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ABSTRACT 

Water demand is a result of human behaviour. Human behaviour is characterized by daily and 

weekly cycles, and therefore water demand also shows daily and weekly cycles. The human 

behaviour and the short term water demand deviates from the normal cycles in 2 types of situations: 

1: at special days or periods (like national holidays, or vacation periods): 2 at changes in the 

weather. In both situations not only the daily water consumption deviates from the normal patterns, 

but also the distribution of the quarter of an hourly demands over the day. The knowledge of the 

water demand was used to construct a water demand forecasting model. The model has been made 

adaptive, enabling to cope with fast variations in the water demand caused by weather conditions, 

slower seasonal variations in the water demand and even slower changes in the water demand 

caused by socio-economic changes. 

 

INTRODUCTION 

 

Demand prediction for control of water supply systems 

The general goal for any water supply utility is to constantly supply water to all customers of good 

quality and under sufficient pressure (Zhou et al., 2002, Herrera et al., 2010). To achieve this, 

frequent adjustments of pumps, valves and other controls of the water supply system are needed in 

order to balance supply and demand (Zhou et al., 2002). The balancing of supply and demand is the 

normal daily operation of a water supply system. Initially the daily operation was done manually by 

operators, who intuitively made predictions of the water demand. They made this prediction based 

on their experience, taking information into account such as day of the week, hour of the day, water 

demand in previous days, weather, special events like holidays, et cetera. 

Around the mid 1970’s water utilities started automating their water supply systems by installing 

and operating telemetry and Supervisory Control And Data Acquisition (SCADA) systems (Bunn 

and Reynolds, 2009). The control loops of the first automated water supply systems were rather 

straightforward, resulting in inefficient operations in respect to energy consumption and costs, and 

fluctuations in the production flow. In order to increase the efficiency of the automatic control more 

sophisticated algorithms were developed and implemented, resulting in significant savings. Bakker, 

et al., 2011, reported energy efficiency improvements of 3%, and energy cost saving of 5% at 

optimally controlled systems in the Netherlands. Bunn and Reynolds, 2009, report energy efficiency 

improvements of 6%-9%, and the energy cost savings of around 12% at systems in the United 

States. 

 

All algorithms for (near) optimal control contain a model for the prediction of the water demand for 

the next 24 to 48 hours (like Bunn and Reynolds, 2009, and Cembrano et al., 2011). The necessity 

of a water demand prediction model for (near) optimal control, has been one of the dominant 

reasons for researchers to develop water demand prediction models (Alvisi et al., 2007, Bárdossy et 

al., 2009, Ghiassi et al., 2008, Homwongs et al., 1994, Herrera et al., 2010, Jain et al., 2001, Jowitt 

and Xu 1992, Shvartser and Shamir, 1993, Zhou et al., 2000, Zhou et al., 2002). 



Time scales demand prediction 

The prediction of water demand can be done on different time scales. Qi and Chang, 2011, and 

House-Peters and Chang, 2011, present an overview of water demand prediction models on various 

time scales. The time scale for any prediction model is dictated by the purpose for which the 

prediction model is to be used (Bakker et al., 2003). Planning issues for constructing water supply 

infrastructure demand a long term prediction model for the next 5-25 years (unit m
3
/year, or 

maximum daily demand m
3
/day). Issues for the use of raw water sources (e.g. river, reservoir, 

ground water) or for planning large scale maintenance activities require a medium term prediction 

model for 1-2 years (unit m
3
/day). For the daily operation of treatments plants and pumping stations 

a short-term prediction model for the next 24-48 hours is needed. The unit can be either 1 or 2 

values in m
3
/day for general production flow control of water treatment plants, or (quarter of an) 

hourly values in m
3
/h  in a pattern for detailed distribution pump scheduling and operation of clear 

water reservoirs. 

