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THE USE OF ANTICOMMUTING INTEGRALS IN 

STATISTICAL MECHANICS III 

By 

Stuart Samuel* 

Lawrence Berkeley Laboratory 
University of California 
Berkeley, California 94720 

June 22, 1979 

ABSTRACT 

LBL-9347 

Using anticommuting variables, approximation methods 

are developed to attack unsolved statistical mechanics 

models. These include Ising models, general dimer models, 

polymer systems, and the general eight-vertex model. A 

large number of new calculational methods and results are 

obtained. A list of these can be found in the Introduction 

to which the reader is referred. Anticominutirigvariables 

appear to be a powerful approach to unsolved problems. 

*"This work was supported by the High Energy Physics Division 

of the U.S. Department of Energy under contract No. W-7405-ENG-48. 

Address after September 15, 1979 is the Institute for Advanced 
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I. INTRODUCTION 

Two previous papers
1

•
2 

have developed the use of anticommuting 

variable integrals in statistical mechanics. They showed how many 

models can be expressed as "fermionic" field theories. Some'models, 

such as the two-dimensional Ising model, free-fermion ferroelectric 

vertex models, and planar close-packed dimer models, had quadratic 

actions. In this case the anticommuting variables solved the model 

in a page of algebra. It was trivial to extend the techniques to 

correlation functions. Using the methods and results in Sees. V and 

VI of paper II any Ising spin correlation function could be calculated. 

This included, for example, the product of ten spins. The anticommuting 

variables are powerful techniques. They will form the foundation of a 

large body of a large body of future work. 

This paper uses the formalism in the first two. It follows 

their notation, conventions, techniques, and graphical transcriptions. 

Most physical systems are not exactly solvable. Therefore, 

methods which exactly solve models but which cannot be adapted to 

unsolved models are not nearly as useful as those which can handle 

both. The anticommuting variables are in the latter class. Papers 

I and II showed that they can solve the solvable models with ease. 

This paper will show how they can generate viable approximation schemes. 

Where numbers are calculated, excellent accuracy is achieved. .These 

are not crude approximation.methods; they are good approximation 

methods. 

This is just the beginning. This paper uncovers only a subset 

of the many possible approximation techniques available. This will 

certainly be an active area of future research: to establish new 
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techniques as well as adapting old many-body theory techniques. The 

numbers of models to which anticommuting variables can be applied seems 

limitless. This paper considers dimer and polymer systems, Ising 

models, and ferroelectric models in one, two, three, and more 

dimensions. Another area of future work will be the application .to 

other physical systems. ·In short, this is just the beginning. 

The method is completely new.· There are other techniques in 

the ~literature with which anticommuting variables might be confused. 

These other techniques are different. For example, there is the 

operator formalism3 •
4•5 of' Lieb, Schultz, and Mattis which solves 

the Ising model. Their basic objects are fermionic creation and 

destruction operators, b., b:, which satisfy canonical commutation 
1 1 

relations, bib j + b jbi 

completely commute: nin1 

o. . . The anticommuting· variables n. , n:, 
l.J 1 1 

+ n1ni = 0. Unlike this paper, reference 

three used a transfer matrix method. The two methods are different 

and anticommuting variables are much more powerful. Pfaffian 

methods 
4

•6 
have also been used to solve various two dimensional 

models. Whenever the anticommuting variable agtion is quadratic, 

it'is a Pfaffian according to Bq.(I. 2.7) and, in principle, can 

be solved using Pfaffian methods. The anticommuting variables are 

much more elegant. It is easier to handle technical problems such 

as minus signs, it is easier to express models in integral form, 

and it is easier to calculate correlation functions. The big dis-

advantage of Pfaffian methods, however, is their inability to 

handle "interacting fermionic" theories. There are.few examples 

where Pfaffians can be used to obtain approximations to unsolved 

models. 

• ~ 
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This paper contains many new results·. The following list 

of results, which might be part of the conclusion, serves to. indicate 

the contents of this paper. 

Section II. The three dimensional Ising model is eipressed 

as an integral over anti~ommuting variables. In this form it is 

equivalent to an interacting "fermionic "-field theory. This is an 

important result because this paper's approximation schemes become 

applicable to the Ising model. This section will form the foundation 

of future work. The' higher dimensional Ising models are also written 

as anticommuting variable integrals. 

Section III. The integral representation in Section II is 

adapted to the 'two-dimensional Ising model in magnetic field. This 

is also an interacting "fermionic" field theory. Presented next is a 

representation as a z
2 

lattice gauge theory coupled to a "fermion". 

The representations are again extended to higher dimensions. 

Section IV. This section deals with dimer models in the 

abstract, that is, the most general dimer model is considered. They 

are expressed in anticommuting variable form and many-body field 

theory methods are applied. Feynman graph rules are presented. 

Perturbation theory turns out to be equivalent to the low temperature 

expansion. The self-consistent Hartree approximation is calculated. 

The Feynman rules are adapted so that corrections to the Hartree 

approximation can be calculated. These are computed to sixth order. 

No specific model is considered·. The results of Sec. IV are valid 

for the most general dimer model. This is a new expansion. 

Section V. The methods of Sec. IV are applied to specific 

dimer models. The latticies include the d-dimensional hypercubic 

.. 'l 
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lattics (such as tbesimple quadratic and simple cubic lattices), the 

planar triangular, the tetrahedral, the body-centered cubic, and the 

face-centered cubic lattices. A special set of Feynman rules are 

derived for translationally invariant lattices. Embedding graphs 

(and their weights) are found to 5th order for close-packed lattices 

and to 6th order for loose-packed lattices. This allows a rapid 

computation of the Hartree-improved expansion to 5 or 6 orders. The 

method is applied to sixth order first for the two-dimensional dimer 

problem and then for the d-dimensional hypercubic lattices. This is 

for the non-isotropic case in which Boltzmann factors in different 

directions need not be equal. In the isotropic case, it is found 

that the d-dimensional hypercubic dimer problem is exactly solvable 

as d becomes large as long as the temperature is high enough. A 

1 
d 

expansion is presented. A similar analysis is applied to lattices 

with a large coordination number, q. All dimer models become exactly 

solvable as q+oo and a ~·expansion is presented. 
q 

For lattices 

with q varying from 4 to 12, molecular freedoms are computed in 

the pure dimer limit. Even at such small q values results are 

good to several per cent. For the isotropic case, previously 

established low temperature expansions are combined with Hartree 

methods to obtain the Hartree expansion from 8 to 16 orders on six 

lattices. These new series expansions accurately represent the six 

models in the entire physical region. In the region where the 

approximation method is expected to be the worst, that is, at close-

packing, molecular freedoms are computed to an accuracy of a fraction 

of a percent. Next the density and entropy are calculated. At a 

•..:;, *'' 
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density of about 90% maximum density the density and entropy are 

calculated to an accuracy of from 4 to 7 decimal places. At 50% 

density the accuracy is from 6 to 9 decimal places and at 10% density 

the accuracy ranges from 11 to 19 decimal places. These new series 

expansions are as good as any in the literature. 

Section VI. This section discusses the 1/N expansion. 

This is closely related to the random phase approximation. Another 

new dimer expansion series is obtained. Feynman rules are developed 

which allows one to easily calculate the 1/N expansion. The 

expansion is computed to two loops (order 1/N) for the d-dimensional 

hypercubic lattices. Next a discussion of the meaning of the 1/N 

expansion is presented. Given a dimer model, a new dimer model can be 

constructed called its chromodimer counterpart. They have a local 

U(N) symmetry and are exactly solvable as N+oo. An infinite class 

of limiting dimer models is solved. 

Section VII. For future use all the anticommuting variable 

correlation functions are calculated in the one-dimensional dimer 

model. Next, the general one-dimensional polymer system is solved. 

This statistical ensemble consists of dimers, trimers, quadrimers, 

••• ,which occupy two, three, four, .•• successive sites. Each species 

has a different Boltzmann f'"actor so that th.ere are an inf'"inite number 

of free parameters. Grassmann integrals solve this system in three 

lines of algebra. The anticommuting variable correlation functions 

are calculated for this general system. 

Section VIII. The transfer matrix elements for the two-

dimensional dimer model are calculated in closed form 

using the results in Sec. VII. These formulas are remarkably simply. 
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Next, the transfer matrix elements are calculated for the two-dimen-1 

sional system consisting of vertical dimers and horizontal dimers, 

trimers, quadrimers, etc. 

Section IX. The one-dimensional dimer model is used to 

approach the two-dimensional dimer model. Feynman rules are developed 

to calculate three new expansion series to two orders, three orders, 

and one loop. The first of these is a power series in zv• the 

Boltzmann factor for vertical dimers, whose coefficients are functions 

of zh correct to all orders in zh. The other two dimer series are 

of a similar structure but have a range of validity not. just restricted 

to small zv. Likewise, three new series expansions are obtained for 

the two-dimensional polymer system of Sec. VIII. Next, the two 

dimensional dimer model is written as an anticommuting variable 

integral in two additional ways. Many more (at least six) new 

expansions can be obtained from these but, for reasons of space, are 

omitted. 

