
1536-1268/07/$25.00 © 2007 IEEE ■ Published by the IEEE Computer Society PERVASIVEcomputing 41

The Urbanet Revolution:
Sensor Power to the
People!

T
he Internet has become a great suc-

cess because its applications appeal

to regular people. This isn’t the case

with sensor networks, which are gen-

erally perceived as “something” re-

mote in the forest or on the battlefield. With few

exceptions, first-generation sensor networks ad-

dress application-specific, static-sensor deploy-

ments to accurately monitor the sensed environ-

ment in real time. Commonly, these networks

involve a centralized data-

collection point and no sharing

of data outside the organization

that owns it. Although this op-

erational model can accommo-

date many application scenarios,

it significantly deviates from the

pervasive computing vision of

ambient intelligence, where people seamlessly ac-

cess anytime, anywhere data produced by sensors

embedded in the surroundings.

Urban environments offer the elements to build

large-scale, people-centric sensing platforms. As

mobile devices become ubiquitous, they can begin

to serve purposes beyond email and Web access:

• acting as collaborating, multisensor devices

that provide sensing coverage across cities,

• becoming dynamic points for collecting and

sharing data produced by individual sensors or

public sensor networks, and

• ultimately enabling users to benefit from a

sensor-rich world through novel mobile appli-

cations.

In particular, smart phones and vehicular sys-

tems are becoming attractive, convenient mobile

sensor platforms. Compared to the tiny, energy-

constrained sensors of regular sensor networks,

smart phones can support more complex com-

putations, provide reasonable data storage, and

offer long-range communication. These phones

already have audio and video sensing capabili-

ties. In the near future, they will include other

sensors as well. However, energy remains a main

constraint for them. Vehicular systems, on the

other hand, don’t have energy restrictions. Addi-

tionally, they offer powerful processors, signifi-

cant memory, plenty of storage capacity, and

many types of sensors.

Spontaneous urban networks
We use the term Urbanet to define a new type

of spontaneous urban network composed of het-

erogeneous and potentially mobile sensors. In

Urbanets, sensor networks and mobile ad hoc

networks (MANETs) meet to create rich, open sens-

ing environments where people, municipalities,

and community organizations can share their

resources to give mobile users real-time access to

sensed data. Much of this data will be incorpo-

rated in novel applications running on our per-

sonal mobile devices. Urbanets differ from first-

generation sensor networks not only in their goal

to support concurrent people-centric sensing ap-

plications across cities but also in their hardware

and software heterogeneity, high volatility, and

very large scale. Although Urbanets will extend

sensing coverage and let developers incorporate

With mobile devices becoming ubiquitous, the time is ripe to bring sensor

data out of close-loop networks into the center of daily urban life.

B U I L D I N G A S E N S O R - R I C H W O R L D

Oriana Riva

Helsinki Institute

for Information Technology

Cristian Borcea

New Jersey Institute of Technology

sensed data in a large spectrum of mobile applications, they

aren’t expected to achieve the same sensing-fidelity level of sta-

tic sensor networks whose nodes are primarily dedicated to

sensing. Urbanets also differ fundamentally from MANETS in

terms of enabled applications. So far, most MANET applications

have focused on traditional file transfers. Instead, Urbanet appli-

cations acquire, process, and distribute real-time sensing infor-

mation from devices in proximity of regions, entities, or activ-

ities of interest. Figure 1 depicts several Urbanet scenarios.

Several recent projects confirm a growing interest in large-

scale people-centric sensor networks. For example, the “Related

Work” sidebar presents projects under way at Microsoft, the

Massachusetts Institute of Technology, Dartmouth University,

and the University of California, Los Angeles. Although we share

broad goals with these projects, our focus is on cooperative,

infrastructureless solutions for programming mobile sensing

applications in Urbanets. We present middleware platforms that

capitalize on spontaneously created sensing coverage provided

by Urbanets to enable applications running on mobile devices.

These platforms let applications collect real-time sensed data

each time they want to, even when Internet connectivity isn’t

available or is too expensive.