 

Extensive research has been done to the prediction of the daily demand, like Maidment and Miaou 

1986, Lertpalangsunti et al., 1999, Zhou et al., 2000, Jain et al., 2001, Joo et al., 2002, Aly and 

Wanakule, 2004, Wong et al., 2010, Msiza and Nelwamondo, 2011. Other researchers also studied 

water demand at a smaller time scale. Prediction of water demand on an hourly basis is described by 

Jowitt and Xu, 1992, Shvartser et al., 1993, Homwongs et al., 1994, Zhou et al., 2002, Bunn et al., 

2006, Alvisi et al., 2007, Ghiassi et al., 2008, Herrera et al., 2010. Jowitt and Xu use for three 

different templates for the day types Weekdays, Saturdays and Sundays to predict the diurnal 

demand pattern. 

 

Development of an adaptive pattern-based demand prediction model 

A difficulty in implementing a water demand prediction model is that in general an extensive 

analysis of historical water demand data of the supply area is necessary. This process is time 

consuming and costly, and sometimes impossible in no complete data set is available. In order to 

overcome this problem, an adaptive water demand forecasting model was developed, which is 

presented in this paper. The adaptive pattern-based demand prediction model, predicts the water 

demand for the next 48 hour, on an quarter of hourly basis. The model has been implemented since 

1996 and now predicts the water demand in 75 different supply areas in the Netherlands (see Figure 

1). 

 

Figure 1: User interface water demand prediction model 

 



METHODOLOGY/ PROCESS 

 

Analysis of different water demands 

In most water supply systems the major part of the water demand consists of domestic demand. 

When analysing water demand trends of such areas, daily and weekly patterns will be observed. The 

people living in the areas have a highly repetitive life pattern: waking up, showering, go to work, 

come home, prepare dinner, showering, and go to bed. This results in a highly repetitive water 

demand pattern, for normal working days, Saturdays and Sundays. In order to get a better 

understanding of water demand, the water demands of 9 different supply areas in different parts of 

the Netherlands over a period of 5 years (2007-2011) were analysed. For each area all water flows 

flowing into the area (from treatment plants, pumping stations and reservoirs) were summed (and 

reduced with the flows flowing out of the area) in order to derive the water demands. Each number 

in the datasets represents the water consumption by all customers in the area, plus all (occasional 

and planned) water losses in the area. The total water losses in the Netherlands are relatively low 

(3%-7% for all water companies, Beuken et al., 2007), and relatively constant because of limited 

variations in pressure. The influence of water losses on the water demands is therefore small. Each 

dataset consist of the water demand per 15 minutes in m
3
/h over a period of 5 years (175,296 

values). The characteristics of the areas are shown in Table 1.  

 

Table 1: Characteristics of the investigated water demand data sets 

Area Company Average demand Type Orientation 

1. Amsterdam Waternet 7,540 m
3
/h urban Central West 

2. Rijnregio Dunea 2,295 m
3
/h urban / (rural) West 

3. Tilburg Brabant Water 1,523 m
3
/h urban / (rural) South 

4. Almere Vitens 1,160 m
3
/h urban Central 

5. Helden WML 291 m
3
/h rural South East 

6. Drachten Vitens 256 m
3
/h rural North 

7. Wassenaar Dunea 211 m
3
/h urban / (rural) West 

8. Valkenburg WML 73 m
3
/h rural South East 

9. Hulsberg WML 18 m
3
/h rural South East 

 

Quarter of an hourly water demand patterns 

By analysing the quarter of an hourly water demand patterns, it was observed that during large parts 

of the year the demand patterns are highly repetitive in a weekly pattern. The water demand pattern 

at each day (Monday, Tuesday, et cetera) in an area, shows similarity with the water demand pattern 

on the same day the week before. This observation is illustrated in Figure 2, where the water 

demands of 5 subsequent Mondays are shown in the 9 areas. Although the patterns in the different 

areas can differ largely from each other, the patterns within each area have a high similarity. Note 

that the demand patterns in the bigger and more urban areas (1. Amsterdam and 4. Almere) have a 

higher similarity than the demand patterns in the smaller and more rural areas. The repetitive 

character of the water demand patterns is not only observed for “normal” days, but also for 

incidentally occurring special days like national holidays. This observation is illustrated in Figure 3, 

where the water demands of New Years Day of 5 subsequent years are shown in the 9 areas. In 