Section X. This formal section discusses ways of bosonizing 

the field theories. A simple technique using auxilary fields is 

applicable to any "four-fermion" interaction. The abstract. dimer 

model is treated as an example. A second bosonization scheme is 

discussed by using Feynman graph rules. Contact is made with previous 

approximation methods. The importance of bosonization is that it 

allows the use of DHN semiclassical methods7 •
8

. 

Section XI. Simple rules are presented which calculate all 

vertex correlation functions in the free-fermion model. Several 

sample computations are presented. 

• " 

1 

Section XIII. Feynman graph rules are presented to do 

perturbation theory for the general eight vertex model. The partition 

function is computed to second order in a free-fermion breaking 

parameter. Because the free-fermion constraint can be broken in 

many ways it is possible to obtain many different approximation · 

schemes each ·of which is different and new. 

Section XIII. The Hartree-Fock equations for the general· 

eight-vertex model are presented. They are· the starting point for 

Hartree-Fock improved and 1/N expansions. 

Sections XIV. This section discusses miscellaneous 

techniques. Among these is how explicitly doing some of the anti

commuting integrals leads to interesting transformations and new 

approximation methods . The two-dimensional dimer model is used to 

illustrate this. Another result is an upper bound to the free 

energy of the three-dimensional close-packed dimer model. 

II •. THE THREE-DIMENSIONAL ISING MODEL AS AN 

INTERACTING FERMIONIC FIELD THEROY 

This section expresses the partition function for the three

dimensional Ising model as an anticommuting variable integral over 

an action, that ·is • a lattice fermionic fieid theory. Unlike the 

two dimensional Ising model where the action was quadratic
1

• the 

action of the three dimensional model involves quartic as well as 

bilinear terms. Therefore, the three dimensional model is not of 

the solvable free-fermion form but represents an interacting field 

theory. 

Section III of paper I showed how any Ising model could be 

represented in terms of anticommuting variables using the "section 

rule" method. This was a brute force method that lead to ackward 

.. •:. 
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unphysical actions involving products of anticommuting variables of 

high order. The importance of the representation of Equations (2.4)-

(2.10) is that it uses at most quartic forms and is of geometrical 

significance. This makes it more physical that the brute force 

method and yields a better starting point for approximation techniques. 

The partition function for the three dimensional Ising model is 

z = (a~y a a + J a + J a a 
' [ ~ a~=±l) exps}i ~ 1 af3y aHJ3y 20'af3y af3+ly 3 o.f3y af3"(!c . 

(2.1) 

The aaf3y are the spins which sit at integer-valued coordinates, 

a,f3,y, of a three·dimensional lattice array. The J
1

,J
2

, and J
3 

are the nearest neighbor couplings in the x,y, and z directions. 

Throughout this section the numbers 1,2, and 3 will refer to x,y, and 

z. 

The partition function has a well-knOwn geometrical low 

temperature expansion similar to the two-dimensional model except 

that one.must sum over closed polyhedrons instead of closed polygons. 

Take the configuration with all spins up (that is, a - + af3y - 1 for 

all a,f3,y) whose contribution to Z is 

f exp [Nf3(Jl + J2 + J3)]' (2.2) 

N being the. total number of sites. An arbitrary configuration is 

obtainable from the "all spins up" minimum energy configuration by 

flipping spins. Draw closed polyhedrons around regions of down spin. 

If regions of up spin occur within regions of down spin draw poly-

hedrons within polyhedrons, etc. What kinds of configurations are 

•; # 
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allowed? First, any number of non-overlapping polyhedrons can 

occur. They may intersect in the manner of Fig. la but they may not 

overlap as in Fig. lb. The configuration of Fig. lb would be 

drawn as in Fig. lc. The fact that overlap is not permitted makes 

the use of anticommuting variables ideal. Polygons, constructed out 

of anticommuting variables, cannot overlap because the square of 

a variable is zero. 

Compared to the minimum energy configuration whose Boltzmann 

factor is f [ Eq. (2.2)], an arbitrary configuration will have a 

Boltzmann factor per unit face of polyhedron, representing the fact 

that spin flip occurs across the face. If t
1

, t
2

, and t
3

, are 

the total number of faces pointing in the x,y, and z directions 

(see Fig. 2), then the Boltzmann factor is 

where 

f exp [ -2f3(t
1

J
1 

+ t
2
J

2 
+ tl

3
)] • (2.3) 

The conclusion is 

z3-d Ising(Jl,J2,J3) f zclosed polyhedrons(zl,z2,z3)' 

(2.4} 

Z (z z z ) 
closed polyhedrons 1' 2' 3 is the partition function for 

non-overlapping but possibly intersecting polyhedrons in which the 

three types of faces of Fig. 2 are weighted by zl, z2, and z3 and 

z. = exp(-2f3J.) • 
l. l. 

(2.5) 



10 

In the two dimensional model, the anticommuting variable 

action, that generated z· 
1 

d ly , consisted of three pieces: 
· c ose po _gons 

Awall' Acorner' and Amonomer· Awall drew the sides of polygons, 

Acorner formed corners, and Amonomer filled unfilled sites. Similarly, 

in three dimensions the action consists of three pieces, Aface' 

Acorner' and Amonomer" Aface draws the faces of the polyhedrons 

and Acorner joins the faces together. 

The expression for z . 
closed polyhedron 1 n terms of anti-

commitirig variables is first presented and subsequently explained. 

Z (z z z ) 
. closed polyhedrons 1 ' 2' 3 

Jdndn t exp A , 

where 

A=A +A +A 
.face corner monomer, 

A "" ( 2t 2 3t 3 =.L.Jzn n 11 n 
face aay 1 a~,S-~,y a~,S~,y a~,S,y~ a~,S,y~ 

A 
corner 

3t 3 lt 1 
+ .z n n . n n 

2 a,S~,y-~ a,S~,y~ a-~,S~,y a~,S~,y 

+zn n n 11 
lt 1 2t 2 ) 

3 a-~,S,y~ a~,S,y~ a,S-~,y~ a,S~,y~ 

E (( 2t 3 3t 2t 
aSy na,S~,y~na,S~,y~ + na,S~,y~na,S~,y~ 

+ n3t 112 + 
a,S~.Y~ a,S~,y~ 

113 n2 ) 
a,S~,y~ a,S~,y~ 

+ ( 1t n3 + 11 a~,S,y~ a~,S,y~ 
3t lt 

11 a~,S,y~ 11 a~,S,y~ 

+ 113t nl + 
a~,S,Y~ a~,i3,y~ 

n3 nl ) 
a~,S,y~ a~,S,y~ 

2t lt 
na~,s~,yna~,s~,y 

+ (111t 112 + 
a~,B~,y a~,B~,y 

2t 1 
11 a~,8~,y 11 a~,8~,y + 2 1 )] 11 a~,8~,y 11 a~,8~,y 

.. ~-

(2.6) 

(2.7) 

(2.8) 

(2.9) 

A 
monomer 

11 

~ 
a By 

[( 

2 •. 2t 3 3t ) 
n · 11 + n n 
a,S+~,y~ a,B~,y~ a,S+~,y~ a,S~,y~ 

( 

1 lt 3 3t 
+ n . n +n n 

a~,l3,y~ a~,i3,y~ a~,i3,y~ a~,i3,y~ 

( 
1 lt 2 2t )] 

+ n n· +n n 
a~.B~.y a~,B~,y a~,B~.Y a~,B~,y 

(2.10) 

The notation needs explaining. Begin with the spatial lables. 

When spins, aaSy' have integer cartesian coordinates, the polyhedrons, 

being drawn on the dual lattice, involve half-integer coordinates. 

This is because faces occur between spins. Figure 3 shows a spin, a, 

at (a,S,y) and a cube of the dual lattice enclosing a. The cube has 

six faces and twelve edges. The location of an edge is specified by 

its midpoint (as Fig. 3 illustrates). It always has two half integer 

coordinates and one integer coordinate. Edges can point in three 

directions, as shown by the three bolder lines in Fig. 3. An edge 

pointing in the x, y, or z direction will be called an x, y, or z 

edge. The anti commuting variables sit at edge midpoints • There are 

three types : 
1 2 3 

n , n , n (along with their daggered partners), which 

refer to anticommuting variables associated with x, y, and z 

directions. Coventions used in I and II are extended here: "o" 

and "x" indicate undaggered and daggered variables ; a line in the 

x, y, or z direction attached to an anticommuting variable indicates 

whether it is of 1, 2, or 3 type; the subscripts, a,S,y, indicate 

an anticommuting variable's cartesian coordinates; and arrows denote 

the ordering of bilinears. 

• 4.: . 
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Only two o~t of the three types of anticommuting variables 

occur at a particular edge midpoint. If it is an x edge, they are 

2 2t 3 3t 
the other two types, namely, n , n , n , n . Likewise for y 

and z edges. 

Aface has three terms. Each draws one of the faces of fig. 2. 

Aface involves a product of four anticommuting variables. Together 

they span a square unit of surface area as Fig. 4 illustrates. 

Figures 4(a), 4(b), and 4(c) produce the faces of Figures 2(a), 

2(b), and 2(c) and correspond to the three terms (in that order) of 

Eq. (2.8). The anticommuting variable cartesian coordinates are 

easily determined by Fig. 3. The quartic terms of Fig.4 have two 

arrows. These arrows determine the ordering of each of the two 

bilinears making up the quartic. There is never any confusion 

determining the ordering of anticommuting variables from figures 

such as Fig. 4 because bilinears commute. 

