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1UR 03AGRO1 Ecosystèmes et Ressources Aquatiques, INAT (Institut National Agronomique de Tunisie), Tunis, Tunisia, 2UMR 212 Ecosystèmes Marins Exploités, IRD
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Abstract

Bottom trawl survey data are commonly used as a sampling technique to assess the spatial distribution of commercial
species. However, this sampling technique does not always correctly detect a species even when it is present, and this can
create significant limitations when fitting species distribution models. In this study, we aim to test the relevance of a mixed
methodological approach that combines presence-only and presence-absence distribution models. We illustrate this
approach using bottom trawl survey data to model the spatial distributions of 27 commercially targeted marine species. We
use an environmentally- and geographically-weighted method to simulate pseudo-absence data. The species distributions
are modelled using regression kriging, a technique that explicitly incorporates spatial dependence into predictions. Model
outputs are then used to identify areas that met the conservation targets for the deployment of artificial anti-trawling reefs.
To achieve this, we propose the use of a fuzzy logic framework that accounts for the uncertainty associated with different
model predictions. For each species, the predictive accuracy of the model is classified as ‘high’. A better result is observed
when a large number of occurrences are used to develop the model. The map resulting from the fuzzy overlay shows that
three main areas have a high level of agreement with the conservation criteria. These results align with expert opinion,
confirming the relevance of the proposed methodology in this study.
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Introduction

Understanding species distributions is essential for conservation

planning and forecasting [1], particularly in the present context of

stock depletion and species extinction. Species distribution maps

play an important role in developing spatial management

measures such as the identification of Essential Fish Habitats or

the establishment Marine Protected Areas (MPAs) [2,3], which in

turn contribute to sustainable ecosystem-based marine manage-

ment [3–5]. However, information on the true distribution of

many marine organisms remains limited, particularly for species

that are difficult to detect [6]. Modelling species distributions

based on data samples is one solution to address this lack of

knowledge. For instance, Species Distribution Models (SDMs)

relate species’ distributions based on data samples with the

associated environmental and geographical characteristics of the

surveyed locations [7].

Nevertheless, the perception remains that the distributions of

marine species are uncertain and dependent on the sampling

process used to generate the models. Bottom trawls are commonly

used as a sampling technique to assess the spatial distribution of

commercial species and to obtain fisheries-independent abun-

dance data [8]. However, there are some limitations in the species

detections associated with this technique due to a range of factors,

e.g., catchability, gear efficiency, and gear-specific selectivity [8]. A

common problem in recording species’ distribution results from a

false absence, which occurs when a species is not available for

capture despite occupying the site, or when a species occurs at a

site but is simply not captured. Such data can severely limit the fit

of many SDMs [9] and can decrease the reliability of prediction

models (see [10,11]). The issue of false absences is further

complicated by locations with favourable environmental condi-

tions but where species are absent due to biotic interactions,

dispersal limitations or fishing pressure. This latter case is

particularly critical when modelling commercial exploited species

[12]. Yet the problem of imperfect detection when modelling

marine species distributions has been rarely mentioned in the

literature [13].

Confirmed absences are very difficult to obtain, especially from

bottom trawl survey data and for mobile species. A much higher

level of sampling effort is required to ensure their reliability

relative to presence data [14]. To cope with the lack of confirmed

absence data, presence-only models, or profile techniques, have

often been used [12]. These models differ from the group

discrimination approaches that require presence–absence or
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abundance data [15]. Some well-known examples of profile-type

models are the Ecological Niche Factor Analysis (ENFA; [16]), the

Genetic Algorithm for Rule-Set Prediction [17], and the

maximum entropy method [18]. Comparisons between the

various SDMs reveal that group discrimination approaches tend

to perform better than the profile-type, or presence-only models

[19–21]. A common problem of the profile-type models is that

their predictions are often overly optimistic, i.e., they predict the

species occurring at too many locations [22].

In order to use group discrimination approaches, artificial

absence data are increasingly being used in situations where no

confirmed absence data are available. Typically called pseudo-

absences, artificial absences are generated and inserted into the

selected model in lieu of confirmed absence data. The method

selected to generate the pseudo-absences is particularly important

because it can influence the final quality of the model [21,22].

Several approaches have been suggested for the generation of

pseudo-absences: (i) a random selection of absence points across

the entire available area (e.g., [21,23]; (ii) a random selection with

a geographically-weighted exclusion (e.g., [24]; and (iii) a selection

of sampled locations (i.e., occurrence locations for other species) at

which the target species has not been recorded (e.g., [5]).