Distributed programming in Urbanets
The research community has been quite successful in design-

ing device platforms, protocols, and even network architectures

that can apply to Urbanets. However, programming people-

centric, mobile sensing applications has received just marginal

attention. As the Urbanet applications domain diversifies, pro-

gramming each application from scratch will be almost impos-

sible. So, we expect an increasing demand for a common dis-

tributed-computing platform to support

the development, deployment, and exe-

cution of such applications. Several ques-

tions drive our research: How do we

define a user application in Urbanets? What are the right pro-

gramming abstractions for Urbanets? What type of middle-

ware or runtime systems can support such programming

abstractions? What are the trade-offs between ease of pro-

gramming and efficiency? Or, in other words, how much of

the underlying network complexity can a platform hide from

programmers while still giving them enough flexibility in appli-

cation development?

Urbanets can’t be programmed using traditional distributed-

computing models, which assume underlying networks with

functionally homogeneous nodes, stable configurations, and

known delays. Conversely, Urbanets have functionally hetero-

geneous nodes, volatile configurations, and unknown delays;

they evolve unpredictably over time and space, making it hard

to know the exact number or location of their resources. Such

volatility requires more flexible programming models.

Furthermore, traditional models assume fixed bindings

between names and node addresses. This naming is too rigid

for Urbanets, where contextual properties—such as available

sensors, location, computational resources, or energy—deter-

mine the nodes of interest. Urbanet applications require data-

centric or property-based naming that sensor networks use.

To be useful, Urbanet applications can’t fail each time some-

thing goes wrong in the network. Also, the applications must

work even when confronted with highly variable sensor data

fidelity. This makes “best effort” semantics desirable—an

approach that can tolerate the network dynamics while pro-

viding applications a certain quality of results. An Urbanet mid-

dleware platform must let applications trade the quality of

results for network resources.

Unlike sensor network nodes, Urbanet nodes aren’t always

42 PERVASIVEcomputing www.computer.org/pervasive

B U I L D I N G A S E N S O R - R I C H W O R L D

Local fog
patches!Tornado

approaching!

Free parking spot!

Helsingin
Messukeskus

Highway

Shopping mall

Parking
area

50%
discount! II

I

I Infrastructure

Traffic jam!

Figure 1. Example Urbanet scenarios.

A network of cars and environmental

sensors cooperate to warn drivers about

upcoming traffic jams, recommend

alternative routes, and detect traffic

hazards such as fog patches. Smart

phones or vehicular systems can query

parking meters on streets adjacent to the

shopping mall and offer directions to free

spots. In the mall, smart phones read

product RFIDs, exchange product

information, and give users personalized

recommendations. Farther away, a

municipal weather-monitoring sensor

network alerts cars to an approaching

tornado.

fully dedicated to sensing applications. For example, phones are

used primarily to make and receive phone calls and only secon-

darily to support Urbanet applications. So, an Urbanet middle-

ware must dynamically optimize resource utilization to the sens-

ing activity, network conditions, and local resources.

Finally, Urbanets are distinguished from regular sensor net-

works in that they must support concurrent user applications.

Managing simultaneous user applications can generate large

data traffic in often resource-impoverished environments. An

Urbanet middleware must balance resource utilization across

multiple applications and limit the geographic scope of the con-

trol updates. The middleware should also aggregate data for

multiple applications when possible.

To introduce our middleware solutions to these Urbanet-

specific challenges, we’ll consider the design of a mobile applica-

tion that helps drivers detect traffic jams in a city. One possibility

is to instruct Urbanets to monitor vehicle speeds in the region of

interest; the middleware would periodically transfer these obser-

vations to the application, which subsequently computes the traf-

fic jam probability. A second possibility is to specify the region

of interest and dispatch a distributed task to execute on that

region’s nodes; the task then informs the user when it detects a

traffic jam. A third possibility is to register an interest with a traf-

fic jam service that’s executing in the region of interest; the ser-

vice collects local traffic observations, computes the traffic jam

probability, and alerts the client application when necessary.

According to these potential solutions, we present three mid-

dleware platforms that support three different programming

models:

• Contory1 (Contextfactory) supports a declarative program-

ming model that views Urbanets as a distributed-sensor

APRIL–JUNE 2007 PERVASIVEcomputing 43

U
rbanets share the goal of building people-centric urban sen-

sor networks with several recent projects:

• SenseWeb (http://research.microsoft.com/nec/senseweb) aims

to provide a Web-based platform and tools that let people easily

publish and query sensor data. SenseWeb can use sensor meta-

data to dispatch and answer queries in real time.