The faces in the x-direction (for example) can link to form 

larger x-directed surface areas (Fig. 5a) but faces in two different 

di:f'lf.'erent directions cannot (Fig. 5b). A makes this possible 
c·or.ner 

by using bilinear "hooks". What is needed to link the two faces in 

Fig. 5b is the object in Fig. 5c. It is of the form, n
1

n
3

, and 

acts like a hinge. Such objects are needed at the midpoints of each 

of the three types edges. Thus, Acorner has three terms. Figure 

6a shows an x edge, the possible anticommuting variables which 

could enter it, and the corners. The corners are exactly of the same 

as for the two dimensional Ising model
1

• Figures 6b and 6c shows the 

analogous objects for y ·and z edges. They represent the last 

two terms in Eq. (2.9). Perhaps a better name for A 
corner 

would 

~- " 
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be ~inge because of the manner in which the edges are joined. 

Finally, monomers are needed to fill empty sites. These 

monomers, similar ~o the two dimensional case, are given in Eq. (2.10). 

In short, the action in Eqs. (2.8)-(2.10), with its com-

plicated arr~ of indices and labels, corresponds to the simple 

pictures in Figures 4 and 6. One should alw~s think in terms of 

these pictures. 

A moment's thought reveals that the action [Eq.{2.7)J 

generates closed polygons of the type needed in Eq. (2.4). If 

face~ are weighted by the appropriate Boltzmann factors [Eq.(2.5)J 

as done in Eq. (2.~), then, up to a minus sign, the correct weights 

are obtained. A minus sign might be generated because of anticommuting 

variable reordering. The anticommuting variables must be put in nnt 

form. This involves anticommuting operations, each of which yields a 

minus factor. Fortunately, all terms are indeed positive: the quartic 

terms can be broken up into the product of the two bilinears. The. 

bilinears are only able to combine with corners ·in a two dimensional 

plane. They generate planar closed polygons like the ones in the 

two dimensional Ising model
1

• By choosing the same bilinear ordering 

as in the two dimensional model, all terms are guaranteed to be 

positive. Effectively, the minus sign problem reduces to the two 

dimensional case. Figure 7 illustrates this. 

Equations (2.8)-(2.10) can be written in compact form as 

A face ~ 
X 

I: 
• _l k 

cff<!1:lcally 

jt .i . kt 
zin+ + ~+ + n+ + 

x+vij x+uij x+vik 

k 
n+ + 

x+uik 

(2.11) 
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A 
corner 

monomer. 

~E 
.... 
X 
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L; [ jt 
Tl_.. .... 

.j<k x+ujk 

kt 
+ 

j 
Tl_.. .... n...: .... + 
x+ujk x+ujk 

k + 
Tl_.. .... 

x+ujk 

k 
Tl_.. .... 

x+ujk 

kt 
Tl_.. .... 

x+ujk 

j J Tl_.. .... 
x+ujk 

jt 
Tl_.. .... 

x+ujk 

=E E(ni .... 
jt k kt ) 

Tl_.. .... + Tl_.. .... . Tl_.. .... . ' 
.... j<k x+ujk x+ujk x+ujk x+ujk 
X 

(2.12) 

(2.13) 

where E means letting (i,j,k) (1,2,3), (2,3,1) or (3,1,2), 

where 

and 

The 
.... 
ei 

i,j;k ... 
cyclically 

~=(a,B,y) ,. 

.... l .... .... 
uij = 2 (ei + ej) 

.... l... .... 
vij = 2(ei- ej) 

are unit vectors in the i th direction I for example • 

~1 = (1,0,0)]. 

.The action in Eq. (2. 7) is bilinear except for Af ace 

(2.14) 

(2.15) 

(2.16) 

which is a product of four anticommuting variables. If it weren't 

for Aface the three dimensional Ising model would be exactly 

solvable. Aface represents an interaction term. As written in 

Eq. (2.8) the four anticommuting variables which make up a plaquette 

This in Aface are located on the edges of the plaquette. 

interaction looks non-local in the sense that the anticommuting 

.... r.:. 
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variables are multiplied at different (albeit nearby) locathms. 

This is, however, illusionary. By redefining-the location of these 

four variables to be at the center of the plaquette a local inter-

action is obtained.· Whim this is done the quadratic pieces of the 

.action (which were.previously local). will span neighboring sites and 

behave like an ordinary kinetic· energy terms. An ordinary fermionic 

theory with a four point interaction is obtained. 

From the above discussion, it's obvious how to eXtend· the 

technique to the d-dimensional Ising model. It also is expressible as 

a fermionic field theory by using objects of dimension d~l (the low 

temperature expansion). The. action will consist of bilinear terms 

plus interacting 2(d-l) products of anticommuting variables: 

A =A.· +A +A . 
polycomplex (d-l)face corner monomer 

A(d.:_l)face 

A = corner 

+ 

:E .... 
X 

I:' ( i2t. i2 
0 • 0 zi Tl_.. -+- Tl_.. -+-
11'12' • • • ,J.d 1 x+v 0 o x+uo 0 

cYclJ.cally 
1
1'

1
2 

1
1'

1
2 

idt id 

)· • • o X T]_..-+- Tl_.. .... 
x+v. o x+uo 

1 1'
1

d 
11 ,id 

:E I>~ ot jt it 
Tl1 Tlj + .... t ~ _... + + n.:;. .... Tl_.. .... 

X i <j .x+uij x+uij 
. + -.. + 
x uij x uij 

j it 
+ 

j i 

J 
Tl_,. .... Tl_,. .... Tl_,. .... Tl_,. .... 

x+uij x+uo 0 x+u. 0 x+uo 0 

l.J l.J l.J 

i3t 
Tl_,. ...: 

x+v. 'i 
1

1 3 

A = :E -~ ~ i it + j jt J 
monomer .... Tl_,. .... . Tl_,. .... Tl_,. .... Tl_,. .... 

x i<j x+uo o x+uo j x+uij x+uij l.J l. 
with the obvious notational ext-ensions. 

4 ~---

(2.17) 

i3 
Tl_,. .... 

x+uo o 
J.l'l.3 

{2.18) 

( 2.19) 

(2.20) 
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III. THE TWO-DIMENSIONAL ISING MODEL IN A MAGNETIC FIELD 

This section expresses the partition function for the two-

dimensional Ising model in background magnetic field in two ways. 

The first way uses anticommuting variables only. It has quartic 

terms in the action and hence is an interacting fermionic field 

theory. The second representation is of "mixed" form: using both 

anticommuting variables and bosonic variables. It is, in particle 

physics language, a z
2 

lattice gauge theory9 •
10 

coupled to a 

fermion. From a particle physicist's point of view this is an 

interesting representation: the four dimensional counterpart is 

a model for quark confinement. 

Let H be the magnetic field. In what follows it is 

necessary for H to be positive (or zero). 

In the H = 0 low temperature expansion in terms of closed 

polygons [Eqs. (I.3.7) and (I.3.8)], only the edges of polygons 

were weighted. Now, in addition to spin-spin interaction Boltzmann 

factors, there are magnetic field Boltzmann factors, 

exp(ScrH)~ The lowest energy configuration {with all spins up) has an 

extra factor of exp(SHN). Relative to it, each down spin must 

be multiplied by exp(-2SH). When a polygon is drawn around a 

region of down spin, each unit of area enclosed needs a factor of 

exp(-2SH). Thus, besides wall weights due to spin-spin interactions, 

there are area weight due to spin-magnetic field interactions. 

Summarizing, in the presence of an external magnetic field, the 

area of polygons must also be weighted. Thus, 

Zising(Jh,Jv' H) f Z (z z z ) ( ) closed polygon h' v' A ' 3.1 

'Of.:" f! 
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where 

f = exp(.SNH} exp [lfl(Jv + Jh)] 

zh = exp(-2i?Jv) 

(3.2) 

zv = exp(-2SJh) 

zA = exp(-2SH), 

and N is the total number of spins. Z (z z z ) 
closed polygon h' v' A 

involves the same types of pol:ygons as for the H = 0 Ising model 

and zh' zy, and zA are the weights of each unit of horizontal 

wall, each unit of vertical. wall, and each square u:iiit of polygonal 

area. 

Although the low .temperature expansion is similar to the 

H = 0 case, it is convenient to do the following: Instead of 

drawing a square around a down spin when its amongst up spin, draw 

a box around it. In general, draw polyhedrons aro.und regions of 

down spin in li.eu of poiygons. Doing this transforms the problem 

Z 1 d ly~ dr type of Section II, except that the c ose po ~e on 
into the 

third direction is only one unit thick: 

zclosed pol:ygon(zv, zh,zA) zclosed polyhedron{zl,z2,z3)' 

(3.3) 

w:here Z 1 d l:y"· dr is given in Eq. (2.6) with Equations c ose po ·~e on · 

(2.8}, (2.9}, and (2.10} replaced by 
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L: I: (same as in Eq. (2.8)), ( 3.4) 
over those y at! 

for which .the 
third coordinate 
is ...;~,0, or ~ · 

L L (same as in Eq. (2.9)), (3.5) 
over those y aB 

for which the 
third coordinate 
is .J:;,o, or ~ 

L 2: (same as in Eq. {2.10)), (3;6) 
over those y 

for which the 
third coordinate 
is .J:;,o, .or ~ 

a.l3 

z1 = exp(-28Jh), 

z2 = exp(-2SJv), 

z
3 

= exp(-f!H). 