However, there are several issues with these approaches. The first

two may produce false absences, even in environmentally-

favourable areas for the species [25,26]. The latter approach is

unsuitable for bottom trawl survey data because it is unlikely that

an entire target group of species caught by a particular type of

fishing gear will share a similar sampling bias.

To deal with presence-only records, Engler et al. [22] suggested

an intermediate methodology between presence-only and pres-

ence-absence distribution models. This approach proposed the use

of a habitat suitability map as a way of selecting weighted pseudo-

absence data points. These points are added to the original

presence-only data and used to improve the logistic regression

procedure. This mixed method could be more suitable for bottom

trawl survey data than the other approaches outlined above.

Distribution models often result in a predicted probability

surface that is then translated into a presence-absence classification

map for use in different conservation applications [27]. For

instance, these presence-absence maps are commonly aggregated

(the ‘predict first, assemble later’ strategy from [28]) to identify

areas that will experience the greatest changes in species

composition due to climate change [29]. To convert a probability

surface into a binary map, a number of threshold selection

methods have been proposed [27]. Given the variety of

approaches available to generate a dataset, the method chosen

can have a dramatic effect on a model’s accuracy and its

predictions [27,30], as well as the subsequent conservation

planning decisions and outcomes [31]. To address the uncertainty

in the presence-absence classification map, we propose the use of a

fuzzy logic approach that can be applied in situations where

vagueness and uncertainty exist. The fuzzy logic approach has

several advantages in situations where: (i) there are no clear cut

definitions; and (ii) results cannot be categorised as either 0 or 1

[32]. Given its current application in a range of scientific

disciplines [33], it is logical to extend the use of fuzzy logic to

the threshold selection procedure in the context of SDMs.

Predicting the distributions of commercially targeted marine

species is particularly urgent in over-exploited and damaged

ecosystems, such as the Gulf of Gabes. With a soft bottom, shallow

slope and a high diversity of fishes, the Gulf of Gabes is the most

important fishing ground in Tunisia [34,35]. This coastal area

supports 60% of the national fishing fleet and contributes 42% of

the national annual fish and crustacean production [36]. This

intense fishing activity began in the early 1980s, after which

fisheries experienced large fluctuations in landings until the late

1990s when catches began to progressively decline [35]. This was

mainly due to the decreasing of demersal stocks caused by intense

bottom trawling activities. Depletion rates are so alarming that in

the near future the Gulf of Gabes will be subject to a habitat

conservation management plan that excludes trawling activities.

In this study, we initially assess the reliability of the mixed

approach proposed by Hengl et al. [37]. We combine ENFA

predictions for generating pseudo-absences and regression-kriging

(RK) for modelling the spatial distribution of 27 commercially-

targeted species in the Gulf of Gabes based on bottom trawls

survey data. We then propose a fuzzy logic framework to

transform modelled probabilities of occurrence into binary

predictions of species presence and absence. We illustrate this

framework by applying it to the task of identifying areas that meet

the conservation targets for the deployment of artificial anti-

trawling reefs (AARs) in the Gulf of Gabes.

Materials and Methods

Study Area
The Gulf of Gabes is located in the southern Mediterranean Sea

and covers the second widest continental shelf area of this semi-

enclosed sea. The Gulf of Gabes has high fisheries productivity

and it serves as a feeding and reproduction area for numerous

populations of fishes and crustaceans [34]. Indeed, this ecosystem

supports one of the most extensive biocenosis of seagrass (Posidonia

oceanica; [38]), which constitutes a major nursery site for several

marine species [39]. Accordingly, the Gulf of Gabes is one of the

most productive ecosystems in the Mediterranean Sea and has

great economic and ecological importance [38].

Bottom trawling is the predominant fishing activity in this area

and the gear type that has the largest impact on the target

demersal fishes [34]. The regular incursions of trawlers into areas

that are shallower than their regulated depth have led to the

extensive degradation of P. oceanica meadows [40]. Due to the lack

of monitoring and surveillance activities carried out by the marine

police and fishery authorities, illegal fishing still takes place.

Consequently, effective management measures are required to

prevent illegal fishing activities.

The proposed fisheries management plan for the Gulf of Gabes

includes a perimeter of AARs that combine anti-trawling

structures with artificial reefs. The major functions of these

structures will be to protect the coastal zone marine ecosystems

and species from the mechanical impacts of trawling. This

measure will be especially important for high diversity commu-

nities, such as the P. oceanica seagrass beds and associated fauna of

biological interest [41]. In addition, AARs aim to reduce the

fishing mortality of commercial species, to protect nursery areas

and juvenile fish, to create new fishing grounds and/or improve

existing grounds, and to increase natural productivity [42]. The

AARs will be deployed in areas that are chosen by considering

both the presence of favourable habitats of commercial species and

areas of high-density P. oceanica seagrass beds.