• CarTel (http://cartel.csail.mit.edu) focuses on building a delay-

tolerant mobile sensing architecture based on opportunistic

communication. A continuous query processor running on a

central portal answers user queries.

• MetroSense (http://metrosense.cs.dartmouth.edu) proposes a

three-tier architecture for scalable support of concurrent people-

centric applications.

• Urban Sensing (http://research.cens.ucla.edu/projects/2006/

Systems/Urban_Sensing) seeks to build short-term, community-

oriented urban sensor networks.

These projects assume central collection points across the Internet

that perform data and task management and act as mediators be-

tween users and the network. Our proposed solutions present a com-

plementary, decentralized view for programming distributed sensing

applications; they don’t require servers or Internet connectivity.

Researchers have recently proposed several distributed-

programming abstractions and middleware for ubicomp envi-

ronments and sensor networks. Many existing ubicomp solutions

target more stable networks in schools or homes, sometimes as-

sume powerful servers, and lack the flexibility to work in highly

volatile, data-centric environments. Successful abstractions for

sensor networks are more appropriate for leveraging in Urbanet

programming models. We can categorize these abstractions ac-

cording to whether they focus on localized behavior—exposing

some network details to programmers—or on global behavior—

hiding the network details from programmers. State-centric pro-

gramming,1 Hood,2 and Abstract Regions3 belong to the first cat-

egory; TinyDB4 and Kairos5 belong to the second.

All our models provide global abstractions. Contory sees the

network as a database, Spatial Programming provides a virtual

naming across the network, and Migratory Services can execute

on any node satisfying the specified context rules. However, Spa-

tial Programming and Migratory Services applications often

exhibit localized behavior.

REFERENCES

1. J. Liu et al., “State-Centric Programming for Sensor-Actuator Network

Systems,” IEEE Pervasive Computing, vol. 2, no. 4, 2003, pp. 50–62.

2. K. Whitehouse et al., “Hood: A Neighborhood Abstraction for Sensor

Networks,” Proc. 2nd Int’l Conf. Mobile Systems, Applications, and

Services (MobiSys 04), ACM Press, 2004, pp. 99–110.

3. M. Welsh and G. Mainland, “Programming Sensor Networks Using

Abstract Regions,” Proc. 1st Usenix/ACM Symp. Networked Systems De-

sign and Implementation (NSDI 04), Usenix Assoc., 2004, pp. 29–42.

4. S.R. Madden et al., “TinyDB: An Acquisitional Query Processing System

for Sensor Networks,” ACM Trans. Database Systems, vol. 30, no. 1,

2005, pp. 122–173.

5. R. Gummadi, O. Gnawali, and R. Govindan, “Macroprogramming

Wireless Sensor Networks Using Kairos,” Proc. 1st IEEE Int’l Conf. Distrib-

uted Computing in Sensor Systems (DCOSS 05), LNCS 3560, Springer,

2005, pp. 126–140.

Related Work

database and exposes a simple SQL-like interface to

programmers.

• Spatial Programming2 supports an imperative programming

model that views an Urbanet as a single virtual name space

that applications use to access individual resources at nodes.

• Migratory Services3 supports a client-service model where

services migrate to different network nodes to maintain a

semantically correct and continuous interaction with clients.

We’ve implemented all these middleware platforms on top of

our Smart Messages distributed-computing platform,4 which pro-

vides naming, routing, and execution migration. In the follow-

ing, we use the traffic jam application as a reference example to

describe each middleware platform.

Contory

The Contory platform supports mobile applications that

must be aware of both their local context and the context of

remote entities or physical environments. A certain context is

expressed as a set of context items, consisting of type, sensed

data, sensor type, and other qualifying properties. Example

context items include spatial information, environmental con-

ditions, and network resource availability.

While other projects have demonstrated how well declarative

programming suits sensor networks,5 the question remained open

as to whether this model was adaptable to highly mobile, het-

erogeneous networks. To cope with Urbanet dynamism and, in

particular, sensor failures and resource constraints, Contory inte-

grates three alternative mechanisms for

context provisioning:

• local sensors integrated in or con-

nected to mobile devices,

• context infrastructures possibly avail-

able in the environment, and

• MANETs of sensing devices.