( 3. 7) 

Notice that z
3 

is the square root of zA. This is because each 

unit of polyhedral area in the third direction (and hence each z
3

) 

enters twice for each square unit of polygonal area (see Fig. 8). 

In Equation (3. 3) many of the quartic terms are redundant. 

Metaphorically, the polyhedrons' can "gift wrap" regions of down spin 

in a simpler manner (see Fig. 9). More precisely, the faces in the 

y and z· directions, consisting of a quartic of anticommuting 

t 
variables, may be replaced by bilinears, i.e. z

2
n3 0 ~ -kn

3 
aLL kx 

Ct,p 2, 2 a,JJ•--a, 2 

ff l 
11 a.-~,8~.ona~.8~,o + 

lt 1 
z2na-~.8~.o 11 a~.a~.o and 

~- ' 
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lt 1 2t 2 
z3T\a-~,8,:8:> 11 a.~, 8A11a.,8Jz. ±~ 11 a,f*~.:8:> + 

l _l 
z 11 ~ in 
3 a.-~,8,:8:> u~,8,:8:> 

the second and third terms of:Eq.(3.4): 

~ ( 2t 2 3t . 3 
A - LJ z n n n · n · 

face - a.~ . 1 a.~,f!-~,o a.~,a~.o a.~,a ,.J:; a.~.a .~ 

A 
corner 

A 
monomer 

lt l ) 
+ z2 11 a-~.a~.o 11 a+~,a~.o 

( 3.8) 

+ LL{z 3 n!~.a,yn!~.e.r), 
y=±l-2 ae 

~ "' ( lt 3 :l lt . . LJ LJ n n· + n n 
Y=±~ aa . a~,8,y a~,8,y a~,S,y a~,8,y 

+ 
+ n3 . nl + n3 nl ) 

a.~,6,y a~,6,y a~,8,y a~,6,y 
( 3-9) 

"' ( lt 2 2t lt 
+ LJ n n + n n 

a.a a~,8~,o a~,a~,o a~,6~;0 a~,8~,o 

2t 1 2 1· ) + n n + n n , 
a~.a~.o a.~,a~,o a~,e~,o a~,B~,o 

~ "' ( 1 lt + n3 . n3t ) (3.10) 
LJ LJ 11a.~,t!,y 11 a~,8,y a~,8,y a.~,8,y 

y=:8:> at! 

"'(1 lt 
+ LJ 11 a~.8~.o 11 a~,8~,o + 

at! 

2 2t ) 
11 a~.a+'-~,o 11 <x-tJ~>,8+l::>,o • 

It is no longer necessary to hook up z variables with y variables; 

hence the missing terms in Eqs . ( 3. 9) and ( 3.10) • 

-<:_ f.:_ 
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This completes the first representation in terms of anti-

commuting variables . It is easy to extend the method to higher 

dimensions by treating the (d-1) - dimensional Ising model in a 

background magnetic field as Z 
1 1 

for (d-1)-dimensional 
· po ycomp ex 

th 
polycomplexes in d-dimensions where the d direction is only one 

unit thick. In other words, the representation of the d-dimensional 

Ising model in Eq. (2.17) can be used to represent the (d-1) 

dimensional Ising model in a magnetic field. This uses terms consis~ 

ting of a product of 2(d-l) anticommuting variables. 

The task of weight areas can also be done using a gauge field. 

Pretend, for the moment, that the polygons (or more precisely, the 

polygonal curves) are oriented. Think of such curves as charged 

particle trajectories, the orientation being associated with the 

direction of flow of charge. Coupling them to an abelian gauge 

theory (as in quantum electrodynamics) would weight the polygon's 

area because 1 + 1 dimensional QED has a linear potential. 

Unfortunately, the curves in .Z 
1 

d ly . (Eq. 3.1) are not 
c ose po gon 

oriented and this trick fails. Fortunately, the difficulty can be 

overcome by using a z
2 

gauge field instead of a U(-1) one. Being 

blind to the difference between positive and negative charges, a 

z2 gauge field works. The two dimensional z2 lattice gauge theory 

is defined by9•10 

zz 
2 
=L 

ua.~f?=±l 

uaB~ =:!:1 

exp Az ' 
2 

(3.11) 

-~.~ #. 
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where the z
2 

action is 

Az2 K ~ (ua.~Bua.+lB~ua.+~+luaa~) ( 3.12) 

In what follows, the spins have half integer cartesian coordinates, 

the gauge fields (the U's) have one half integer coordinate and one 

integer coordinate, and anticommuting variables will have integer 

coordinates. The U's are defined on links (see Fig. 10), anti-

commuting variables are defined at sites, and the spins are defined 

at dual sites (the centers of plaquettes). The action in Eq. (3.11) 

is a sum over plaquettes of the product of U's around the plaquette 

(see Fig. 10). In Eq. (3.11) the U's, like Ising spins, take on 

two values, ±1. In Eq.(3.12) K is just a coupling constant. 

zz 
2 

Use u
2 1. Expand the exponent in Eq. ( 3 .11) : 

" -, ,. ( - u u \(3.13) 
UL..J=±l cosh K + sinhKT{x~Ua+lB+'l:! a.+\;8+1 a.B~J' 
u<l~=±l aB . 
aB~ 

Next, multiply out the products. Non-zero terms occur only if each 

edge (of the plaquettes) occurs an even number of times. This 

happens. only if no plaquettes occur [contributing (4 cosh K)NJ or 

if all plaquettes occur [contributing (4 sinh K)Nj. The terms 

contributing are the product of the first factors in Eq. (3.13) 

(the cosh K's) or a product of the second factors (the sinh. K 

UUUU's). For large N the second contribution is miniscule. In 

two dimensions the z2 gauge theory is trivial: 
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N 
ZZ = (4 cosh K) • 

2 

An interesting correlation function is 

< II (U's of each link) > . 
links of C 

(3.14) 

(3.15) 

In Eq. (3.15) C · is a closed curve and the product is over the 

U's of the links comprising C. Reasoning similar to that in 

obtaining Eq. (3.14) gives for Eq.(3.15) 

area of' C 

(tank K) (3.16) 

By coupling U's to the anticommuting variables in Eq. (I.4.4) 

polygons can be weighted by a factor of tanh K per unit area. Set 

tanh K = exp(-28H), then 

I 

Zising(Jh,Jv' H) = f 

where the action, A. is 

E fdndnt exp A, 
u . =+1 
U a~B=~l 
aB~ -

A A +A +A +A 
wall corner monomer z

2 

(3.17) 

(3.18) 

A , A , and Az are the same actions as in Eq. (I.4.4) 
corner monomer 

2 
(with a

1 
= a

2 
= a

3 
= a4 = bv = bh = 1) and Eq. (3.11). Awall is 

modified to 

·..:::. ~. 
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A wall = ( ht h 
~ na6na+l6zhua~~ + 

vt v ) 
na6naB+lzvuaB+~ · (3.19) . 

In these·formulas 

zh = exp(-28Jv) , 

z = exp(-2BJ ) . v . h 
( 3.20) 

tanh K = exp(-28H) 

f' = e:92CN8H) 
exp BN(Jv + Jh) • 

(4 cosh K)N 

= 1 
(8 sinh 2K)N/2 exp BN(Jv + Jh) 

Again. the method generalizes to higher dimensions. For the 

d-dimensional Ising model in a background magnetic field • H > 0 , 

Zising(Jl,J2····,Jd, H) 
I 

f Z (z z ••• z K) d closed polycomplex 1' 2' ' d' ' 

(3.21) 

z . = 
closed polycomplex :E .fo.ndn t exp A. 

U's=+l 

The action, A, is given by Eqs. (2.18)-(2.20) with the replacement 

zi + zi U + + in A( d-l) face. Furthermore, there is a U-piece 
1 1 x+u. 

l.l 

w:nich. must b.e added to the action: 

~ K ~(it U+ +) 
x x+u. 

( 3.22) 

l. 

r.<:~ k 



-~=-

24 

The U's are to be summed over ±1. This action is the higher 

dimensional analog of the z
2 

gauge field action. It has appeared 

in the literature before
10

. Wegner calls it the Mdd-l model. 

The constant K is still given in Eq. (3.20) and 

zi = exp(-21:\Ji), 

.... 1 .... 
ui = 2 ei' 

/ = e2512 (NI!H) 
d 

exp( tiN( 'E J.)] • (3.23) 
d d N i=l J. (2 cosh K) 

IV. COORDINATE SPACE PERTURBATION THEORY FOR THE GENERAL 

DIMER PROBLEM 

This section and several following sections will deal With 

the dimer problem. This constitutes a whole class of problems since 

there are ma.ny lattices at one's disposal. The dimer problem is not 

only important because of its direct application to physical systems
11

, 

but also because of the Large number of problems which can be mapped 

into dimer form. This enhances their importance. The only models 

which have been solved are the one-dimensional dimer model and two-

dimensional close-packed models. Approximation methods are therefore 

of interest. My purpose will be twofold: First, the anticommuting 

variable technique will be used to obtain new dimer series expansions. 