Figure 3 the higher similarity of the demand pattern in bigger and more urban areas can be observed 

as well.  
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Figure 2: Uniformity of water demand patterns on subsequent Mondays (10 January 2011-7 

February 2011). The graphs are ordered by water demand (1. Amsterdam has highest water 

demand; 9. Hulsberg has lowest water demand) 
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Figure 3: Uniformity of water demand patterns on subsequent New Years Days (2007-2011). Note 

that in the Helden area in 2007 a pipe burst occurred around 4:00. 
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Figure 4: Difference in water demand pattern on a “normal” Monday (1 December 2008) and on a 

Monday in a vacation period (22 December 2008, Christmas Holidays) 
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Figure 5: Difference in water demand pattern on a “normal” Monday (5 May 2010, Tmax = 12.4 

°C) and on a Monday with fair weather (28 June 2010, Tmax = 26.8 °C). The factor indicates the 

difference in daily water demand between both demands. Note that on 28 June 2010 at 16:00 an 

important soccer match started, which is visible in the water demands at all areas 

 



During several periods or at certain days in each year, the water demand patterns divert from the 

normally observed patterns. Figure 4 illustrates the deviation of the water demand pattern during 

vacation periods of primary schools. In all supply areas a delayed rise of the demand in the morning 

can be observed, probably caused by many people having vacation and not going to work, despite 

the fact that it is normal working day. This diversion from the normal pattern in vacation periods is 

–like the diversion from the pattern on New Years Day shown in Figure 3– repetitive for each 

vacation period. Figure 5 illustrates the deviation of the water demand pattern during days with fair 

weather. On average the weather conditions in the summer in the Netherlands are moderate, but 

occasionally periods of 1-2 weeks with higher temperatures and more sunshine occur. Those 

weather conditions result in higher water demands, especially in the evenings between 17:00 and 

23:00. The extra demand is the result of people sprinkling their gardens (Bakker et al., 2000). 

 

In order to investigate the variability of the quarter of an hourly water demand patterns, the observed 

patterns were transformed to dimensionless patterns, where the average of each daily curve equals 1 

(by definition). The transformation to this dimensionless quarter of an hour factor on day i, at 

quarter of an hour j (fqoh,i,j) is done for each observed quarter of an hourly water demand Hi,j by:  
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For 8 different types of days (1-6 = normal Monday – Saturday; 7 = Sundays + national Holidays; 8 

= weekdays in primary school vacation periods), all dimensionless patterns were selected, and an 

average pattern per type of day was calculated. Next, for all quarter of an hourly dimensionless 

factors the absolute value of the deviation between the observed pattern and the average pattern for 

the concerning day type was calculated for all observed patterns. An example of an average pattern, 

an observed individual pattern and the absolute value of the deviation is shown in Figure 6. 
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Figure 6: Dimensionless average and individual observed demand pattern of a Monday in the 

Helden area, including the absolute values of the deviation between both curves 

 

Finally, the average absolute deviation for the 96 quarter of an hourly factors per day was 

calculated. The relative frequency distribution of the deviations is shown in Figure 7. The figure 

shows that for most areas the absolute average deviation is around 5-10%. The deviation in large 

areas (1. Amsterdam, 4.78% on average) is smaller than in small areas (9. Hulsberg, 10.47% in 

average). This differences show that the variability of the water demand patterns in small areas is 

higher than in large areas. Though the average deviations are rather limited, in all areas days were 

observed where the deviation exceeds 30%. This indicates that at a number of days the observed 

water demand pattern differs largely from the normal pattern for that type of day. 
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Figure 7: Relative frequency distribution of the deviation between the observed demand patterns 

and the average demand pattern for the concerning day type (the diagrams show average absolute 

deviation values per day) 

 