Bottom Trawl Survey Data and Model Variables
Species occurrence data were collected from the Tunisian

bottom trawl survey database gathered by the National Institute of

Marine Sciences and Technologies (INSTM, Tunisia) onboard the

R/V Hannibal. The sampling net used (vertical opening trawl,

GOV: 42/55) had a 20 mm diamond stretched mesh at the cod

end and a 15 m horizontal opening. The trawl was towed at a

speed of 2.9 knots for one hour and sampling areas were fixed

Predictive Habitat Model for Marine Management
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according to a stratified random sampling based on three depth

strata (0–25 m, 25–65 m, and 65–200 m). A total of 360 trawl

hauls were completed between 1998 and 2005. Central point geo-

referenced position data for each trawl haul and the associated

catch contents were extracted from the database (Figure 1).

To build the SDMs, we selected four local habitat variables

(depth, slope, aspect, and seafloor type) and one spatial predictor

(distance to shore). Previous studies undertaken at a similar spatial

extent showed that these variables had a strong influence on

species distributions in coastal environments (Figure 2) (e.g., slope

[43,44], depth [5,45], aspect [43,44,46], distance to shore [47,48],

and seafloor type [5]).

The bathymetry of the Gulf of Gabes was extracted as a digital

gridded depth data set from a digital elevation model with a 90 m

resolution. The bathymetric elevation data was derived from

source soundings collected by the INSTM and referenced to the

local tidal datum. The seafloor bathymetric slope and aspect were

derived from the bathymetric base map using a 363 cell

neighbourhood window around the processing cell. Respectively,

these represent the rate of change in bathymetry and the

azimuthal direction of the steepest slope over the analysis window.

The aspect was transformed into two derived variables: Eastness

(values close to 1 represent an eastward aspect, while values close

to –1 represent a westward aspect) and Northness (values close to 1

represent a northward aspect, while values close to –1 represent a

southward aspect).

To develop the map of the distance to shore, Euclidean

distances were calculated from the shorelines and islands

throughout the study area based on a gridded map with a 90 m

resolution. Release and recapture locations were then sampled

using ArcGIS 10 to obtain distance values. Digital seafloor type

data were obtained from the INSTM. The original 15 seafloor

types were grouped into eight broader seafloor types that represent

the relatively distinct physical environments thought to influence

the distributions of demersal marine species. We mapped the

seafloor type by attributing a seafloor category to the center of

each 0.0081 km2 grid cell.

Selected Species
Since the advent of bottom trawl surveys in the Gulf of Gabes,

152 different species of fishes, cephalopods, and crustaceans have

been identified. As small sample sizes pose challenges to any

statistical analyses and result in decreased predictive potential, we

decided to concentrate on the relatively common species (defined

here as species present in .10% of trawl hauls). Having applied

this criterion we retained a total of 27 species: 20 fishes, four

cephalopods, two decapods, and one stomatopod (Table 1).

Collectively, these species constituted 60% of total biomass of the

landings and 98% of bottom trawl landings in the Gulf of Gabes

[36].

The Modelling Framework
Confirmed absence data were not available for the 27 species

selected for this study. As group discrimination approaches usually

perform better than presence-only models (as discussed above), we

selected a hybrid approach. This approach combines group

discrimination and profile techniques to model species distribu-

tions (Figure 3) [22,25,37,49].

Figure 1. The Gulf of Gabes study area with black points indicating the location of the benthic trawls used in this study.
doi:10.1371/journal.pone.0076430.g001
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Presence-only models. ENFA [16] was used to create an

habitat suitability map that depicts areas where species are unlikely

to occur. ENFA is a specific ordination technique that compares a

species’ environmental niche and the environmental characteris-

tics of the study area and assigns a degree of suitability to each

point on a map (typically from 0 to 100). Thus, it quantifies the

dissimilarity between an ecological niche and the ecological space.

The first component of the technique, called the marginality

factor, is defined as the standardised difference between the

centroids of the ecological space and the ecological niche. The

second component, the specialisation factors, are successively

extracted from the n–1 residual dimensions and represent the

narrowness of the ecological niche relative to the ecological space

[16]. ENFA was preferred to another widely used presence-only

model, namely maximum entropy method, as several studies

recently showed that this technique may lead to spurious

inferences (e.g., [50]). Then, ENFA is recognized as one of the

best presence-only methods to model habitat suitability for marine

species (see [6,51]).