Accordingly, Contory’s software archi-

tecture (see figure 2) integrates three types

of ContextProvider modules: LocalCxt-

Provider, AdHocCxtProvider, and Infra-

CxtProvider. ContextProviders aren’t

bound to a single network technology

and can therefore provide more adapt-

ability to changing network conditions

(similar to Haggle’s approach6). In par-

ticular, AdHocCxtProviders support one-

hop context provisioning over Bluetooth

and multihop context provisioning over

Wi-Fi. Additional architectural components are Facade mod-

ules to coordinate the access to context providers, Context-

Repository to support context data storage, ContextPublisher

to make local context data available to external entities, and

QueryManager to manage query assignment and optimization.

The query language is specialized to address the concurrent

requirements of different applications. Each application can

specify which data to collect and how to combine and summa-

rize it. Contory uses standardized attributes to qualify sensor

data of interest and filter a subset of it. Example attributes are

data freshness, accuracy, and correctness. Furthermore, the query

must specify space and time requirements. For instance, a region-

bound query collects sensor data in a specified geographic region

without a priori knowledge of the mobile sensors that dynami-

cally join and leave the region. Finally, Contory supports long-

running queries, such as event-based and periodic queries.

The following example shows a query sent to collect accu-

rate speed values of all nodes found in remote_region:

SELECT speed
FROM adHocNetwork (all, remote_region)
WHERE accurate = true
DURATION 1 hour
EVENT AVG(speed)<min_speed

Contory returns results when the average speed drops below

min_speed. To compute the probability of a traffic jam, the appli-

cation combines these data with the number of collected sam-

44 PERVASIVEcomputing www.computer.org/pervasive

B U I L D I N G A S E N S O R - R I C H W O R L D

Context
publisher

Mobile ad hoc networks Local sensors Infrastructure

Query
manager

Context factory

cxtQuery

Context
repository

Ad hoc
facade

Local
facade

Infra
facade

AdHocCxt-
Provider

LocalCxt-
Provider

InfraCxt-
Provider

Smart phone

cxtItem

Application

O E P O E P O E P

On-demand query

Event-based query

Periodic query

O

E

P

Figure 2. Contory architecture.

ples (that is, density of cars), past obser-

vations, and possibly knowledge of road

topology.

The FROM clause offers three ways to

specify the context source types, one for

each provisioning mechanism: sensors,

infrastructures, and ad hoc networks.

Programmers can also leave this clause

unspecified, and Contory will decide which context sources

to employ. The provisioning mechanism is selected on the basis

of present operating conditions, estimated resource con-

sumption for query processing, and quality of the expected

results. The initial query assignment can change at runtime

multiple times. For example, if Contory detects a malfunction

in a sensor connected to the phone, it discovers a new sensor

source in the network.

Currently, Contory performs multiquery optimization only

among queries submitted by the same device, but we plan to

extend it to merge queries from different devices that have selec-

tion predicates with overlapping attribute ranges. We also plan

to investigate mechanisms for in-network data aggregation that

work in the presence of mobility. For instance, mobility can

lead to situations where Contory aggregates a certain context

item multiple times at different nodes, thus negatively impact-

ing the result quality.

We’ve implemented Contory using Java 2 Platform Micro

Edition (J2ME). Currently, two implementations exist: one for

Connected Limited Device Configuration 1.0 and Mobile Infor-

mation Device Profile 2.0 APIs, and one for Connected Device

Configuration (CDC) 1.0. We performed all software devel-

opment using Nokia Series 60 and Nokia Series 80 phones.

We’ve used Contory to implement a WeatherWatcher appli-

cation (see figure 3), which retrieves weather-related sensed

data from user-specified regions. For example, the Weather-

Watcher running on a car driver’s personal phone can query

sensors integrated in neighboring cars or available along the

highway, analyze the data, and possibly alert the driver about

upcoming fog patches.

Spatial Programming

The declarative programming model proposed by Contory

has the advantage of simplicity for application programmers.

However, as several programming abstractions proposed for sen-

sor networks have shown,7–9 it’s not a panacea for every task.

Imperative programming can be more appropriate for complex

tasks that go beyond data collection, especially tasks with algo-

rithmic details that can’t be left to a common middleware. Addi-

tionally, powerful nodes such as smart phones, vehicular sys-

tems, or intelligent video cameras can be programmed more

effectively when applications have fine-grained control over indi-

vidual node resources.

Spatial Programming is a runtime system that offers a loca-

tion-aware programming model. SP enables Urbanet nodes to

perform collaborative tasks by abstracting an Urbanet as a sin-

gle virtual name space (similar to Kairos’ global name space10).

