a connected graph G. Then mx(G) =
p− 1 if and only if m+

x (G) = p− 1.

Proof. Let mx(G) = p − 1. Since mx(G) ≤ m+
x (G) ≤ p − 1, we have

m+
x (G) = p− 1. Conversely, let m+

x (G) = p− 1. Then T = V (G) − {x} is the
minimal x-monophonic set of G. Now, claim that mx(G) = p − 1. Otherwise,
G has a minimum x-monophonic set T1 with |T1| ≤ p − 2. Since x does not
belong to any minimum x-monophonic set, T1 is a proper subset of T and so T
is not a minimal x-monophonic set of G, which is a contradiction.

Theorem 17. For any two integers a and b with 1 ≤ a ≤ b, there is a
connected graph G with mx(G) = a and m+

x (G) = b for some vertex x in G.

Proof. We prove this theorem by considering two cases.
Case 1. 1 ≤ a = b. Let G = Ka+1. Then by Theorems 2 and 7(ii),

mx(G) = m+
x (G) = a.

Case 2. 1 ≤ a < b. Let P4 : w, x, y, z be a path of order 4. Now, let G be a
graph obtained from P4 by adding b new vertices {u1, u2, ..., ua−1, v1, v2, ..., vb−a+1}
and joining each ui(1 ≤ i ≤ a−1) with x; and joining each vi(1 ≤ i ≤ b−a+1)
with w and z. The graph G is shown in Figure 3.1. Let S = {u1, u2, ..., ua−1}
be the set of all simplicial vertices of G.
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Figure 3.1 : G
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First, we show that mx(G) = a for the vertex x in G. By Theorem 1, every
minimum x-monophonic set of G contains S. Since S is not an x-monophonic
set of G, S1 = S

⋃

{z} is a minimum x-monophonic set of G so that mx(G) =
|S1| = a.

Next, we show that m+
x (G) = b. Let M = {u1, u2, ..., ua−1, v1, v2,

..., vb−a+1}. It is clear that M is an x-monophonic set of G. We claim that
M is a minimal x-monophonic set of G. Assume that M is not a minimal
x-monophonic set of G. Then there exists a proper subset T of M such that
T is an x-monophonic set of G. Let s ∈ M and s /∈ T . By Theorem 6(i),
s 6= ui for all i = 1, 2, ..., a − 1. Then s = vi(1 ≤ i ≤ b − a + 1). Clearly
vi does not lie on any x − vj monophonic path, where j 6= i, it follows that
T is not an x-monophonic set of G, which is a contradiction. Thus M is a
minimal x-monophonic set of G and so m+

x (G) ≥ |M | = b. Also, it is clear that
every minimal x-monophonic set of G contains at most b elements and hence
m+

x (G) ≤ b. Thus m+
x (G) = b.

Remark 18. The graph G given in Figure 3.1 contains exactly two mini-

mal x-monophonic sets, namely S
⋃

{z} and M . This example shows that there

is no ”‘Intermediate Value Theorem” for minimal x-monophonic sets, that is,

if n is an integer such that mx(G) < n < m+
x (G), then there need not exist a

minimal x-monophonic set of cardinality n in G.

Theorem 19. For any three positive integers a, b and n with a ≥ 2 and
a ≤ n ≤ b, there exists a connected graph G with mx(G) = a, m+

x (G) = b and
a minimal x-monophonic set of cardinality n.

Proof. Let P : z1, z2, z3, z4 and Q : v1, v2, v3, v4 be two paths. Let H be
the graph obtained from P and Q by identifying the vertices z2 in P and
v2 in Q. Let G be the graph obtained from H by adding b new vertices
u1, u2, ..., ua−2, y1, y2, ..., yb−n+1, x1, x2, ...,
xn−a+1 and joining each ui(1 ≤ i ≤ a − 2) with z2; joining each yi(1 ≤ i ≤
b− n + 1) with z1 and z4; and joining each xi(1 ≤ i ≤ n− a + 1) with v1 and
v4 in H. The graph G is shown in Figure 3.2.

Let S = {u1, u2, ..., ua−2} be the set of all simplicial vertices of G and let
x = z2. Then by Theorem 1, every x-monophonic set of G contains S and
also for any vertex y ∈ V (G) − S, S

⋃

{y} is not an x-monophonic set of G.
It is clear that S1 = S

⋃

{z4, v4} is a minimum x-monophonic set of G and so
mx(G) = |S1| = a.
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Figure 3.2 : G
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Next we show that m+
x (G) = b. Let M = S

⋃

{y1, y2, ..., yb−n+1,
x1, x2, ..., xn−a+1}. It is clear that M is an x-monophonic set of G. We claim
that M is a minimal x-monophonic set of G. Assume that M is not a minimal
x-monophonic set of G. Then there exists a proper subset M1 of M such that
M1 is an x-monophonic set of G. Let w ∈ M and w /∈ M1. By Theorem
6(i), either w = yi(1 ≤ i ≤ b − n + 1) or w = xj(1 ≤ j ≤ n − a + 1). If
w = yi(1 ≤ i ≤ b−n+1), then w does not lie on any x−z monophonic path for
any z ∈ M1, which is a contradiction. Similarly, if w = xj(1 ≤ j ≤ n − a+ 1),
then w does not lie on any x − z monophonic path for any z ∈ M1, which
is a contradiction. Thus M is a minimal x-monophonic set of G and so
m+

x (G) ≥ |M | = b. Also, it is clear that every minimal x-monophonic set
of G contains at most b elements and hence m+

x (G) ≤ b. Hence m+
x (G) = b.