To evaluate the accuracy of the ENFA, we performed a Monte-

Carlo randomisation test with 100 permutations. This test for the

significance of the marginality factor by randomising the locations

of selected species within the study area. At each permutation the

ENFA was performed on the random locations and the results

Figure 2. Maps of the six habitat variables (including two derived variables) used to generate the predicted distribution maps.
doi:10.1371/journal.pone.0076430.g002
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were then evaluated against the observed locations. We ran the

ENFA using the R adehabitat package [52,53].

Simulation of pseudo-absences. To generate pseudo-

absence data, two methods were used to choose geographic

coordinates: (i) at random across the Gulf of Gabes; and (ii)

weighted by ENFA predictions and the geographical location of

presence-only records [37]. We undertook both methods with the

aim of assessing the level of improvement gained by using the

environmentally- and geographically-weighted method as com-

pared with the random method. The weighted method proposed

by Hengl et al. [37] is based on both the Habitat Suitability Index

(HSI, derived through ENFA) and the distance from the

observations that are subsequently used to weight pseudo-absence

points (Figure 3). Given that HSI values are scaled between 0 and

100, Hengl et al. [37] defined the probability distribution (t) used

to generate the pseudo-absence locations as:

t(x � )~
dR(x)z(100{HSI(x))

2

� �2

ð1Þ

where dR is the normalised distance in the range [0, 100%], i.e.,

the distance from the observation points divided by the maximum

distance. The square term is used to ensure that there are

progressively more pseudo-absences at the edge of low HSI and

large distances will approximately follow a Poisson distribution. In

this way, pseudo-absences are located both in areas of low HSI

(unsuitable habitat) and further away from the occurrence

locations.

Based on Equation 1, the HSI and the map with buffers around

the occurrences were combined to create a weighted map. We

then performed the random generation of points with a probability

density proportional to the values of the weighted map. To

account for the variability arising from this weighted selection, 10

groups of pseudo-absences were generated. This allowed us to

assess the stability of the final predictions for different simulations.

For each set, the number of simulated pseudo-absences was equal

to the number of presences. This is supported by the statistical

theory of model-based designs, also known as ‘‘D-designs’’ [37].

According to this theory, the optimal design to minimise

prediction variance is when an equal number of observations are

at opposite value extremes [37,54] and there is a higher spreading

in the feature space.

A total of 11 groups of pseudo-absences were obtained. One

group was generated entirely at random and the remaining 10

groups were weighted by ENFA predictions and the geographical

locations of the presence-only records (Figure 3).

Regression modelling. Once the pseudo-absences were

simulated, they could then be combined with the occurrence

locations to build a regression model to predict the probability

distribution of occurrences. Prior to running the regression

analysis, the six original habitat predictors were converted to

principal components (to reduce their dimensions and the

multicollinearity effect) using the Hill-Smith ordination method

[55] that deals with mixed variable types (i.e., quantitative and

factor).

We used a generalised linear model (GLM) [56] for the

regression analysis, assuming a binomial error in the response

variable. Model residuals were then analysed by fitting a

variogram to assess their level of spatial dependence (Figure 3).

Model residuals exhibited no spatial dependence for six species

(i.e., the squid, Loligo vulgaris; the stomatopod, Squilla mantis; the

demersal fishes, Merlucius merlucius, Mugil cephalus, Mullus barbatus,

and Mullus surmuletus; and the pelagic fish, Trachurus trachurus). For

the remaining species (n = 21), we used logistic Regression Kriging

(RK) models that explicitly incorporate spatial dependence into

predictions (Figure 3). This method assumes that the model

residuals have a spatial structure resulting from either ‘model’

factors such as incorrectly specified or inadequate predictor

variables, or ‘real’ factors such as biotic processes that cause

spatial patterns [57]. It combines the predictions from a regression

model along with the resulting kriged residuals [58]. Specifically,

the regression modelling was supplemented with the use of

variograms to assess the level of spatial dependence among

residuals (Figure 3). Regression residuals were then interpolated

and added back to the regression estimate (see [58] for more

details). Finally, to select the most parsimonious model for each of

the selected species, we applied an automatic stepwise model

selection using the Akaike Information Criterion [59].

Table 1. Code, scientific name and the number of occurrences of each of the 27 species modelled in this study.

