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In this paper, a numerical method is presented for finding the solution of some varia-

tional problems. The main objective is to find the solution of an ordinary differential

equation which arises from the variational problem. This work is done using Adomian

decomposition method which is a powerful tool for solving large amount of problems.

In this approach, the solution is found in the form of a convergent power series with eas-

ily computed components. To show the efficiency of the method, numerical results are

presented.
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under the Creative Commons Attribution License, which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In the large number of problems arising in analysis, mechanics, geometry, and so forth,

it is necessary to determine the maximal and minimal of a certain functional. Because of

the important role of this subject in science and engineering, considerable attention has

been received on this kind of problems. Such problems are called variational problems.

There are three problems that have an important role in the development of the cal-

culus of variations [16].

The problem of brachistochrone is proposed in 1696 by Johann Bernoulli which is re-

quired to find the line connecting two certain points A and B that do not lie on a vectorial

line and possessing the property that a moving particle slides down this line from A to B

in the shortest time. This problem was solved by Johann Bernoulli, Jacob Bernoulli, Leib-

nitz, Newton, and L’Hospital. It is shown that the solution of this problem is a cycloid.

In the problem of geodesics we want to determine the line of minimum length con-

necting two given points on a certain surface. This problem was solved in 1698 by Jacob

Bernoulli and a general method for solving such problems was given in the works of Euler

and Lagrange.
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2 Application of Adomian’s method in calculus of variations

In the isoperimetric problem, it is required to find a closed line of given length l bound-

ing a maximum area S. The solution of this problem is circle. General methods for solving

problems with isoperimetric conditions were elaborated by Euler.

More historical comments about variational problems are found in [16, 17].

The simplest form of a variational problem can be considered as

v
[

y(x)
]

=

∫ x1

x0

F
(

x, y(x), y′(x)
)

dx, (1.1)

where v is the functional that its extremum must be found. To find the extreme value of

v, the boundary points of the admissible curves are known in the following form:

y
(

x0

)

= α, y
(

x1

)

= β. (1.2)

One of the popular methods for solving variational problems are direct methods. In these

methods the variational problem is regarded as a limiting case of a finite number of vari-

ables. This extremum problem of a function of a finite number of variables is solved by

ordinary methods, then a passage of limit yields the solution of the appropriate varia-

tional problem [16]. The direct method of Ritz and Galerkin has been investigated for

solving variational problems in [16, 17]. Using Walsh series method, a piecewise constant

solution is obtained for variational methods [10]. Some orthogonal polynomials are ap-

plied on variational problems to find continuous solutions for these problems [9, 18, 19].

Also Fourier series and Taylor series are applied to variational problems, respectively in

[21, 22], to find a continuous solution for this kind of problems.

The necessary condition for the solution of the problem (1.1) is to satisfy the Euler-

Lagrange equation

Fy −
d

dx
Fy′ = 0, (1.3)

with the boundary conditions given in (1.2). The boundary value problem (1.3) does

not always have a solution and if the solution exists, it may not be unique. Note that in

many variational problems the existence of a solution is obvious from the physical or

geometrical meaning of the problem, and if the solution of Euler’s equation satisfies the

boundary conditions, it is unique, then this unique extremal will be the solution of the

given variational problem [16]. Thus another approach for solving variational problem

(1.1) is finding the solution of the ordinary differential equation (1.3) which satisfies

boundary conditions (1.2).

The general form of the variational problem (1.1) is

v
[

y1, y2, . . . , yn
]

=

∫ x1

x0

F
(

x, y1, y2, . . . , yn, y′1, y′2, . . . , y′n
)

dx, (1.4)

with the given boundary conditions for all functions:

y1

(

x0

)

= α1, y2

(

x0

)

= α2, . . . , yn
(

x0

)

= αn,

y1

(

x1

)

= β1, y2

(

x1

)

= β2, . . . , yn
(

x1

)

= βn.
(1.5)
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Here the necessary condition for the extremum of the functional (1.4) is to satisfy the

following system of second-order differential equations:

Fyi −
d

dx
Fy′i = 0, i= 1,2, . . . ,n, (1.6)

with boundary conditions given in (1.5). In the present work, we find the solution of

variational problem by applying Adomian decomposition method on the Euler-Lagrange

equations.

Also it is possible to define the variational problem for functionals dependent on

higher-order derivatives in the following form [16]:

v
[

y(x)
]

=

∫ x1

x0

F
(

x, y(x), y′(x), . . . , y(n)(x)
)

dx, (1.7)

with the given boundary conditions

y
(

x0

)

= α0, y′
(

x0

)

= α1, . . . , y(n−1)
(

x0

)

= αn−1,

y
(

x1

)

= β0, y′
(

x1

)

= β1, . . . , y(n−1)
(

x1

)

= βn−1.
(1.8)

The function y(x) which extermizes the functional (1.7) must satisfy the Euler-Poisson

equation

Fy −
d

dx
Fy′ +

d2

dx2
Fy′′ + ···+ (−1)n

dn

dxn
Fyn = 0, (1.9)

which is an ordinary differential equation of order 2n, with boundary conditions given

in (1.8).