These represent new approaches to the dimer system. Secondly, in 

the process of obtaining the expansions, various anticommuting 

variable approximation techniques will be illustrated. Dimer models 

~~- ... 
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are a good laboratory for testing these because of their simplicity 

and because of other existing approximation schemes to which they 

can be compared. In this sense the purpose is expository and 

pedagogical. The importance of these sections is that the approxi-

mation techniques are applicable to any model representable in 

fermionic-like field theory form (such as the.models discussed in 

sections II and III). One merely mimics the methods illustrated here . 

An extensive set of dimer references can be found in reference 

12, to which the reader is referred. I would like, however, to 

mention the folloWing: Previous approximation schemes fall into 

the following catagories: First, there are those 
13 

which solve 

aa.d;ly small finite lattices and then extrapolate to large lattices. 

This technique is known as the exact finite method: A close cousin 

is Monte Carlo
14

• There are also transfer matrix methods
15

• These 

give excellent numerical results. Next is the Bethe approximation
16

• 

It is of interest because of its simplicity both mathematically and 

physically and because of its accuracy which is reasonable. There 

are w~s of calculating corrections to the Bethe approximation17 •
18

• 

Rigorous mathematical dimer results also exist
12

•19 . The importance 

of reference 12 should not be neglected. With reasonable assumptions 

Heilmann and Lieb have shown that no phase transition can occur as 

long as monomer Boltzmann factors are non-zero. The result is 

general. It is applicable to almost all dimer models. Phase 

transitions can only occur for pure dimer systems. Finally, there 

are the series expansions. The simplest is the low temperature 

expansion in powers of the dimer Boltllimann factor. This can be 
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organized into a Mayer type expansion
20

•
21

•
22

• A great improvement . . 

. N 1 I • 18 
~s ag e s. s·er~es. • It starts with the Bethe approximation and 

generates a series using graphical methods. It systematically 

calculates corrections to the Bethe approximation, which, because it 

is a good starting point, guarantees an excellent series. Nagle's 

series is presently the best in the literature. The Hartree series 

developed in this section equals Nagle's in accuracy. It is a new 

expansion. The field theoretic Hartree method is used after express-

ing the dimer problem as a fermionic field theory.· Since dimers 

cannot overlap, fermions are natural variables: roughly speaking, 

dimers constructed out of fermions are unable to overlap because of 

the Pauli principle. The perturbative techniques developed here are 

easily extended to other systems such as trimers or more complicated 

polymers. Nagle's method has also been extended to trimers
23 

although more complicated polymeric systems have not been treated. A 

final note: reference 12. has an important implication for this 

paper's Hatree series (and also Nagle's series). It guarantees 

convergence in the entire physical region. 

This section will treat the dimer problem from a general 

point of view: A specific example will be considered in the next 

section. Key results are the Hartree approximation (Eq. 4.10) and 

the Hartree-improved Feynman rules which generate the series in 

Eq.(4.18) and Figure 18. 

In terms of anticommuting variables the general dimer 

partition function was given in Eq. (I.3.6). It is an interacting 

fermionic field theroy with a quartic interaction term 

.c; 
~' 
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1 "t"' t t 
v = 2 LJ zo.Snananans 

a6 · 
(4.1.) 

~quation (4.1) differs from Eq. (I. 3.6) in that one sums over all 

sites a and all sites a allowing zaa to be zero if no bond 

1 exists between a and a . The factor of 
2 compensates for the 

double counting in Eq. (4.1) (zaa = zaa). 

The interaction, v, is pictorially depicted in Fig. 11 

and is of the same form as a two-body potential in a quantized 

many body theory
24

• This correspondence proves useful. The bare 

propagate::, Go 
as• is determined by the quadratic piece of Eq.(I.3.6), 

that is, E n nt 
a aa 

It· is 

o -< t >-o 
GaS = nanf3 o- aS 

Perturbation theory is an expansion in powers of V 

(or zaS). Since zaS = exp(-SEaS), this is the standard low 

temperature expansion: 

Perturbation Theory Low Temperature Expansion. 

Feynman rules are similar to the usual many body theory ones24 

(4.2) 

(4.3) 

One draws all graphs using the interaction of Fig. 11. Because of 

the nature of the bare propagator in Eq. (4.2), fermion loops occur 

at a particular site. It is convenient to contract all fermion 

loops to a point. Figure 12 shows all the connected vacuum bubbles to 

third order, first in the usual way and then in the contracted form. 

The Feynman rules for contracted graphs are 

'"' 1t..c rc 
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Feyrtma.n RUles 

(a) Draw all topologically distinct graphs, consisting 

of any number of vertices. The vertices can have one or more lines 

attached to them. The vertices are assigned a site index, a. 

The empty graph is to be included and contributes one. 

(b) .For each edge (Figure 13) associate a factor, zaS 

(c) For each vertex at a with R. lines emanating from 

it (a vertex of degree R.) (Fig. 14) put in a factor of LX -1 )( R.-1) ! • 
a 

(d) The graph may be topologically invariant under 

permutation of some of its vertices. Such permutations generate a 

symmetry group of the graph which is called the point symmetry group 

of the graph. Put in a factor of [order of the point symmetry group 

1
-1 

of the graph • 

in G. 

The order of a group, G, is the number of elements 

(e) For each pair of vertices connected by R. lines (Fig. 15) 

put in a factor of Jj . 
The (-1) in rule (c) arises because the vertex was 

originally a fermion loop for which Feinman rules assign a minus 

factor. The (R.-1)! is due to the fact that R. lines entering 

a loop can be ordered in (R.-1)! ways. Figure 16 illustrates 

this for R.=4. 

If interchange of lines is considered a symmetry of a graph 

then rules (d) and (e) combine into one: 

(de) Put in a factor of [the order of the total symmetry 

group of the graph]-
1

• 

I(' .. _-
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Figure 12 shows the connected graphs· through third order 

in za8 • along with the factors from rules (b),(c), (d), and 

(e). This illustrates how the Feynman rules work. 

In rule (a) all topologically distinct graphs are to be 

considered including disconnected ones. It is well known in field 

theory that 

z = L =exp L . (4.4) 

all graphs connected 
connected or graphs 
disconnected 

that is, the connec:ted graphs exponential;e. Therefore only. connected 

graphs need be considered. Figure 12 thus gives 

1 "" 1 1 "" 2 log Z = 2 £... za8 - 2 L za8z8y + 4 £... za8 
a8 aBy a8 

+ l L za8z ay\tS 2 
a8yt5 

1 1: 1'E 2 1 'E 3 
+ 3 ai!ytS zBazyaztSa - 6a8y za!Sz8yzya - ~y za8z8y + 3 a8 zas+"' 

(4.5) 

Equation (4.5) is generic in character: it is the low temperature 

dimer expansion to third order for ~ dimer problem. 

Just as a check, consider the simplest possible dimer problem 

consisting of two sites and one dimer with weight, z. The partition 

function is 

1 + z exp(R,.n(l+z)) 
1 2 1 3 

exp (z- 2 z + 3 z +···). 

(4.6) 
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The terms in Eq.·(.4.5l, with ().,B.,y,o = 1 or 2 and :z;12 = z,. give 

1 2 1 2 . 1 3 1 3 1 3 3 . 1 3 
z- ~ 2z + ~ 2z + ~ 2z + ~ 2z - ~ ·O·z - 2z + ~ 2z + •·· 

z - l z2 + l z3 +· .. 
2 3 

(4.7) 

which checks. 

Now that the dimer statistical system has oeen expressed in 

field theory language,. standard field theory calculational methods 

are applicable. What has just been illustrated is simple coordinate 

space perturbation theory. Significant improvements can· be made; for 

example, the self-consistent.Hartree approximation. 

It can. be obtained by the replacement 

1~ + t 
2 L..Za.ana:nanana 
. a.a 

+ -
1
2 

I: z o l. nt <non.~ >H 
aa a.., r~cx a. .., .., 

+ < na.n~ >H nan~ - < na.n~ ~<nan~ >H] , 

(4.8) 

where < n nt> 
y yH 

the Hartree propagator, is determined selfconsis-' 

tently: 

Jdndnt(n nt) exp[I: n nt + :E z on nt<non! >] 
t 

. YY a. a.a. a.a a...,a.a. ..,..,H 

<n n > = -
· Y Y H [same as numerate; but without <nyn~)) 

ll + fzya <nan~ >Hrl • 
(4.9) 

~ ~-
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Equation (4. 9) .was obtained by calculating the. propagator < nyn~ > 

with the quartic term in Eq. (4.1) replaced by Eq. (4.8). 

z aS = z Sa. was used to rewrite ~ ~ zaa[ na.n~ < nant>H 

5 zaanan~ <nan~ >H and the constant 

term - t ~ za.a< nan~ >H <nan~ >H was cancelled from both 

numerator and denominator in Eq. ( 4. 9) • Equation ( 4. 9) is a 

t t] 
+ < na.na >H nana as 

system of N · (N = the number of sites) simultaneous equations. 