Code Scientific name Number of occurrences Code Scientific name Number of occurrences

BALICAR Balistes carolinensi 87 OCTOVUL Octopus vulgaris 77

BOOPBOO Boops boops 299 PAGEERY Pagellus erythrinus 223

DIPLANN Diplodus annularis 190 PAGRCAE Pagrus caeruleosticutus 85

ELEDMOS Eledone moschata 64 PENAKER Penaeus kerathurus 219

ENGRENC Engraulis encrasicolus 47 POMTSAL Pomatomus saltator 51

GOBINIG Gobius niger 61 SCOMSCO Scomber scombrus 95

LITHMOR Lithognathus mormyrus 111 SEPIOFF Sepia officinalis 270

LOLIVUL Loligo vulgaris 134 SERAHEP Serranus hepatus 34

MERLMER Merluccius merluccius 164 SOLEAEG Solea aegyptica 104

METAMON Metapenaus monoceros 46 SPARAUR Sparus aurata 34

MUGICEP Mugil cephalus 38 SPICMAE Spicara maena 62

MULLBAR Mullus barbatus 191 SQUIMAN Squilla mantis 43

MULLSUR Mullus surmuletus 69 TRACTRA Trachurus trachurus 169

MUSTMUS Mustelus mustelus 62

doi:10.1371/journal.pone.0076430.t001
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Model accuracy. For every species, the predictive accuracy

of the model was evaluated by a 10-fold cross validation [56]. The

receiver operating characteristic curve method was then applied to

derive the area under the curve (AUC) index [60] to measure the

model’s performance.

The simulation of pseudo-absences may generate absences far

from the environmental conditions of presences, which may

Figure 3. Computational framework and data processing steps.
doi:10.1371/journal.pone.0076430.g003
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artificially increases the rate of well-predicted absences and hence

the AUC scores [24,25,61]. In addition, the AUC test statistic may

not always reflect a model’s ability to prioritise areas in terms of

their habitat suitability relative to alternative models (e.g., [61,62]).

Model assessment was therefore supplemented with the Point

Biserial Coefficient (PBC) [20,24,63], the sensitivity (presences

correctly predicted as presences), and the specificity metrics

(absences correctly predicted as absences) [60]. The PBC was

calculated as a Pearson’s correlation coefficient between the

observation in the occurrence dataset (presence (1) or pseudoab-

sence (0)) and the prediction and therefore takes into account how

far the prediction varies from the observation. An independent

examination of the percentage of presence and absence errors was

recommended by Lobo et al [61] to help in the model selection

process according to the researcher’s goals, rather than the use of a

synthetic measure such as the AUC. Predictions were further

inspected visually and compared to plotted occurrence data in

order to assess their plausibility.

Finally, we used the Pearson’s correlation coefficient to calculate

the pairwise correlation between the final predictions maps

derived from the 10 groups of pseudo-absences. This allowed us

to assess the stability of predictions for each of the different

weighted simulations of pseudo-absences.

Each data processing step was completed in R, drawing on code

developed by Hengl et al. [37], and automating the calculation for

several species simultaneously. For each modelled species, the

regression models, 10-fold cross validation, and evaluation

procedures were carried out for the 11 simulated groups of

pseudo-absences.

Conservation Planning Procedure
Probability of occurrence maps can be generated using the most

accurate model selected for each species from the 11 pseudo-

absences groups. Once these maps have been converted to

presence-absence data, they can be used to identify areas that meet

the conservation targets for selection of AAR deployment sites.

These targets specify the inclusion of both favourable habitats for

commercially-targeted species and areas of high density P. oceanica
seagrass beds.

Threshold approaches and fuzzy modelling. The most

common method used to convert probabilities of occurrence to

presence-absence data is the use of an optimum probability

threshold [64]. Different methods have been proposed to select a

probability threshold [27]. Among these, the most widely used

threshold optimisation criteria are:

(1) Sens = Spec - The threshold where sensitivity equals specificity

(i.e., where positive observations are equally as likely to be

wrong as negative observations).

(2) Max (Sens+Spec) - The threshold that maximises the sum of

sensitivity and specificity (i.e., it minimises the mean error

rates for both positive and negative observations). This

threshold is equivalent to finding the point on the receiver

operating characteristic curve whose tangent has a slope of

one.

(3) MaxKappa - The threshold that results in the maximum value

of Kappa statistic.

(4) MaxPCC - The threshold that results in the maximum percent

of correctly classified observations.