Daily demand figures 

When the daily water demand figures were analyzed, the same observations were made as in the 

analysis of the quarter of an hourly water demand patterns: During large parts of the year the water 

demand shows a repetitive a weekly pattern. The day to day increase or decrease of the daily 

demand shows a weekly pattern. By “correcting” the observed daily water demand for the weekly 

pattern, the changes in the water demand which can not be explained by the weekly pattern become 

visible. The corrected daily demand at day i (Di,corr) is derived by dividing the observed water 

demand of day type t at day i (Dt,i), by the typical “day of the week factor” of day type t (fdotw,typ,t): 
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For each day of the week, Monday, Tuesday, et cetera, the fdotw,typ,t is derived by dividing the 

average daily demand of day type t, by the average daily demand of all days, over a period of n 

weeks: 
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Figure 8 shows the average day of the week factors for the period 2007-2011 for all areas. For some 

areas the day of the week factors are all close to 1, meaning that the daily demand on average differs 

little for the different day types (areas 1. Amsterdam, 2. Rijnregio and 4. Almere). In other areas 

larger differences between the day of the week factors occur, especially for the weekend days (areas  

5. Helden, 8. Valkenburg, 9. Hulsberg). 
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Figure 8: Average “day of the week” factors 2007-2011 

 

Figure 9 shows the relative frequency distribution of the change (increase / decrease) of the daily 

water demand, for both the observed daily water demands and for the daily water demands corrected 

for the day of the week. Table 2 shows the 0.5%, 25%, 75% en 95.5% confidence intervals of the 

graphs of Figure 9. The figure and table show large differences between the investigated areas: the 

day to day change of the daily water demand in the Hulsberg area is 3-4 times larger than in the 

Amsterdam area, which shows the higher variability in the water demand in the Hulsberg area. The 

figure and table also show that the mean change (the “25% and 75%” values of Table 2) are some 

40% lower for the corrected data than for the observed data. This means that the changes in the 

daily water demand can be explained for 40% by the repetitive weekly pattern, as captured by the 

day of week factors. The other 60% are not the result of repetitive human behaviour, but of other 

phenomena. The mean change (the “25% and 75%” columns) of the corrected data, show values 

between 1% and 3.5%. This means that on average the changes in the daily water demand (not 

caused by a weekly pattern) is limited to 1% (Amsterdam, large area) to 3.5% (Hulsberg, small 

area). 
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Figure 9: Relative frequency distribution of the change of the daily water demand for the observed 

data and for data corrected for the day of the week 

 



For the largest changes of the daily water demand (“0.5%” and “95.5% column of Table 2) the 

differences between observed and corrected data are smaller: some 15%. This means that large 

changes in the daily water demand are for 85% caused by random or unexplained phenomena. The 

largest changes of the daily water demand (of the corrected data), show values between 8% and 

25%. This means that occasionally (0.5% of time, which equals some 2 days per year) the water 

demand changes largely from one day to the next. This “unexplained” change of the water demand 

(“0.5%” and “95.5% columns), is 5 to 8 times larger than the average change of the daily demand 

(“25%” and “75% columns). 

 

Table 2: Confidence intervals of the frequency distribution of the change of the daily water demand 

 Observed data Corrected data 

interval 0.5% 25% 75% 95.5% 0.5% 25% 75% 95.5% 

1. Amsterdam 

2. Rijnregio 

3. Tilburg 

4. Almere 

5. Helden 

6. Drachten 

7. Wassenaar 

8. Valkenburg 

9. Hulsberg 

-8.5% 

-11.9% 

-16.9% 

-12.7% 

-25.5% 

-22.2% 

-21.5% 

-19.9% 

-34.5% 

-1.4% 

-1.5% 

-3.3% 

-2.3% 

-3.3% 

-3.8% 

-2.7% 

-5.3% 

-6.4% 

1.5% 

1.9% 

2.0% 

2.8% 

3.7% 

3.2% 

3.0% 

5.2% 

5.3% 

7.6% 

9.4% 

17.6% 

9.8% 

21.8% 

18.1% 

13.8% 

20.4% 

30.7% 

-8.3% 

-10.2% 

-13.4% 

-11.0% 

-20.5% 

-19.7% 

-19.1% 

-15.7% 

-25.9% 

-1.0% 

-1.1% 

-1.4% 

-1.3% 

-1.7% 

-1.9% 

-1.9% 

-2.1% 

-3.4% 

1.0% 

1.2% 

1.6% 

1.4% 

2.1% 

2.1% 

2.2% 

2.3% 

3.5% 

7.0% 

8.8% 

13.6% 

9.2% 

14.9% 

15.7% 

13.8% 

14.1% 

24.1% 

 

Gradual changing day of the week factors and demand patterns 

The repeating water demand factors and water demand patterns are not fixed in time. Within the 

year and over a longer period of a number of years the day of the week factors and the typical 

demand patterns for each day of week gradually change. For one of the investigated areas older data 

was available going back 20 years. From this data the gradual changes are illustrated in Figure 10. 