They can be solved in principle. In practice, one usually has 

a translationally invariant·lattice in which case Eq. (4.9) .is 

simple to solve (this will be exemplified shortly). 

The self-consistent Hartree approximation for Z is 

zH = [ ~ (1 + f za.a <nan~>H)J x exp [- ~.!i za.a< na.n?H< nan~ >HJ 

logZH= ~ R-n(l + 7 za.a< nan;~) - ~ ~ ~a <na.n?H <n 8 n~>H 

(4.lci) 

Equation (4.10), the. Hartree approximation to the partition function, 

is one of the results of this section. 

As an example, apply Eq. (4.10) to the one dimensional 

dimer problem. The exact well known anawer, obtainable from transfer 

matrix techniques, is 

T = l log Z - N 
1 1~ 

log ( 2 + 2 { 1 + 4z ) • (4.11) 

C:. r "-~ 
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Here, r is the grand potential per unit site. By translational 

invariance, Eqs. (4.9) reduce to a single one: 

< flyr{ >H = [ l + 2z < nyr\ >H rl ' 

or 

<n nt> 
y y H 

Equation (4.10) gives 

- l + ll+8Z 
4z 

(4.12) 

(4.13) 

rH log ( ~ + ~ I l + 8z ) - liz (- l + .rl+Bl 
(4.14) 

A numerical comparison of the Hatree approximation, rH of 

Eq. (4.14}, to the exact.result, f of Eq. (4.11) is given in 

Table(i). The Hartree approximation is, at most, off by 8.28% for 

the entire range of z. ·The z which yields the maximum error occurs 

near z = 2.3l. It is particularly good for small z and large z. 

It is encouraging that such a simple technique yields a reasonably 

accurate approximation for all z. 

For the d-dimensional dimer problem on a square lattice with 

weightf!, zl' z2, .•. , zd, in the first, second, ••• , dth 

the Hartree approximation is Eqs. (4.13) and (4.14) with 

directions, 
d 

z + :r; z.: 
i=l ~ 

rH 

d-dimensional dimer 
(

l l/1 8d 
log 2 + 2 + .~ 

~=l 

zi ) 

1 
d 

16 ~ 
i=l 

z. 
~ 

(- l + /1 + 8 
d 
~ 

i=l 

(4.15) 

zi) 2 

-:::- ... 
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Unfortunately, the d-dimensional dimer problem is unsolved for d > l, 

so that comparison with the exact result is impossible. 

It is common knowledge that the"Hartree approximation sums up 

the "tadpole" vacuum bubbles. A sample tadpol~ graph is shown in Fig. 

17. In terms of contracted graphs (that is, with fermion loops 

contracted to points) the tadpole graphs are the tree graphs. 

Knowing this allows· one to compute systematically the corrections to 

the Hartree approximation. Let 

~ 
< n n.t > . y y H (4.16) 

be the solutions to Eqs. (4.9). Then 

in Z = log ZH + LGH , (4.17) 

with ZH given in Eq. (4.10) and LGH is the sum over connected 

Feynman graphs with rule (c) modified to 

(c') allow only graphs with vertex degree ~ 2, i.e. graphs 

with one line coming into a vertex are to be excluded. ·For each vertex 

a and i lines enamating (Fig. 14) from it put in· a factor of 

:r; (-1) g~(i-1)! . 
a 

Feynman graph rules (a), (b), (d), and (e) remain unchanged. 

Eliminating graphs of order one reduces the number of graphs 

to be considered. For graphs with one edge the reduction is from one 

graph to none, for graphs with two edges the reduction is from two 

to one, for graphs. with three edges the reduction is from five to 

two. Not only is the Hartree expansion better than simple pertur-

bation theory over an extended region of z but it is easier to 
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calculate. ;Figure 18 displays th.e statistical ;factors due to rules 

Cc')., (d.)_, and Cel for the 'graphs in GH to sixth order in edge weight. 

The· graphs still need to be multiplied by the g 
a 

and z 
a6 

factors 

of rules (_b) and lc 1 ). The terms in Fig. 18 gener~te a result 

guaranteed to be correct to order 6 d . zaB when expande ~n powers of 

za6' Thus an answer correct to z
6 

for the general dimer problem 

has been obtained. In addition. the effects of higher order (in z) 

graphs have been included in the Hartree-improved expansion. so that 

the result can be expected to have a wider range of validity than a 

simple low temperature expansion. The terms in Fig. 18 to forth 

order are 

R.n Z 
1~222 1~ 

"' R.n ZH + 4 LJ za6ga.g6 - 6 LJ 
a6 · a6y 

2 2 2 
za. 6z6y\aga.g6~ 

1 E 3 3 3 
+ 3 za6gag6 

a6 

L z2 z z 3 3 2 
ri6y a6 6y aygag6~ 

3 ~ 2 2 242 
- 4 ~ za6z6~ag6~ 

a...,y 

+l Lz4 g4g4+"' 
4a

6
a6a6 

1"" 2222 
+ 8 £J za6z6yzyozoa.gag6~go 

a6yo 

The terms of fifth and sixth order can easily be written down 

(4.18) 

but for reasons of space are omitted. Equation (4.18) and Fig.l8 

constitute an important result in this section. 

It is clear that the ga factors can be absorbed into the 

z 
0 

factors: Equivalent to rules (b) and (c') are rules (c) and 
a.., . 

(b') with 

(b' ) for eaCh edge (Fig. J3) associate a factor of g z g . 
a a.t3 6 

><;, ~-
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The Hartree ~proved expansion is ·in powers of waS~ gaz~ 6 g 6 in 

contrast to za.6 for simple perturbation theory. In general the 

factor gazaBgB will be smaller than za.6 and for za6 large 

it should be considerably smaller. The Hartree perturbation 

series represents a marked improvement over the simple low temper

ature one. To illustrate this consider the one dimensional dimer 

problem again. For large z the Hlr1ree expansion is considerably 

better than the low temperature expansion and for low temperatures 

the Hartree expansion is just as good. Furthermore. the Hartree 

expansion parameter is 

w Hartree expansion parameter ~ 

comparei to z for the low temperature expansion. 

(- 1 +{_l_· _+....,8.-z) 2 

16z 

(4.19) 

The factor in 

Fq, (4.19) is always less than and never bigger than 1 
z 2' 

Therefore. w is less than the simple perturbation theory expansion 

parameter. It is always bounded being guaranteed to be at most of 

intermediate strength. In constrast z can become arbitrarily large. 

The Hartree expansion parameter. w. is given in column 5 of table 

( i) • For d-dimensional hypercubic dimer problem the Hartree 

expansion parameters are 

2 

CH h. s.1 ., ) 
(4.20) 

~=1 . w. = z. 4 d z 
~ ~ E i 

i=l 

and again are guaranteed to be small or at most of intermediate 

magnitude. In fact. the wi cannot be greater than i and in 

th . t . - 1 e ~so rop~c case zl = z2 = . . . = z d. wl = w2 = ... = ua = w .s. 2d 

(::, ... 
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It appears as if the expansion parameter, w, becomes s~ller as 

the dimension is increased, a point that will be discussed later. 

One may also treat the combined monomer-dimer system. The 

action is given by 

dimer-monomer 
A(z z) -""znnt 

a' aS - LJ a a a 
a 

+! 
2 E 

aS 

Zl)tl)t 
aS ananS S 

(4.21) 

which differs from Adimer in that za' the Boltzmann factors for 

monomers, are not unity. By rescaling 
1 n ~- n 

a za a 
(or by using 

simple physical reasoning} Adimer-monomer can be related to 

dimer dimer-monomer . 
A so that A 1s not any more general than 

Adimer. However, this is not quite true. In Eq. (4.21) some of the 

za may be set equal to zero (in which case corresponding sites must 

be occupied by a dimer). The rescaling transformation fails. Simple 

perturbation theory is impossible since certain propagators blow up. 

Nevertheless the Hartree expansion exists because .a finite Hartree 

propagator is generated. Thus even pure dimer systems may be treated. 

Equations are easily modified to account for Eq. (4.21). For example, 

the l's in Eqs. (4.9) and (4.10) become zy and za. The point is 

that the Hartree expansion can handle the situation of having some 

(or all) monomer Boltzmann factors zero, whereas the usual low 

temperature expansions cannot. 

V. DIMER MODELS (Continued) 

This section tackles the dimer problems on various lattices 

via the methods of the last section. These models are unsolved 

(except in the pure dimer limit for two dimensional planar lattices
25). 

Their simplicity makes them ideal for illustratingperturbative 

~- • 
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methods. One purpose of this section is to illustrate Feynman rules 

and lattice embedding effects for a concrete example. The two 

dimensional dimer model is treated in detail. Unlike the 

generic expansion ~q. (4.5)] , a specific dimer problem has lattice 

embedding factors for which it is useful to derive rules. Each term 

in Eq. (4.5) will generate several terms as the indices a,S,y, etc. 

range over sites. It is useful to group these terms into a new set 

of diagrams and define new rules. Given an interesting model that 

can be translated into anticommuting variable language, the 

calculation of several ·orders of perturbation theory can be done by 

mimicking and generalizing the methods and rules of this section. 