An application written under the SP model is a sequential pro-

gram that transparently reads and writes virtual names mapped

to network resources as if they were local variables. In this way,

SP shields application programmers from the distributed, volatile

nature of Urbanets. This high-level network view is similar to

the way shared-virtual-memory systems shield programmers

from message-passing communication while offering a shared

virtual address space for distributed applications. A major dif-

ference, however, is that shared virtual memory works over a sta-

ble, robust network with an acceptable upper bound for mem-

ory access time, whereas SP must tolerate dynamic network

configurations with unknown time bounds for accessing

resources at nodes. Figure 4 illustrates this analogy and the sim-

ple abstractions SP defines to support programming in Urba-

nets—namely, space regions and spatial references.

SP defines a spatial reference as a {space:tag[index], timeout} tuple,

which it maps to an Urbanet node. Space is a name associated

with a region that represents the node’s geographical scope. Tag

is the name of a property the node provides. Index differentiates

among nodes with the same space-tag pair referenced in the

same application. SP requires application programmers to rea-

son about the possibility of not reaching a node by imposing a

time-out on each spatial reference. If the application can’t reach

a node in the specified time interval, the SP runtime system throws

a time-out exception; the application catches the exception and

decides further actions. SP guarantees reference consistency: each

time an application uses a certain spatial reference, it accesses

APRIL–JUNE 2007 PERVASIVEcomputing 45

Figure 3. WeatherWatcher using

Contory: (a) the user inputs a location of

interest. Then WeatherWatcher collects

meteorologic observations around this

location and (b) displays the infrared

weather conditions.

(a) (b)

the same node as long as the node remains in its original space.

The following code excerpt shows a simplified implemen-

tation of the traffic jam application (for instance, we didn’t

include the timeout in spatial references):

int i=0, tjam_p=0;
while(NOT_DONE){
try{

Neighbors []n = {remote_region:car[i]}.neighbors;
int speed = 0;
for(int j=0; j<n.length; j++)

speed += n[j].speed;
speed = speed/n.length;
tjam_p = computeTJamProbability(speed, n.length);
if (tjam_p>MAX_PROB)

{driver_region:driver_name[0]}.tjam=true;
}catch(SpaceViolationException e){

i++;
}

}

The application uses the spatial reference {remote_region:car[i]} to

access the list of one-hop neighbors on that node. We assume

that each car provides this list together with its neighbors’ speeds.

When the probability of a traffic jam exceeds a certain threshold,

the application informs the driver identified by {driver_region:driver
name[0]}. The application continues to use the same spatial refer-

ence for a car in the desired region as long as this reference is

semantically acceptable—that is, the car remains in the region

of interest. If the car moves out of the region, SP triggers an excep-

tion and looks for a new car in that region.

The example demonstrates how programmers can use spa-

tial references to access individual Urbanet resources in the same

way they use variables to access memory locations in a con-

ventional programming model. Similar to a conventional com-

puter’s mappings from virtual to physical memory, SP maintains

mappings between spatial references and nodes in the physical

space. These mappings are maintained in a per-application map-

ping table and are persistent during the SP program execution.

SP creates a mapping when an application first accesses a re-

source. The SP runtime system takes care of name resolution,

routing, and access to resources.

We implemented this runtime system on top of the Smart Mes-

sages platform. Under this implementation, SP applications are

Java programs, and each access to a network resource is trans-

lated into a Smart Messages migration. We used this implemen-

tation to prototype a simple intrusion-detection application using

a Wi-Fi-based ad hoc network of Hewlett-Packard iPAQs, their

associated light sensors, and an attached video camera.2

Migratory Services

The client-service model is another well-understood, sim-

ple programming model. To support it in Urbanets, we need

to consider two issues. First, rapidly changing operating con-

ditions can often lead to situations where a node providing a

certain service suddenly interrupts the interaction. For exam-

ple, the target of an object-tracking service can move out of its

video camera’s sensing range. Second, many scenarios must

deal with context changes at the client side: users operate in

highly dynamic environments, so request parameters are sub-

ject to frequent context-induced changes. For instance, if a dri-

ver wishes to be continuously informed about traffic condi-

tions in a region 10 miles ahead of her location, the service

must continuously adapt to the user’s movement. To summa-

rize, a node might become unsuitable to host a service when

context changes occur at either the service or client side.