For each species, a probability threshold was determined using

each of the four optimisation criteria outlined above. As these

methods do not provide similar threshold values, the use of one

method over another can influence conservation planning

outcomes, e.g., modifying areas that are expected to be suitable

for a given species [27]. To avoid the subjective selection of a

particular threshold, predicted distributions of selected species

were defined by fuzzy sets theory [65]. Fuzzy logic is useful in

circumstances that involve uncertainty, imprecision, and vague-

ness by replacing the sharp boundary between the suitable and

non-suitable classes with the concept of a degree of truth

(membership). In the fuzzification process, crisp attribute values

(probability of presence) are transformed linearly into a common

suitability scale (0 to 1) using the fuzzy linear membership

function. A membership value of 0 is assigned to the lowest

probability threshold value (as calculated using the four criteria

outlined above) and a value of 1 to the highest threshold value (see

example in Figure 4). Each map cell was assigned a fuzzy

membership value resulting from the fuzzy linear membership

function.

Fuzzy overlay of conservation criteria. For each species,

the favourability value of an area is defined as the degree of

membership of that area to the fuzzy set of favourable areas for the

species. Fuzzified inputs can be combined together to identify the

most favourable area for the majority of commercial species by

using a fuzzy operator. The fuzzy AND operator was applied to

return the minimum of the fuzzy memberships from the fuzzy

input maps. The result of this aggregation is a final fuzzy set

expressing the site suitability for all key species (see example of the

method in Figure 4). To identify areas with a high density of

seagrass beds, a recent map showing seagrass recovery rates was

obtained from the INSTM. This map was fuzzified using a fuzzy

linear membership function that assigned a membership value of 0

for recovery rates less than 30% and a value of 1 for recovery rates

greater than 60%. Finally, the maps that express the fuzzy

memberships of site suitability for all key species and seagrass

recovery rates were combined together using the fuzzy AND

operator. For example, ‘‘IF the favourability value of an area for

the species 1 IS high, AND the favourability value of an area for

the species 2 IS high, etc…, AND the recovery rate of seagrass IS

high THEN the area has high conservation criteria’’.

Results and Discussion

The Monte-Carlo randomisation tests show that the ENFA

marginality factor is highly significant for each modelled species

(all p,0.001). This implies that the habitat occupied by the species

modelled differ unequivocally from the average environmental

conditions found in the broader study area. This indicates that a

species-specific habitat selection process takes place. The ENFA

also show that the potential distributions of species are much larger

than their realised distributions, based on sampling locations (see

examples of three species in Figure 5). In contrast, incorporating

pseudo-absence data into logistic RK models results in predicted

distributions that are closer to the realised distributions (Figure 5).

When the pseudo-absence data are randomly selected, the

potential distribution of the species are less extensive in

comparison with those obtained using a weighted selection. This

difference can be explained by the fact that a random simulation

can select absences between observed occurrences points, there-

fore generating pseudo-absences in favourable areas. This can

subsequently lead to an underestimation in the realised distribu-

tions [25,66].

For each method generating pseudo-absences, the distribution

of the AUC, PBC, the sensitivity and the specificity metrics is

shown in Figure 6. For each species, model accuracy differs

according to the method used to generate pseudo-absences. All the

models based on the environmentally- and geographically-
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weighted method achieved a high level of accuracy as indicated by

the four measures of model accuracy (Mean6standard deviation:

0.960.07, 0.6560.23, 0.8760.08 and 0.8560.09 respectively for

the AUC, PBC, sensitivity and specificity) (Figure 6). These values

were significantly higher (Wilcoxon rank test: p,0.001) than those

obtained by models based on the random selection method

(Mean6standard deviation: 0.7860.1, 0.3660.26, 0.7760.11 and

0.6960.1 for the AUC, PBC, sensitivity and specificity, respec-

tively).

Since all the resulting SDMs are based on pseudo-absences,

both specificity and AUC scores estimate the degree of accuracy of

the absence information used in the model training process. Thus,

a high specificity score only implies that most of the data

considered as absence data are correctly predicted and does not

imply a high performance in the prediction of the unknown true

absences. However, the sensitivity and PBC values were higher

when the weighted method of generating pseudo-absence was

used, implying a high performance of this method in the

predictions of the known true presences as compared with the

random method.