The figure shows that the traditional lower demand on Sundays (9% lower than the average demand 

in 1991) has almost disappeared in 2011. And the demand patterns show that in the water demand 

on Mondays a shift has taken place from day hours (between 8:00 and 18:00) to evening hours 

(between 18:00 and 0:00).  
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Figure 10: Gradual change in demand factors (day of the week factor, left graph) and demand 

patterns (winter Monday pattern, right graph) in a period of 20 years in the Helden area 



Summary observed water demands 

Based on the observations of water demand figures of different water supply areas, a number of 

conclusions were drawn about water demands. The water demand, both for the demand pattern on a 

day as well as the total daily amount, in large parts of the year is characterized by weekly repeating 

patterns. This is observed for all investigated areas, though the demand factors and demand patterns 

can be quite different between different areas. Also the variability (deviations from the normal 

patterns) differs between areas: larger / urban areas have a lower variability than smaller / rural 

areas. In 2 types of situations the water demand diverts from the normal patterns. The first type of 

situation is at special days or periods (like national holidays, or vacation periods). At those days 

people divert from their normal living / working pattern, which results in aberrant water demand. At 

national holidays people don’t work and shops and factories are closed, and the water demand 

resembles the water demand on Sundays. In primary school vacation periods, (part of) the people 

get up later in the morning, because there is no need to bring the children to school or because they 

are on holiday. This behaviour results in a delayed and smoothed morning water demand peak, 

compared to the normal water demand. Typical for this type of deviations from the normal water 

demand, is that the dates are known in advance and the demand patterns and factors are similar to 

the patterns and factors of previous national holidays and vacation periods. Although the demand 

patterns at those types of days differ from the normal pattern, the patterns themselves are typical for 

the type of day (as is illustrated in Figure 3 for the water demand on New Years days). 

 

The second type of situation where the water demand differs from the normal water demand is at 

days with unusual weather conditions, like exceptional warm and dry weather. In the investigated 

areas was observed that the water demand can change largely due to changing weather conditions 

(see Figure 5). Typical for this type of deviations from the normal water demand, is that the dates 

are not known in advance, and the deviations in the water demand can occur at any day between 

early spring and late autumn. Also the increase of the daily water demand and the deviation from the 

normal demand pattern show a large variability. 

 

Description of the water demand prediction model 

Based on the observations of water demand, a fully adaptive water demand prediction model was 

constructed. The model predicts the water demand for the next 48 hours on a quarter of an hourly 

basis. Each quarter of an hour the prediction is calculated anew, moving forward the vector with 

predicted water demands for the next 48 hours. The main input of the model is the actual (real time) 

measured water demand in the area. The other input of the model is a calendar with (future) dates of 

national holidays and primary school vacation days. Currently, no other inputs are used in the 

model. The model predicts the water demand in three main steps. In step 1 the average water 

demand for the next 48 hours is predicted; In step 2 the normal water demand for the individual 

quarters of an hour is predicted; In step 3 the extra sprinkle water demand in the evening for the 

individual quarters of an hour is predicted, if applicable. 

 

The prediction of the average water demand for the next 48 hours in step 1 is based on the measured 

water demand of the previous 48 hours. In order to filter out the influence of the day of the week, 

the measured quarter of an hourly previous water demands on day i at quarter of an hour j (Hi,j) are 

corrected by dividing the value with the typical day of the week factor (fdotw,typ,t) of the concerning 

day type t:   
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The predicted average water demand (Hpred,corr) for the next 48 hours is based on the average 

corrected water demand of the previous 96 quarters of an hour (Hq={0:-95},corr) and the 96 quarters of 

hour before (Hq={-96:-191},corr): 
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The constants C1 and C2 are set at 0.8 and 0.2 making the more recent previous water demands 

weigh heavier than the older demands. By using this formula the predicted average water demand is 

based on a relative short period of previous demands (previous 48 hours, with emphasis on the 

previous 24 hours) . This results in a quick adjustment of the predicted water demand, after a change 

of the observed water demand. As observed in the water demands of 9 areas, the average change in 

the daily water demand is smaller than 1%-3.5% on half of all days. This means that by using this 

formula, the prediction will have an error on everage of 1%-3.5% on daily values. 