A simple solution is to pass the problem to the client and

require it to discover a similar service on another node. How-

ever, this approach would lose any state associated with the old

interaction, thus seriously affecting long-term stateful client-ser-

46 PERVASIVEcomputing www.computer.org/pervasive

B U I L D I N G A S E N S O R - R I C H W O R L D

Variable
access

Application

Virtual address
space

Page table

Physical
memory

Variable
access

Spatial
reference

Urbanet
distributed
application

Space region

Spatial Programming
runtime

Systems embedded
in physical space

(c)(a)

Distributed
application

Shared virtual
address space

Page table and
message passing

Physical
memories

(b)

Figure 4. An analogy between two traditional programming models—(a) conventional computer system and (b) shared virtual

memory—and (c) Spatial Programming.

vice interactions. Additionally, another

node providing that service might not

exist in the Urbanet.

To address these issues, we propose

Migratory Services, a new client-service

model for Urbanets. Under this model, ser-

vices can migrate to different network

nodes to effectively accomplish their task.

They execute on a certain node as long as

they can provide semantically correct re-

sults. When this becomes impossible, they

migrate until they find a new node where

they can resume execution. As figure 5

shows, the Migratory Services model pro-

vides transparent service migration and

maintains a continuous client-service in-

teraction. Although a migratory service is

physically located on different nodes over

time, it constantly presents a single virtual

end-point to the client. This concept is sim-

ilar to virtual mobile nodes.11

The Migratory Services model involves

three main mechanisms supported by the

development and execution Migratory

Services Framework (MSF), shown in fig-

ure 6. The first mechanism monitors inter-

acting entities’ dynamism by assessing con-

text parameters that characterize their

environment and available resources. The

second uses rules to specify how the ser-

vice execution should adapt to context

parameter variations. The third makes the

service capable of migrating from node to

node and of resuming its execution once

migrated. We call this process context-aware service migration

because it’s triggered by context changes.

To exemplify these concepts, we consider again the appli-

cation for detecting traffic jams. The client uses MSF to issue

a request for a traffic jam (Tjam) service in a remote region:

Request req = new Request(client_id, remote_region);
MSF.sendRequest(Tjam, req);

A Tjam service available in the network receives the request

and starts the computation. This service must register with the

hosting node and specify its context rules. A context rule con-

sists of (condition, action) pairs. For example, the following rule

states that when the node moves out of the region specified by

the client, MSF must trigger a service migration to resume exe-

cution on a node in that region:

CtxRule rule = new CxtRule(service_id);
rule.setCondition(OutOfRegion, remote_region);
rule.setAction(MIGRATE);
MSF.registerCtxRule(rule);

During service execution, MSF constantly verifies the reg-

istered context rules and acts on them. The service computes

the probability of a traffic jam, and when the probability

exceeds a certain threshold, it sends an alert to the client:

int speed=0, tjam_p=0; Neighbors []n;
for(j=0; j<n.length; j++)

speed + = n[j].getSpeed();

APRIL–JUNE 2007 PERVASIVEcomputing 47

Migratory
service

Migratory
service

Service
migration

Code

State

Client

Migratory service migration

Virtual client-service interaction

Physical client-service interaction

Code

State

Figure 5.The Migratory Services model.

Context
manager

Validator

Communication manager

Smart Messages platform

Operating system, wireless communication, and sensors

MonitoredCxt

Client application/service

 Reliability manager

CxtRules

Figure 6. The Migratory Services Framework. The Smart Messages platform provides

execution migration, naming, routing, and admission control. On top of the Smart

Messages layer, the framework provides context provisioning, context rules validation,

client-service communication, and service reliability.

speed = speed/n.length;
tjam_p= computeTJamProbability(speed, n.length);
if(tjam_p>MAX_PROB)

MSF.sendAlert(client_id, tjam_p);

Migration isn’t part of the service code—the framework trig-

gers it when necessary.

We implemented this framework in Java and tested the traf-

fic jam application over a WiFi-based network of Hewlett-

Packard iPAQs. Recently, we extended the implementation to

J2ME CDC and tested it on Nokia 9500 phones.