Models based on the weighted method of generating pseudo-

absence data provide significantly better results on average, which

aligns with the results of Engler et al., Chefaoui & Lobo and Hengl

et al. [22,25,37]. It contrasts, however, with the findings of Wisz &

Guisan and Barbet-Massin et al. [19,26]. Using virtual species,

these authors found that randomly-selected pseudo-absences

yielded the most reliable species distribution models. However,

this may be explained by the fact that both studies used a large

number of pseudo-absences (e.g., 10.000 data points), whereas this

study used the same number of simulated pseudo-absences as the

number of occurrences. Currently, there is no consensus on the

number of pseudo-absences that are required to optimise model

predictions. Some authors suggest a ratio of 10:1 (e.g., [25,49])

while others recommend using large numbers of pseudo-absences

when they are randomly selected (e.g., [20,26]). Intuitively, it

makes sense to generate an equal number of pseudo-absence data

points as occurrence data points [58,67] to avoid the bias caused

by a presence-absence ratio that is too low [68,69]. Indeed this was

the outcome in McPherson et al. [70]who found SDMs had the

best predictive accuracy when prevalence values (the proportion of

data points representing a species’ presence) were around 0.5.

Therefore, several authors recommend resampling the training

data to balance presence and absence data points [70,71].

For each species, the range of pairwise correlations between the

final habitat prediction maps (derived from each of the 10 groups

of pseudo-absences) varied according to the number of occur-

rences used to develop the models (Figure 7). The lowest

correlation occurs when the number of occurrences is less than

61. The array of evaluation measures, based on all the replicated

runs, does not show a clear trend in relation to the number of

occurrences used to fit the models. Even with a small number of

occurrences, values of AUC and PBC indicate excellent predictive

accuracy of the models. However, large fluctuations in the

predictive accuracy and the models’ subsequent predictions are

observed when the models are based on a low number of

occurrences. Indeed, the selection of pseudo-absences can induce

variability in model predictions when several runs are made with a

small set of occurrence data, each run having its own dataset for

calibration.

Williams [72] found that the predictive ability of some

ecological modelling approaches varies with a species’ detectabil-

ity. While presence-absence approaches generally have higher

Figure 4. Threshold approaches and fuzzy modelling. An illustration of the fuzzification process performed using a fuzzy linear membership
function. The red, orange, and blue curves represent the fuzzy membership sets of three different species. The dotted green line represents the fuzzy
AND overlay outcomes. The inset maps display an example of the fuzzification process for the cuttlefish (Sepia officinalis) which corresponds with the
red curve.
doi:10.1371/journal.pone.0076430.g004
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predictive abilities for species with a high detectability, they do not

perform as well as presence-only approaches when detectability is

low. However, for some species such as the pelagic fish species,

Trachurus trachurus, the fitted model is found to be moderately

accurate though it is based on a relatively high number of data

points (338 presences/pseudo-absences). This result may be

related to the fact that the selected predictors (e.g., depth, seafloor

type) have greater ecological significance to model the distribution

of demersal and benthic species. [66]. This implies that the

performance of SDMs strongly depends on the environmental

predictors, which in turn depend of the type of organism that is

studied [62]. In addition, the realism and the robustness of models

may have been influenced by our automatic variable selection

procedure [73]. Indeed, ecologically important variables may have

been excluded from the stepwise models and/or non-meaningful

variables may have been incorporated into models. This was

particularly the case for some of the studied pelagic species

(Trachurus trachurus, Spicara maena, Scomber scombrus). These species

were therefore excluded from the conservation planning proce-

dure.

Overall, our results suggest that simulating pseudo-absences

with an environmentally and geographically weighted method

rather than a purely heuristic approach enhances the accuracy of

predictions. This method provides a robust result when a relatively

large number of occurrence data points with good spatial coverage

are used. The RK method also shows great potential as an

approach to incorporate spatial dependence in SDMs, by

combining information on species-habitat relationships (i.e.,

through the deterministic model) and error components. We

believe that the combined ENFA and RK method has several

Figure 5. Spatial prediction maps in the Gulf of Gabes for three example species. (1) Lithognathus mormyrus, (2) Penaeus kerathurus, (3)
Pagellus erythrinus (a) the habitat suitability index map with presence-only data; (b) the weighted map and the randomly-generated pseudo-absences
using the Equation 1; (c) probabilities predicted using the binomial regression-kriging (RK) with a weighted selection of pseudo-absences; and (d)
probabilities predicted using the binomial RK with a random selection of pseudo-absences.
doi:10.1371/journal.pone.0076430.g005
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advantages when applied to trawl survey data, especially when

addressing their imperfect ability to detect a species. Furthermore,

this method applies both the spatial auto-correlation structure and

the trend component of the spatial variation to make spatial

predictions of species’ distributions. This method can be applied to

other areas where survey data are available, such as the Medits

(International bottom trawl surveys in the Mediterranean) dataset.