 

In step 2 the normal water demand for the individual quarters of an hour on day i at quarter of an 

hour j (Hpred,norm,i,j) for the next 48 hours is predicted. This is done by multiplying the predicted 

average demand, by the concerning typical day of the week factor for day type i (fdotw,typ,i) and the 

typical quarter of an hour factor for day type i and quarter of an hour j (fqoh,typ,i.j):  
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In step 3 the extra sprinkle water demand in the evening (which occurs during fair weather periods) 

is predicted, if applicable. The prediction of this sprinkle demand, is based on the identification of 

sprinkle demand in the previous 48 hour. The prediction model identifies sprinkle demand by 

“fitting” the demand curve (which consists of 96 factors fqoh,typ,i,j) on the first 68 quarters of an hour 

of water demands on a day. The first 68 quarters of hour corresponds to the time frame between 

midnight and 5 PM, which is the time frame where no sprinkle water demand occurs, as can be seen 

in Figure 5. The fitting of the demand curve is done by multiplying the factors fqoh,typ,i,j with a factor 

D, where: 
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In the quarters of an hour between 5 PM and midnight extra sprinkle demand can be observed. The 

model calculates the sprinkle demand (Hsprink,i,j) by taking the difference between the measured 

water demand and the normal water demand according to the fitted demand curve in the indicated 

time frame (j = 69 to 92, on the other hours j=1 to 68 the sprinkle demand is 0): 
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Figure 11: Identifying sprinkle demand by comparing measured demand with the normal expected 

demand according to the fitted normal demand curve  

 

 



The predicted average sprinkle demand (Hpred,sprink) for the next 48 hours is based on the average 

sprinkle demand of the previous 96 quarters of an hour (Hq={0:-95},sprink) and the 96 quarters of hour 

before (Hq={-96:-191},sprink): 
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The constants BC1 and BC2 are set at 1.1 and 0.1 making the more recent previous observed sprinkle 

demands weigh heavier than the older demands. By using this formula the predicted sprinkle water 

demand is quickly adjusted once sprinkle water demand is identified. This is necessary because 

sprinkle water demand can develop rather quickly, quicker than the change in the normal water 

demand. 

 

Like the prediction of the normal demand, the predicted average sprinkle demand must be 

transferred to the individual quarters of an hour on day i at quarter of an hour j (Hpred,sprink,i,j) for the 

next 48 hours. This is done by multiplying the predicted average sprinkle demand, by the 

concerning quarter of an hourly sprinkle factor for day type i and quarter of an hour j (fsprink,i.j): 
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The total water prediction (Hpred,tot,i,j) is derived by summing the predicted normal demand and the 

predicted sprinkle demand:  
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3

,,,,,,,,, h
m

jisprinkpredjinormpredjitotpred HHH +=  ( 11 ) 

 

Adaptive factors and curves 

As can be seen from formulas above, the model uses different factors which are typical for the 

characteristics of the water demand in the area: the typical day of the week factors (fdotw,typ,i), the 

typical quarter of an hour factors (fqoh,typ,i.j) and the typical sprinkle factors (fsprink,typ,i.j) for day type i 

and quarter of an hour j. All these factors are adapted by the model based on the measured demand, 

which is the main input of the model. Initially the model starts with standard default values for all 

factors, and once the model is running, it starts updating the factors based on the observed demands 

of the area. Each day at midnight the model stores the water demand information of the previous 

day: along with the type of day, the daily water consumption is stored (Di), the dimensionless 

quarter of an hourly demand factors (fqoh,i,j, according to formula 1.) and the dimensionless quarter 

of an hourly sprinkle factors (fsprink,i,j, also according to formula 1., but with observed sprinkle 

demand Hsprink,i,j, rather than with observed normal demand Hi,j). The sprinkle demand factors are 

only stored if extra sprinkle demand has actually occurred (in the prediction model this is the case if 

the average sprinkle demand exceeds 10% of the average normal demand). The prediction model 

uses the stored data to derive the typical factors which are used in the prediction. The typical day of 

the week factors (fdotw,typ,i) are calculated by using formula 2, over a time frame of 7 weeks (n = 7). 