The Adomian decomposition method is useful for obtaining both a closed form and

the explicit solution and numerical approximations of linear or nonlinear differential

equations, and it is also quite straightforward to write computer codes. This method has

been applied to obtain formal solution to a wide class of stochastic and deterministic

problems in science and engineering involving algebraic, differential, integrodifferential,

differential delay, integral and partial differential equations.

Generally this method is useful for problems that can be written in the following form

which appears in the large number of problems in applied sciences:

u−Θ(u)= g, (1.10)

where u is unknown, Θ usually is a nonlinear operator, and g is given. Depending on the

nonlinear form Θ, we can consider the Adomian decomposition method as an efficient

method.

This method has been proposed by the American mathematician G. Adomian (1923–

1996). It is based on the search for a solution in the form of a series and on decomposing

the nonlinear operator into a series in which the terms are calculated recursively using

Adomian polynomials [6].
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The decomposition method was proven by many authors to be reliable and promising.

It can be used for all types of differential equations, linear or nonlinear, homogeneous or

inhomogeneous [1–3, 5, 6]. The technique has many advantages over the classical tech-

niques, it avoids perturbation in order to find solutions of given nonlinear equations. The

decomposition approach was used to handle a variety of linear and nonlinear problems

and provides an immediate and convergent solution without any need for linearization

or discretization.

In recent years a lot of attention has been developed to the study of the Adomian

decomposition method to investigate various scientific models. This method is applied

to solve various kinds of ordinary differential equations. Specially this method is useful

for nonlinear differential equations [7]. Furthermore this method is used for finding the

numerical solution of higher-order differential equations in [26–28].

The Adomian decomposition method which accurately computes the series solution

is of great interest to applied science, engineering, physics, biology, and so forth. The

method provides the solution in a rapidly convergent series with components that can be

elegantly computed [8, 12–14, 23]. The present work is aimed at producing approximate

solutions which are obtained in rapidly convergent series with elegantly computable com-

ponents by the Adomian decomposition technique. It is well known in the literature that

the decomposition method provides the solution in a rapidly convergent series where the

series may lead to the solution in a closed form if it exists. The rapid convergence of the

solution is guaranteed by the work conducted by Cherruault [11].

The organization of the rest of this paper is as follows. In Section 2, we apply the

Adomian decomposition method on some ordinary differential equations with given

suitable boundary conditions which arise from problems of calculus of variations. To

present a clear overview of the method, we select several examples with analytical solu-

tions in Section 3. A conclusion is presented in Section 4.

2. Solution using the Adomian decomposition method

Consider the Euler-Lagrange equation (1.3) in an operator form:

L(y)−N(y)= f , (2.1)

for x0 ≤ x ≤ x1 where L = d2/dx2 is the second-order derivative operator, N usually is a

nonlinear operator which contains differential operators with order less than two, and f

is a given function. Assume that the inverse operator L−1 exists and it can conveniently

be taken as the definite integral for a function h(x) in the following form:

L−1
(

h(x)
)

=

∫ x

x0

∫ t2

x0

h
(

t1
)

dt1dt2. (2.2)

Applying the inverse operator L−1 to both sides of (2.1) yields

L−1L(y)= L−1N(y) +L−1 f . (2.3)



M. Dehghan and M. Tatari 5

Thus we have

y(x)− y
(

x0

)

− y′
(

x0

)

x+ y′
(

x0

)

x0 = L−1N(y) +L−1 f , (2.4)

or equivalently

y(x)= α+Ax−Ax0 +L−1 f +L−1N(y), (2.5)

where A= y′(x0). Now according to the decomposition procedure of Adomian, we con-

struct the unknown function y(x) by a sum of components defined by the following

decomposition series:

y(x)=
∞
∑

n=0

yn(x). (2.6)

Based on the Adomian decomposition method, we consider the solution of (2.1) as the

series (2.6) and take the nonlinear expressions N(y) by the infinite series of the Adomian

polynomials given by

N(y)=
∞
∑

n=0

Nn, (2.7)

where components Nn are appropriate Adomian’s polynomials which are calculated using

methods introduced in [6]. Adomian polynomials are found for calculating the nonlinear

operator Nn in the following form:

Nn

(

y0, y1, . . . , yn
)

=
1

n!

dn

dλn

[

N

[

∞
∑

k=0

λk yk

]]

λ=0

, n≥ 0. (2.8)

This formula is calculated in computer code easily. Other general formulas of Adomian

polynomials can be found in [4, 25]. Notice that if N be a linear operator then we have

Nn = yn.