The second purpose of this study is to identify the areas required

to meet the conservation targets of AARs based on probabilistic

predicted maps. In this study we propose a novel method to

develop these maps that uses fuzzy sets to address the uncertainty

associated with the selection of probability threshold optimisation

criteria. Fuzzy logic is interested in capturing partial truths, that is,

how to reason about things that are not wholly true or false; while

probability is concerned with making predictions about events

based on a partial state of knowledge [65]. The fuzzy sets theory is

used to transform the probability of presence into a membership

degree using not only a single threshold value but several values

obtained with different cut-off threshold optimization criteria.

Of the 27 species modelled in this study, an excellent or high

predictive accuracy is only found for 12 benthic and demersal

species. It was these species that were selected for the fuzzy overlay

of conservation criteria. Of these, the 2004–2005 stock assessment

results for the Gulf of Gabes report that Solea aegyptiaca, Octopus

vulgaris, and Sepia officinalis were fully exploited (Othman Jarboui,

personal communication: INSTM) and Mullus barbatus, Pagrus

caeruleostictis, and Pagellus erythrinus were overexploited.

The resultant fuzzy overlay map (Figure 8) highlights three main

areas that meet the conservation criterion to a high level. The

largest area is located south of Kerkennah Island while the

remaining two areas are in the coastal region off Mahres Harbour

and north of Jerba Island. As well as meeting the AAR

conservation criteria, the Kerkennah Island area has already been

reported as a biodiversity hotspot for megabenthic fauna [74] and

is currently proposed as a potential MPA [75]. The area north of

Jerba Island was also proposed as suitable for MPA establishment

by Ben Mustapha & Afli [75]. In addition to its dense seagrass

Figure 6. Distributions of the area under the curve (AUC), PBC, sensitivity and specificity values. Calculated AUC, PBC, sensitivity and
specificity values for the 27 modelled species (species codes are listed in Table 1). Species are sorted (top to bottom) by decreasing number of
occurrences (used to develop the models).
doi:10.1371/journal.pone.0076430.g006

Figure 7. Stability of predictions. The range of Pearson’s pairwise
correlation coefficients between the final prediction maps according to
the number of occurrences used to develop the models (red line:
smooth curve fitted by Loess function).
doi:10.1371/journal.pone.0076430.g007
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beds, the area is also characterised by coralligenous assemblages

and is a recognised nursery site for several juvenile of commer-

cially-targeted species [75]. These expert opinions corroborate our

findings and confirm the relevance of the established methodology

for the selection of AAR deployment sites.

Conclusions

The comparison between the two pseudo-absence data gener-

ation methods reveals that the environmentally- and geographi-

cally-weighted method has significant potential to reduce predic-

tion errors in SDMs. When confirmed absence data are not

available, we recommend using the method proposed by Hengl

et al. [37], which combines ENFA and RK predictions to deal with

an imperfect ability to detect a species and incorporate spatial

dependence in predictions. This study proposes a novel method to

developing predicted maps that uses fuzzy sets to address the

uncertainty associated with selecting probability threshold criteria.

In the context of conservation planning, we illustrate the

advantages of this novel method, using it to identify areas within

the Gulf of Gabes that meet the conservation targets for AARs.

Three key areas that met the conservation criteria to a high level

were identified, and these areas are recommended as deployment

sites for AARs. The location and spatial arrangement of reef units

must be carefully planned. Reef characteristics such as the number

of modules, the distance between modules as a function of trawl

parameters, and the weight of modules as a function of exposure to

currents should all be informed by scientific studies. Additional

factors that should be considered in the deployment of AARs are

economic costs and socio-economic effects.

The areas with a nonzero favourability value for AAR

deployment cover 1578 km2 and encompass 30% of seagrass

beds in good condition. However, these areas represent biodiver-

sity targets without regard to cost. In this context this study can

contribute to effective conservation planning in a broader

prioritization process, which must be optimized by accounting

for the cost of conservation. For instance, future works should

focus on systematic conservation planning [76,77] that attempts to

solve a cost-effectiveness problem (i.e. how to achieve the most

conservation given limited resources). This is particularly impor-

tant in the Gulf of Gabes where the diverse stakeholder group

often holds conflicting values and opinions (e.g., conflicts between

professional and local artisanal fishers).

Figure 8. Map of favourability values for the deployment of AARs.
doi:10.1371/journal.pone.0076430.g008
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