The second purpose of this section is to obtain new series 

expansions and accurately calculate physical quantities such as 

molecular freedoms, densities, and entropies. Models in two, three, 

and higher dimensions are considered. These computations test the 

accuracy of the Hartree expansion. It is found that is ·works 

amazingly.well. 

A list of the key results are the following: 

(a) Feynman rules are derived for dimer models on a 

translational invariant lattice. Although similar to those 

developed in Sec. IV, there are some modifications. These rules are 

presented at the beginning of this section. 

(b) Embedding graphs and their weights are computed in 

Fig. 22. Using these allows ~rapid computation of the Hartree 

expansion to five or six orders for any dimer model. 

(c) The Hartree expansion for the two-dimensional dimer 

model is computed to sixth order [s~e Eqs. (5.5), (5.6), (5.7), and 
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Fig, 24]. The non-isotropic case is cons.idered in which zh :f. zv. 

(d) . The results in (c) are extended to the non-isotropic 

hypercubic dimer problem in d dim ens ions [see Eq. ( 5 .11)1 ; 

(e) The isotropic d-dimensional hypercubic dimer model 

is exactly solvable as d + 00 as long as z is not too small. Eq. 

(5.1;3) presents a ~ expansion. Dimer models with a high coordination 

number, q, are also solvable as q + 00 • Equations (5.14) and .(5.15) 

present ~expansions. Molecular freedoms at close packing are 

. computed in this l limit for models with q ranging from 4 to 
q 

12 and are accurate to several percent (see Table (ii)). 

( ) 
. 21 

f Gaunt's low temperature expansions are·used to 

obtain Hartree expansions for isotropic dimer problems to orders 15, 

10, 16, 12, 12, and 8 for simple quadratic, planar triangular, 

tetrahedral, simple cubic, body-centered cubic, and face-centerd 

cubic lattices [see Eq.(5.16)-(5.21)]. 

(g) Using (f) molecular freedoms are computed in the 

pure dimer limit for the six lattices (see Table (iii)). Although 

in this region the Hartree series should work the worst, it gives 

good results. 

(h) Using (f) the density and entropy are calculated for 

the six lattices (see Tables. ( v) • (vi) • (vii)) and an analysis of 

the numerical results are presented. Excellent accuracy is achieved 

ranging from .1% at high temperatures to up to 18 decimal places 

at low temperatures. 

Consider first simple perturbation theory for the two 

dimensional dimer model. It is awkward and inferior compared to the 

Hartree improved series. With perturbation.theory, however, it is 

.. <:· 
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simpler to. discuss the· diagrammatic rules. They. are then easily 

modified to accompany the Hartree improved series. 

are zh 

The Boltzmann factors for horizontal and vertical dimers 

and z • 
v 

The rules for. simple perturbation· theory were 

given in the last section. To third order they,involve the graphs in 

Fig. 12 which generate the expansion in Eq. (4.5). All terms are of 

the same form: constant x r; (IT z's) .. By translational 
a .. ·a 

1 n 
invariance • one of the summing indices ( S!l¥ a

1
) IDS¥ be fixed if one 

multiplies by N, the total number of sites. Therefore, in calculatwg 

~ log z, fix one of the vertices of the graph. Each Fig. 12 graph 

generates several configurations due to embeddings. For example fix 

a to be the origin [a= (0,0)] then the sums in column three of 

Fig. 12 yield several terms. Figure 19 illustrates this for graphs 

(a) and (b) of Fig. 12. The Fig. 12a graph results in fo\ir diagrams 

(Fig. 19a) • while the graph in Fig. 12b results in sixteen diagrams 

(Fig. 19b). Notice some of the diagrams in Fig. 19 come in pairs, 

that is • the two diagrams have the same shape ( L e. a
1 

and a
2

• a
3 

and a
4

, b
1 

and b
2

, etc.). This arises, in the case of Fig.l9a, 

because of the a ++ S point symmetry in the graphs of Fig. 18a. If 

a and S are two different vertices, the symmetry maps diagrams 

al and a2 (and a3 and a
4

) into each other. The factor of 
1 
2 

in column 5 of Fig. 12 due to rule (d) is cancelled by the two 

diagrams. In general, the rule (d) factor will be cancelled among 

different diagrams all of the shape if all vertices have different 

locations. 

the a++ y 
The diagrams b - b16 in Fig. 19 are exceptions. u . 
symmetry of Fig. 12b these diagrams are invariant 

ar,el the group symmetry rule (d) factor is not cancelled . 

.{:_ ,_ 

Under 
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It is clear what happens in general for a translationally invariant 

lattice. The modified rules· are 

Rules for a Dimer Problem on·a Translationally Invariant Lattice 

(a) Draw all diagrams on the lattice with different 

~hapes. Two graphs which are translates of each other but have the 

same shape are considered equivalent. 

(b) Each edge (Fig. 13) gives a factor zas· 

(c) Each vertex of degree i (Fig. 14) gives a factor of 

(-l)i(i-1)!. 

(d) Treat vertices with different locations as being 

distinct; then there is a factor of [order of the point symmetry group 

of the diagram]-
1

. 

(e) For each (pair of vertices with t edges between 

them (Fig. 15)) there is a factor of f!. 
(f) r = !. log z 

N 
:E (weight of diagram). 

connected 
diagrams 

Figure 20 displays all diagrams to third·order and their statistical 

factors (that is, their weights with Boltzmann factors extracted). 

To third order 

!. tn z2-d dimer 
N 

3 2 2 
~ + zv- 2 (~ + z) - 4zhzv + 16zvzh(zh + zv)+ ••. 

(5.1} 

Consider now the Hartree-improved expansion. The Hartree 

propagator is [(- 1 + /1 + 8(zh + z ) )/ 4(z + z )] 
v n v 

According to 

rule (b') of Section IV, for each horizontal edge, there is a factor 

~-
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2 

wh (

.,. 1+ /1 + 8(zh + z) ) 
z~ 4(zh + z ) . v 

and for each vertical dimer, 

w 
v (

- 1 + 11 + 8(~ + z)) 
zv 4( z.; + z ) 

· n v 

2 

.. 

(5.2) 

(5.3) 

The diagrammatic rul~s are the same as in "Rules for a Dimer Problem 

on a Translationally Invariant Lattice" with the above substi~tions 

(zh + ~ and zv + wv) in rule (b) and diagrams with vertices of 

degree one are ignored. There is also a zeroth order contribution 

given in Eq. (4.15). 

It is necessary to find all embeddings of Figure 18 graphs 

onto the square lattice. Fortunately, graphs with a cycle of an 

odd number of edges cannot be embedded and do not contribute. Only 

a subset of the Figure 18 graphs need be considered. Because of the 

large number of embeddings, it is convenient to define the concept 

of an "embedding graph". Many of the Figure 1& graphs have similar 

embeddings. An embedding graph groups these together so that they 

can all be embedded at once. This proves quite useful when calculating 

the Hartree series to sixth order. Consider, for example, the graph in 

box 6 of Figure 18. In summing over the four vertex locations separate 

out those terms where two summing indices have-the same value. This 

results in a graph with the same summing structure as the box 5 graph 

of Figure 18 (see Figure 21). The embeddings of such terms from box 

6 will be the same as the embeddings of box 5, and all such terms are 

grouped together in an "embedding graph"-. Box 5 of Figure 22 is the 
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corresponding embedding graph in this example. Its weight is the sum 

of the weights of contributing graphs as Figure 23 indicates. 

Unfortunately, there appear to be no simple rules for calculating 

embedding graph weights. Figure 22 shows all embedding graphs and 

their weights to fifth order plus the sixth order loose-packed 

(those not involving cycles with an odd number of edges) ones. With 

embedding graphs, sum only over distinct vertex locations. For 

example, box 5 of Figure 22 represents the term 

,.-----o- .. 1 ( -1) 'E w2 w2 
point symmetry factor] · o:#S aS Sy 

(5.4) 

13fy 
y~ 

The [ point symmetry factor ] always goes away (basically rule {d) is 

operative but all vertices have different locations), and so it is 

omitted in Figure 22 weights. Using Figure 22 it is straightforward 

to calculated the Hartree expansion to sixth order: 

r 2-d dimer 
log(~+~ li + B(zh + zv) + r(l)(wh) 

+ r< 1 l(w ) + r< 2 l(w w ) 
v h' v 

+ ••• ' (5.5) 

where, for later convenence, terms of one-dimensional character are 

grouped into 

grouped into 

r(l)(~) 

r(l) and terms of two-dimensional character are 

r(2): 

1 2 2 3 
- wh + 2 ~ + 3 wh 

"""- .. 

3 4 
4wh 

.§_ w5 + 2. w6 + 
5 h 3 h 

(5.6) 
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r<2) (wh ,wv) 
2 2 4 4 2 3 . 3 2 

- 3whw. + 4(~w + whw) + 4(whw + whw ) v nv v v v · 

. 2 4 4 2 
+ 15 (~wv + ~wv) + • • • • (5.7) 

A piece, -wh, from the Hartree expansion has been regrouped into 

r(l)(wh). The diagrams contributing to Eqs. (5.6) and (5.7) to 

fifth order are shown in Fig. 24. Sixth order graphs were omitted 

for reasons of.space. The use of computers could extend this series 

to several more orders. 