Now by the decomposition method of Adomian we have the following recursive rela-

tions:

y0(x)= α+Ax−Ax0 +L−1 f (x), yn+1(x)= L−1Nn, n≥ 0. (2.9)

The resulted solution converges [11] to the closed form solution if an exact solution

exists for the Euler-Lagrange equation. The most important work about convergence has

been carried by Cherruault [11]. Other references about theoretical treatments of the

convergence of Adomian decomposition method are found in [3]. In [3, 24] some results

are obtained about the improvement of this method that let us solve linear and nonlin-

ear equations. A new approach of convergence of the decomposition method has been

presented in Ngarhasta et al. [20].
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By calculating the terms y0, y1, y2, . . ., the solution y of the Euler-Lagrange equation

(1.3) can be obtained upon substituting the resulting terms in (2.6).

Based on the Adomian decomposition method, we constructed the solution y as

y = lim
n→∞

φn, (2.10)

where the (n+ 1)-term approximation of the solution is defined in the following form:

φn =
n
∑

k=0

yk(x), n≥ 0. (2.11)

The solution here is given in a series form that generally converges very rapidly in real

physical problems.

Applying the decomposition procedure of Adomian, we find that the series solution

of y(x) follows with a constant A which is unknown. To find this constant we impose the

boundary condition at x = x1 to the obtained approximation of the solution defined in

(2.11) which results in an equation in A. By solving this equation that usually is nonlinear,

we find A and then the solution of the Euler-Lagrange equation follows immediately.

We can apply the above scheme on the second-order system of ordinary differential

equations (1.6) and find a solution for this equation. In the operator form we have

L
(

yi
)

−Ni

(

y1, y2, . . . , yn
)

= fi, i= 1,2, . . . ,n, (2.12)

where x0 ≤ x ≤ x1, Ni, i= 1, . . . ,n, are nonlinear operators which contain differential op-

erators with order less than two, and fi, i= 1, . . . ,n, are given functions.

Thus we have

yi(x)= αi +Aix−Aix0 +L−1 fi +L−1Ni

(

y1, y2, . . . , yn
)

, (2.13)

where Ai = y′i (x0). By the Adomian decomposition method we have the following recur-

sive relations:

yi0(x)= αi +Aix−Aix0 +L−1 fi(x), yi(n+1)(x)= L−1Nin, n≥ 0, (2.14)

and the series solutions are given in the following form:

yi(x)=
∞
∑

n=0

yin(x). (2.15)
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Series solutions obtained in (2.15) are followed by constants Ai, i= 1, . . . ,n. By imposing

the boundary conditions at x = x1 to the approximations of the series solutions

φin =
n
∑

k=0

yik(x), n > 0, (2.16)

we obtain an algebraic system in Ai, i = 1, . . . ,n. This system usually is nonlinear. Thus

finding the solution of this system using analytical methods is not easy. Here we use the

well-known Newton method with an appropriate initial point to find the solution of this

system numerically.

Similarly if we consider operator L= d2n/dx2n and N to be a nonlinear operator which

contains differential operators with order less than 2n, the above procedure can be re-

peated to find the solution of the problem (1.9).

A reliable modification of the Adomian decomposition method has been developed in

[24]. In this approach y0 is considered to contain minimal number of terms. This work

has a considerable effect on facilitating the formulation of the Adomian polynomials An.

In the next section some examples are used to validate the proposed method.

3. Test examples

To show the efficiency of the new method described in the previous section, we present

some examples. These examples are chosen such that there exist analytical solutions for

them to give an obvious overview of the Adomian decomposition method.

Example 3.1. Consider the following variational problem:

minv =

∫ 1

0

(

y(x) + y′(x)− 4exp(3x)
)2
dx, (3.1)

with given boundary conditions

y(0)= 1, y(1)= e3. (3.2)

The corresponding Euler-Lagrange equation is

y′′− y− 8exp(3x)= 0, (3.3)

with boundary conditions (3.2). The exact solution of this problem is y(x) = exp(3x).