Discussion
Routing, localization, cooperation incentives, security, pri-

vacy, and trust are all significant Urbanet challenges. We believe

that many proposed solutions for sensor networks and MANETS

can be adapted for Urbanets. Trust issues are more critical than

in traditional sensor networks because of the Urbanets’ spon-

taneous, people-centric nature. We’re investigating how to cre-

ate trusted ad hoc networks using a trusted execution monitor

built as a kernel module on top of a Trusted Platform Module.

In terms of localization, GPS or systems based on signals from

existing Wi-Fi access points or cellular base stations can pro-

vide cheap, reasonably accurate solutions.

Our experiences with these middleware platforms in small-

scale ad hoc networks of HP iPAQs and smart phones have

been promising. Besides typical interference problems in places

where wireless devices are dense, energy remains the most con-

straining technical factor. Because most applications must be

aware of their location, we quantified the lifetime of a phone

running a modified fingerprinting version of Intel’s Place lab.

The phone computed its location and sent it as a SOAP mes-

sage to another node over Wi-Fi at intervals from 10 seconds

to 1 minute. The phone lifetime varied from 4 to 6 hours.

We designed our solutions to work despite Urbanet het-

erogeneity. The underlying Smart Messages platform provides

a common execution environment across heterogeneous

devices, and its design for resource-constrained devices such

as smart phones offers flexible property-based naming and

routing support. However, tiny sensors such as motes won’t

run our middleware. Running the middleware on more pow-

erful devices allows access to tiny sensors either directly

through queries (for example, iMotes over Bluetooth) or indi-

rectly through a base station.

Each middleware copes with network volatility in different

ways. When Contory detects that a certain context provider

becomes unavailable, it dynamically selects an alternative avail-

able provider. In SP, programmers associate time-outs with each

resource access, and the runtime raises exceptions when the

access isn’t successful during the specified time-out. This mech-

anism lets applications dynamically adjust their requirements

to the network conditions (for example, they can accept lower-

quality results that are still semantically correct). Migratory

Services respond to volatility by migrating the execution to suit-

able nodes every time the execution context changes beyond

specified limits. In addition, they also maintain a backup ser-

vice that takes over in case of service failure or network parti-

tions. To ensure that the service can resume, the backup ser-

vice can also reside at the client node.

T
he choice of which middleware to employ depends

on the application’s semantics. With Contory, intel-

ligence is mostly in the middleware; applications

receive a very simple programming interface to col-

lect sensor data. Contory provides high transparency by

adapting to changing operating conditions while also letting

applications assess the results quality through qualifying

attributes. However, it offers limited flexibility to program

complex distributed applications. For these

applications, Spatial Programming pro-

vides the necessary fine-grained access to

network resources while maintaining a rel-

atively simple programming interface. In

Spatial Programming, the middleware is

thin, and most of the complex logic resides

in the application. The Migratory Services

middleware presents an intermediate solu-

tion: client applications are very simple,

services are more complex, and the mid-

dleware provides significant help by automatically adapting

to the operating context. It’s particularly useful for long-run-

ning and stateful end-to-end interactions in highly volatile

conditions.

Of course, the ultimate validation of our platforms will

come from experiences in larger scale networks with real

mobile users.

48 PERVASIVEcomputing www.computer.org/pervasive

B U I L D I N G A S E N S O R - R I C H W O R L D

The Smart Messages platform provides a

common execution environment for our

Urbanet middleware solutions, and its design for

resource-constrained devices offers flexible,

property-based naming and routing support.

ACKNOWLEDGMENTS

We thank Liviu Iftode for his contribution to the design of Spatial Programming

and Migratory Services. We also thank the anonymous reviewers for their use-

ful comments. This work has been supported in part by US National Science

Foundation grants CNS-0520033, CNS-0454081, and IIS-0534520, and in

part by the Finland’s National Technology Agency (TEKES) Dynamos project and

the Nokia Foundation.

REFERENCES

1. O. Riva, “Contory, A Middleware for the Provisioning of Context
Information on Smart Phones,” Proc. 7th ACM Int’l Middleware
Conf. (Middleware 06), LNCS 4290, Springer, 2006, pp. 219–239.

2. C. Borcea et al., “Spatial Programming Using Smart Messages: Design
and Implementation,” Proc. 24th Int’l Conf. Distributed Comput-
ing Systems (ICDCS 04), IEEE CS Press, 2004, pp. 690–699.

3. O. Riva et al., “Context-Aware Migratory Services in Ad Hoc Net-
works,” to be published in IEEE Trans. on Mobile Computing, 2007.