The typical quarter of an hour demand factors (fqoh,typ,i,j) are calculated by taking the average of the 

stored previous 7 factors for day type i and quarter of an hour j. In the same manner the typical 

quarter of an hour sprinkle factors (fsprink,typ,i,j) are calculated. 

 

The model distinguishes a number of different day types for which the factors are determined 

separately: 7 types for the normal Monday till Sunday, 3-5 types for weekdays in vacation periods 

(depending on how many different vacation periods occur in the area), and 2-5 types for individual 

aberrant days (like New years day, Good Friday, Liberation day). For each distinguished day type, 

the dates in the future when the type of day will occur, have to be filled in the calendar menu. This 

is necessary for the correct prediction (taking the proper typical factors), as well as for storing the 

water demand information (assign the demand information to the proper type of day). 



RESULTS 

 

Analysis of the demand prediction in 10 areas in 2007-2011 

To assess the reliability of the prediction model, simulations with 9 different historic datasets of the 

period 2007-2011 were carried out. In the simulations the model was used to predict the water 

demand. Of all investigated areas, also data of (a part of) 2006 was available. With this data the 

simulations could be started in 2006, enabling the prediction model to adapt the typical demand 

factors to the demand characteristics of the simulated area. 

 

Prediction accuracy 

In order to asses the accuracy of the model the predicted values were compared with the measured 

values. Both the accuracy of the prediction of the daily water demands as well as the accuracy of the 

prediction of the water demand per quarter of an hour was investigated. For each simulated day i of 

the dataset from 2007 until 2011 (1,826 days) the relative prediction error per day (ED,i) and the 

(daily average of the) absolute relative prediction error per  quarter of hour (EH,i) were calculated:  
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Where Dmeas,i and Dpred,i the measured and predicted daily water demand at day i represent, and 

Hmeas,i,j and Hpred,i,j the measured and predicted quarter of hourly water demand at day i and quarter 

of an hour j. Table 3 shows the 0.5%, 25%, 75% en 95.5% confidence intervals of the prediction 

errors per day, and the average, and 95.5% confidence interval of the (absolute average per day) 

prediction error per quarter of an hour. Figure 12 shows the average values for the individual years 

2007 to 2011. 

 

Table 3: Confidence intervals of the prediction error of the daily water demand, and the absolute 

prediction error of the quarter of an hourly water demand (average per day), 2007-2011 

 Day prediction Quarter of an hourly prediction 

interval 0.5% 25% 75% 95.5% average 95.5% 

1. Amsterdam 

2. Rijnregio 

3. Tilburg 

4. Almere 

5. Helden 

6. Drachten 

7. Wassenaar 

8. Valkenburg 

9. Hulsberg 

-4,4% 

-6,6% 

-6,8% 

-6,3% 

-12,9% 

-12,7% 

-11,6% 

-9,6% 

-16,2% 

-0,7% 

-0,8% 

-1,0% 

-1,0% 

-1,4% 

-1,6% 

-1,6% 

-1,7% 

-2,5% 

0,6% 

0,6% 

0,8% 

1,0% 

1,1% 

1,2% 

1,2% 

1,2% 

1,9% 

4,2% 

4,7% 

7,0% 

5,8% 

10,3% 

9,6% 

8,6% 

8,5% 

13,8% 

3,2% 

4,1% 

4,4% 

4,5% 

6,1% 

7,1% 

7,3% 

6,3% 

9,8% 

8,9% 

11,7% 

13,3% 

14,2% 

20,9% 

23,7% 

17,5% 

17,1% 

35,6% 
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Figure 12: Average prediction errors per year of different areas  