Finally we show that there is a minimal x-monophonic set of cardinality
n. Let T = S

⋃

{z4, x1, x2, ..., xn−a+1}. It is clear that T is an x-monophonic
set of G. We claim that T is a minimal x-monophonic set of G. Assume that
T is not a minimal x-monophonic set of G. Then there is a proper subset T1

of T such that T1 is an x-monophonic set of G. Let t ∈ T and t /∈ T1. By
Theorem 6(i), clearly t = z4 or t = xj(1 ≤ j ≤ n − a + 1). If t = z4, then
yi(1 ≤ i ≤ b − n + 1) does not lie on any x − y monophonic path for some
y ∈ T1, which is a contradiction. If t = xj(1 ≤ j ≤ n− a+1), then xj does not
lie on any x − y monophonic path for some y ∈ T1, which is a contradiction.
Thus T is a minimal x-monophonic set of G with cardinality n.

For every connected graph G, radm(G) ≤ diamm(G). It is shown in [7] that
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every two positive integers a and b with a ≤ b are realizable as the monophonic
radius and monophonic diameter, respectively, of some connected graph. It can
be extended so that the upper vertex monophonic number can be prescribed.

Theorem 20. For positive integers r, d and n with r ≤ d, there exists
a connected graph G with radm(G) = r, diamm(G) = d and m+

x (G) = n for
some vertex x in G.

Proof. We prove this theorem by considering three cases.
Case 1. r = d = 1. Let G = Kn+1. It is easily seen that em(x) = 1 for

every vertex x in G and so radm(G) = diamm(G) = 1. Also, by Theorem 7(ii),
m+

x (G) = n for any vertex x in G.

Case 2. 1 = r < d. Let Cd+2 : v1, v2, ..., vd+2, v1 be a cycle of order d + 2.
Let G be the graph obtained by adding n − 1 new vertices u1, u2, ..., un−1 to
Cd+2 and joining each of the vertices u1, u2, ..., un−1 to the vertex v1 and also
joining each vertex vi(3 ≤ i ≤ d + 1) to the vertex v1. The graph G is shown
in Figure 3.3. It is easily verified that 1 ≤ em(x) ≤ d for any vertex x in G
and em(v1) = 1, em(v2) = d. Then radm(G) = 1 and diamm(G) = d. Let
S = {v2, vd+2, u1, u2, ..., un−1} be the set of all simplicial vertices of G and let
x = v2. Then by Theorem 6(i), every minimal x-monophonic set of G con-
tains S − {v2}. Clearly S is the unique minimal x-monophonic set of G and so
m+

x (G) = |S| = n.
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Figure 3.3 : G
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Case 3. 2 ≤ r ≤ d. Let H be a graph obtained from a cycle Cr+2 :
v1, v2, ..., vr+2, v1 of order r + 2 and a path Pd−r+1 : u0, u1, ..., ud−r of order
d− r+1 by identifying the vertex vr+1 in Cr+2 and u0 in Pd−r+1; also join each
vertex ui(1 ≤ i ≤ d− r) in Pd−r+1 with vr+2 in Cr+2. Now, let G be the graph
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obtained from H by adding n − 1 new vertices w1, w2, ..., wn−1 and join each
wi(1 ≤ i ≤ n− 1) with v2 and vr+2 in H. The graph G is shown in Figure 3.4.

It is easily verified that r ≤ em(x) ≤ d for any vertex x in G. Also,
em(vr+2) = r and em(v1) = d. It follows that radm(G) = r and diamm(G) = d.
Now, let x = ud−r and let S = {v1, w1, w2, ..., wn−1}. Since every vertex of G
lies on an x − y, where y ∈ S, monophonic path, S is an x-monophonic set of
G. Suppose that S1 is a proper subset of S such that S1 is an x-monophonic
set of G. Then there exists a vertex z in S such that z /∈ S1. It is clear that z
is either v1 or wi(1 ≤ i ≤ n− 1). In all cases z does not lie on any x− u, where
u ∈ S1, monophonic path, it follows that S1 is not an x-monophonic set of G.
This shows that S is a minimal x-monophonic set of G and so m+

x (G) ≥ n.
Also, it is clear that any minimal x-monophonic set of G contains at most n
elements and hence m+

x (G) ≤ n. Thus m+
x (G) = n.
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