Using the operator form of (3.3) we have

Ny = y + 8exp(3x). (3.4)

Thus

y(x)= 1 +Ax+L−1
(

8exp(3x)
)

+L−1
(

y(x)
)

. (3.5)
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Now the decomposition procedure of Adomian results in

∞
∑

k=0

yk(x)= 1 +Ax+L−1
(

8exp(3x)
)

+L−1

(

∞
∑

k=0

yk(x)

)

,

y0(x)= 1 +Ax+L−1
(

8exp(3x)
)

=
1

9
+Ax+

8

9
exp(3x)−

8

3
x,

y1(x)= L−1
(

y0(x)
)

=
1

18
x2 +

1

6
Ax3 +

8

81
exp(3x)−

4

9
x3
−

8

27
x−

8

81
,

y2(x)=L−1
(

y1(x)
)

=
1

216
x4 +

1

120
Ax5 +

8

729
exp(3x)−

1

45
x5
−

4

81
x3
−

4

81
x2
−

8

243
x−

8

729
,

(3.6)

and so on. This gives the approximation of the y(x) in a series form. Now to find the

constant A, the boundary condition at x = 1 is imposed on the n-term approximation φn
in (2.11). For example for n= 4 we obtain

1.175201168A= 3.52560388, (3.7)

which results in

A= 3.000000320. (3.8)

By replacing A in the φ4, an approximate solution is obtained for y(x). Higher accuracy is

obtained using more components of y(x). Figure 3.1 shows the error of φ4. Furthermore

we have

v
(

φ4

)

− v(y)= 0.5273450967e− 12. (3.9)

It is clear that in this example the Adomian decomposition method can be considered as

an efficient method.

Example 3.2. Consider the following brachistochrone problem [15]:

minv =

∫ 1

0

[

1 + y′2(x)

1− y(x)

]1/2

dx, (3.10)

let the boundary conditions be

y(0)= 0, y(1)=−0.5. (3.11)

In this case the Euler-Lagrange equation is written in the following form:

y′′ =−
1

2

1 + y′2

y− 1
. (3.12)
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Figure 3.1. Error function φ4− y(x) for 0≤ x ≤ 1.

By imposing the boundary condition at x = 1 on the four-term approximation

φ3 =

3
∑

k=0

yk (3.13)

and solving the resulted nonlinear equation, we obtain

A=−0.78503193483611740425. (3.14)

In this case we have

v
(

φ3

)

− v(y)= 0.2232e− 6, (3.15)

which shows the high accuracy of the method for nonlinear problems. Notice that the

direct methods for solving the variational problem provide an algebraic system of equa-

tions. Solving such equations is very time consuming. But as we saw, using the decompo-

sition procedure of Adomian, the solution of the problem is obtained very fast without

solving any algebraic system of equations.

Example 3.3. In this example we consider the following variational problem [16]:

minv =

∫ π/2

0

(

y′′2− y2 + x2
)

dx, (3.16)

that satisfies the conditions

y(0)= 1, y′(0)= 0, y

(

π

2

)

= 0, y′
(

π

2

)

=−1. (3.17)
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The corresponding Euler-Poisson equation is

y(4)
− y = 0, (3.18)

or equivalently

y(x)= 1 +
1

2!
Ax2 +

1

3!
Bx3 +L−1

4

(

y(x)
)

, (3.19)

where L−1
4 is defined for a function h(x) by

L−1
4

(

h(x)
)

=

∫ x

0

∫ t4

0

∫ t3

0

∫ t2

0
h
(

t1
)

dt1dt2dt3dt4, (3.20)

in which A= y′′(0) and B = y(3)(0).

Using the decomposition method we have

y0(x)= 1 +
1

2!
Ax2 +

1

3!
Bx3,

y1(x)= L−1
4

(

y0(x)
)

=
1

24
x4 +

1

720
Ax6 +

1

5040
Bx7,

(3.21)

and so on. By imposing the boundary conditions at x = 1 on φ4, we obtain the following

linear equations:

1.254589239A+ 0.6506494512B =−1.254589239,

1.650649451A+ 1.254589239B =−1.650649450,
(3.22)

which results in

A=−1.000000001, B = 0.1254589241e− 8. (3.23)

In Figure 3.2 the error function φ4− y(x) is plotted. Furthermore, we have

v
(

φ4

)

− v(y)=−0.4228e− 4. (3.24)

Obviously a better approximation can be found using more components of y(x).

4. Conclusion

Adomian decomposition method is used for finding the solution of the ordinary differ-

ential equations which arise from problems of calculus of variations. It is also important

that the Adomian decomposition method does not require discretization of the variables.

It is not affected by computation round errors and one is not faced with necessity of large

computer memory and time. The decomposition approach is implemented directly in a

straightforward manner without using restrictive assumptions or linearization. Compar-

ing the results with other works, the Adomian decomposition method was clearly reliable

if compared with the grid point techniques where the solution is defined at grid points

only. It is important that this method unlike the most numerical techniques provides a

closed form of the solution.
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Figure 3.2. Error function φ4− y(x) for 0≤ x ≤ π/2.
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