4. P. Kang et al., “Smart Messages: A Distributed Computing Platform
for Networks of Embedded Systems,” Computer J., vol. 47, no. 4,
2004, pp. 475–494.

5. S.R. Madden et al., “TinyDB: An Acquisitional Query Processing
System for Sensor Networks,” ACM Trans. Database Systems, vol.
30, no. 1, 2005, pp. 122–173.

6. J. Scott et al., “Haggle: A Networking Architecture Designed around
Mobile Users,” Proc. 3rd Ann. Conf. Wireless On-Demand Network
Systems and Services (WONS 06), INRIA, 2006, pp. 78–86.

7. J. Liu et al., “State-Centric Programming for Sensor-Actuator Net-
work Systems,” IEEE Pervasive Computing, vol. 2, no. 4, 2003, pp.
50–62.

8. M. Welsh and G. Mainland, “Programming Sensor Networks Using
Abstract Regions,” Proc. 1st Usenix/ACM Symp. Networked Sys-
tems Design and Implementation (NSDI 04), Usenix Assoc., 2004, pp.
29–42.

9. K. Whitehouse et al., “Hood: A Neighborhood Abstraction for Sen-
sor Networks,” Proc. 2nd Int’l Conf. Mobile Systems, Applications,
and Services (MobiSys 04), ACM Press, 2004, pp. 99–110.

10. R. Gummadi, O. Gnawali, and R. Govindan, “Macroprogramming
Wireless Sensor Networks Using Kairos,” Proc. 1st IEEE Int’l Conf.
Distributed Computing in Sensor Systems (DCOSS 05), LNCS 3560,
Springer, 2005, pp. 126–140.

11. S. Dolev et al., “Virtual Mobile Nodes for Mobile Ad Hoc Networks,”
Proc. 23rd Ann. ACM Symp. Principles of Distributed Computing
(PODC 04), ACM Press, 2004, p. 385.

For more information on this or any other computing topic, please visit our

Digital Library at www.computer.org/publications/dlib.

APRIL–JUNE 2007 PERVASIVEcomputing 49

the AUTHORS

Oriana Riva is a researcher at the Helsinki Institute for

Information Technology and a doctoral student in com-

puter science at the University of Helsinki. Her research

interests include middleware for pervasive systems, ad

hoc networking, and context-aware computing. She

received her MSc in telecommunication engineering

from Politecnico di Milano. Contact her at the Dept. of

Computer Science, PO Box 68, FIN-00014, Univ. of

Helsinki, Finland; oriana.riva@cs.helsinki.fi.

Cristian Borcea is an assistant professor in the New Jer-

sey Institute of Technology’s Department of Computer

Science. His research interests include mobile comput-

ing, middleware for ubiquitous networked systems,

vehicular networks, and sensor networks. He received

his PhD in computer science from Rutgers University.

He’s a member of the IEEE, ACM, and Usenix. Contact

him at the Dept. of Computer Science, New Jersey Inst.

of Technology, University Heights, Newark, NJ 07102;

borcea@cs.njit.edu.

Writers
For detailed information on sub-

mitting articles, write for our Edi-

torial Guidelines (pervasive@

computer.org) or access

www.computer.org/

pervasive/author.htm.

Letters to the Editor
Send letters to

Shani Murray, Lead Editor

IEEE Pervasive Computing
10662 Los Vaqueros Circle

Los Alamitos, CA 90720

pervasive@computer.org

Please provide an email

address or daytime phone

number with your letter.

On the Web
Access www.computer.org/

pervasive or http://dsonline.

computer.org for information

about IEEE Pervasive
Computing.

Subscription Change

of Address
Send change-of-address

requests for magazine

subscriptions to address.

change@ieee.org. Be sure to

specify IEEE Pervasive
Computing.

Membership Change

of Address
Send change-of-address

requests for the membership

directory to directory.

updates@computer.org.

Missing or Damaged

Copies
If you are missing an issue or

you received a damaged copy,

contact membership@

computer.org.

Reprints of Articles
For price information or to

order reprints, send email to

pervasive@computer.org or fax

+1 714 821 4010.

Reprint Permission
To obtain permission to reprint

an article, contact William

Hagen, IEEE Copyrights and

Trademarks Manager, at

copyrights@ieee.org.

How to Reach Us