 

The results of the water demand prediction model are in line with the observations from the water 

demand data sets (Figure 7and Table 2). As observed in the data sets, the variability of the demands 

is smaller in larger / more urban areas (1. Amsterdam, 2. Rijnregio, 4. Almere) than in smaller / 

more rural areas (5. Helden, 8. Valkenburg, 9. Hulsberg). The smaller variability in the water 

demand results in smaller prediction errors by the water prediction model. This indicates that 

accuracy of the prediction model is largely determined by the variability of the water demand in the 

area. Figure 12 shows the prediction errors of the individual years. The figure shows that the 

accuracy from one year to another is not constant but varies (the variation in accuracy is some 20-

40%). Despite the fact that the same model is used for the demand prediction in one area, the 

performance of the model in term accuracy varies from one year to another. This is another 

indication that the performance of the water prediction model is determined by the variability of the 

water demand in the area.  

 

The observed prediction errors of the water prediction model (Table 3) are smaller than the 

observed variability in the water demand of the datasets (Figure 7and Table 2). This indicates that 

the prediction model achieves a higher accuracy than can be expected based on the variability of the 

water demand. This higher accuracy can be explained by the fact that the adaptive functionality of 

the prediction model continuously updates its used demand factors, based on the history of the 

previous 7 weeks). This gradual change of the used factors results in smaller deviations, than using 

the average factors of the complete dataset of 5 years. Another difference is that the prediction 

model distinguishes more different day types (14 types) than were used in the analysis of the 

variability of demand (8 types). Finally the functionality for the prediction of sprinkle demand in the 

prediction model, results in smaller deviations in periods with large volumes of sprinkle demand. 

 

The results show that the (relative) prediction errors are smaller when the average demand in the 

area is bigger. The relation between the water demand and the prediction error was further 

investigated by plotting the relation in a diagram. Because of the large range of the water demands, 

plotting the relation in a normal X-Y diagram proved to be not informative. Therefore the relation 

was plotted in a logX-Y diagram, see Figure 13. 
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Figure 13: Relation between the water demand in the area and average absolute prediction error 

(left=prediction error per day, right=prediction error per quarter of an hour) 
 

Figure 13 shows a correlation between the average prediction error and log value of the water 

demand (Uavg), which is estimated at: 

 

 ED = 3.9 – 0.35 ln(Uavg) [%], R
2
=0.77 

 EH = 12.3 – 1.05 ln(Uavg) [%], R
2
=0.78 

A strong correlation was not expected, because some of the systems with comparable water 

demands (5. Helden, 6. Drachten and 7. Wassenaar, water demand around 250 m
3
/h) showed 

considerable variation in prediction accuracy. This indicates that the water demand is not the only 

factor influencing the predictability of the water demand, but that local characteristics (urban / rural, 

touristic / non-touristic) also influence the prediction accuracy. However, the correlation is 

sufficiently strong to make a first estimate of the expected prediction accuracy when the prediction 

model is applied. 

 

 

CONCLUSION 

 

Each water supply area has its own characteristic weekly repeating water demand pattern. In large 

parts of the year the water demand occurs according to this pattern. During some periods or some 

days, the water demand deviates from this pattern. On the one hand this deviation is related to 

special days or periods which are known in advance (like national holidays and vacation periods), 

on the other hand this deviation is related to special weather conditions. The variability of the water 

demand during normal periods, and the degree to which the water demand deviates during special 

periods or days, is different for each area. In general, the variability of the water demand decreases 

at in increasing average water demand in the area. 

Based on the observations of water demands, an adaptive demand prediction model was constructed 

en tested on 9 datasets with 5 years of data. The tests were done with identical parameters and initial 

demand factors in the prediction model for all 9 different data sets of water demand. The results 

showed that the prediction model was capable of predicting the water with a higher accuracy than 

the average variability of the water demand in the areas. This higher accuracy could be achieved by 

the model, because the model automatically adjusts demand factors (which are used in the 

prediction) based on the observed demand in the previous weeks. The adaptive functionality enables 

the model to be implemented without any prior data analysis. 
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