When expanded in powers of zh and zv' the low temperature 

expansion is recovered. Equation (5.5) will reproduce correctly 

terms to sixth order in z's. Equation (5.5) will be very accurate at 

low temperatures. Since the Hartree expansion includes the effects 

of some higher order.graphs, Eq. (5.5) is also expected to be good 

over a domain larger than the low temperature one. In fact, even 

though it is a modified low temperature low density expansion, the 

infinite temperature limit can be taken. This is because as 

zh -+- co and z ... co 
v • ~ 

and w 
v 

approach constants. At infinite 

temperature the problem becomes the close-packed dimer model which 

has been solved 
25 In the isotropic case (when 

answer is 

rclose-packed = ! log z + G/IT 
2 

- 1 6 - 2 log z + .291 

z = z = z) 
h v 

the 

(5.8) 

with G, Catalan's constant. The Hartree expansion in Eq.(5.5) gives 

r __.. 
z->co 

1 2 log z + .2803 

":· -~ 

(5.9) 
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It is reassuring that the Hartree improved expansion is accurate in a 

region so far from its range of validity (low temperatures). This 

indicates that Eq. (5.5) is probably reasonably good·over the entire 

range of zh and zv. 

Having calculated the Hartree expansion to sixth order for the 

two-dimensional square lattice dimer_model, it takes just a bit more 

work to_obtain the Hartree expansion for the d dimensional hypercubic 

model to sixth order. Define 

(0) 

r ({wj}) log ( ~ +~/1 + 8itwi), 

r< 3) (wl ,w2 ,w3) 
22 2 2+22 222 

B(wlw2w3 + wl002003 001002003) + 8wlw2w3 

•( 2 3 3 2 + 2 3 .3 2 ~ 3 + 3 2 ) 
- 16 wlw2w3 + wlw2w3 wlw2w3 + wlw2w3 + wlw2w3 wlw2w3 

( 
4 4 4 ) 

- i6 ._.,1 w2w3 + wl w2w3 + 1.1J. w2w3 ' (5.10) 

(4}( ) ·r wl,w2,w3,w4 
l . 2 2 2 2+ 2 2 

32\w
1

w
2
w

3
w4 + w

1
w

2
w3w4 w1w2w

3
w4 

+ 2 2' + 2 2 '+ 2 2 
wlw2w3w4 wlw2w3w4 wlw2w3w4 ) ' 

where r<o) is the first piece of the Hartree approximation 

[Eq.(4.15)] and thew. are defined in Eq. (4.20). Then the Hartree 
~ 

expansion in d dimensions is 

r( {w.}) 
J 

~- ~-

45 

d 

r ({wj}) + · L: r<1 >cw.) 
0 i=-1 ~ 

d 

+ L: 
i1<i2 

r< 2 >(w. w. ) + 
~1' ~2 

d 

:E r< 3>(w., 
il <i2<i3 \ 

d {4) 
+ E r <w. ,w. ,w. ,w. > + 

. . . . ~1 ~2 ~3 ~4 
~1<~2<~3<~4 

w.' w. ) 
~ ~3 

where f(l) and f (2 ) are given om Eqs. (5 .6) and (5. 7) and the 

other f's are given in Eq. (5.10). The superscript on the f's 

( 5 .11) 

refers to the dimension of the subspace of the imbedded diagram. Thus 

'r(n) · refers to those diagrams which are imbedded in an n dimension 

subspace of d-dimensional space: 

In Sec. IV it wa:s pointed out that, in the isotropic case., 

t;he expansion parameter, w, gets smaller as the dimension of the 

lattice gets bigger. For the hypercubic lattice, w = 
2
1
d + 0 ( 1

312
). 

' . d 

This indicates that as d increases, the Hartree expansion works 

better and Eq. (5.11) will be an excellent approximation. The 

situation, however, is not so clear because the number of graphical 

embeddings increases with d. Let d(G) be the dimension of the 

maximum space in which a graph can be embedded. A rough estimate of 

the number of embeddings of G is (2d}d(G) + 0((2d)d(G)-l) for d 

large. The weight of G 
l b 

goes like (
2

d) where b is the number 

of bonds, so that the total effect of G behaves like 

.1 
(5.12) 

( 2d) (b:.d[GTI 
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By inspection, it is found that b - d(G} ~ l fo:r: all gra;phs so 

that the effect of a graph is damped by a power' of d. Graph l of 

Fig. 18 has the leading behavior,. decreasing like ~ • There are 

many (an infinite number of) next to leading order graphs (i.e. 

graphs 3, ;5, 6, 14, 24, etc. of Fig. 18) which behave as Thus 

as 

l 

d2 

d + oo the contribution of any given graph"'gets smaller. The 

Hartree expansion is better when d is bigger. EXplicit examination 

of several series also seems to verify this. It appears that results 

in higher dimensions become more accurate. 

Because of this, the hypercubic dimer model is exactly 

solvable in the d + oo limit. Trivial algebra yields 

. . l l. 2 
r d-d:un. d:uner _ l. log d + -

2 
log 2z - 2 + ~ 

(z) ci+a> 2 · (8zd) · 

l) l:... + + (l - 'Z 8d 
l 

0( 2 ). 
d 

(5.13) 

Equation (5 .13) was obtained by blindly expanding the Hartree improved 

series in powers of 1/d. It is clear from Eq. (5.13) that not only 

must d >> l but also dz >> l so that z cannot be too small. 

Equation (5.13) is one of the interesting results in this section. 

Since the Hartree approximation and graph l of Fig .18 were the 

only inp.tts in Eq. (5 .13}. Eq. (5.1'3) will hold for any uniform loose-pac.ked 

lattice for which the vertex degree (coordination number), q, is 

large. For hypercubic lattices q = 2d.· In fact the result holds 

for lattices not containing a triangle so that triangle graphs 

.. ~ .,, 
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(graph 2 of Fig. 18) are absent. This triangle graph can potentially 

be of order ( l ) . 
q 

Because w - l these dimer models are exactly 
q 

solvable in the q + oo limit: 

. . l l 2 
rd:uner ----+- l log .<1. + - log ( 2z) - 2 + ---l.z 

(z) q-+«> 2 · 2 2 · (4zq) 

l l l 
+ (l - -zl 4q + (4zq)\ 

l 
l2z 

1 . 
l) + 0( 2) 

q 

(5.14) 

For lattices with triangles Eq. ( 5.14) is valid to order, · (. \>: 
q 

rdimer, lattice with triangl.es l 
1 

n + l 
1 

(
2 

) l + 2 - og _,._ - og z - - --
(z) ----+- z 2 2 2 (4 )~ q+OO zq 

+ 0 ( l ) q • ( 5.15) 

Both Eqs. (5.14) and (5.15) are only valid if zq >> l as well as 

q >> l. It is interesting that dimer models are exactly solvable in 

this limit .. In the pure dimer limit, Eqs. (5.14) and (5.15) give 

rough approximations for the molecular freedom. A comparison with 

exact and estimated molecular f~edoms is presented in Table ( ii) for 

several models. The lattices are the one dimensional (1-d), simple 

quadratic ( sq), tetretra.hedral { t), simple cubic (sc), body-

centered cubic (bee), planar triangular (pt), and face-centered 

cubic (fcc) lattices. The latter two contain triangles and the 

results are not expected to be as good as lattices without triangles. 

The results are accurate to several per cent, even though the q 

value is not that large. 

k: . ~ .. 
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G t
21 . 

aun has calculated low temperature expansJ.ons for 

several dimer models. These included both two and three dimensional 

systems. The expansions were for the isotropic case in which all 

zi's were equal. The low temperature expansion were computed for 

various·lattices to these orders: the simple quadratic lattice to 

15 orders, the planar triangle lattice to 10 orders, the tetrahedral 

lattice to 16 orders, the simple cubic lattice to 12 orders, the body-

centered cubic lattice to 12 orders, and the face-centered cubic lattfue 

to 8 orders. When expanded in powers of z the Hartree expansion 

to order n is guaranteed to reproduce the low temperature expansion 

to order n. Hence n orders of low temperature expansion uniquely 

determine n orders of Hartree expansion and Gaunt's series can be 

used to obtain the Hartree series to many orders. The Hartree series 

in the isotropic case has been calculated this way for the aboved-

mentioned lattices. The results are 

rsq(w) 

rPt(w) 

1 2 4 . 
log (~ 1 ) - 2w + w + 1l ta3 _ ~ + ,.,] w5 

~-~ 3 ~.5 

+ 33 ~w 6 - 106 fw
7 

+ 273 tw
8 

+ 1432 tw9 . 4 
2816- wlO 

5 

+ 6197:& w
11 

+ 63602w
12 

- 93974 D w13 
- 446 * w14 

+2667238 14 wl5 
15 + 

(5.16) 

log ( 1-k ) - 3w + .1 ~ w2 
1 4 2 5 

23 4 w + 92 5 w 

(5.17) 

- Bw
6

- 1743 fw7 + 8202 iw
8

- 1478 w
9

- 196618 ~· w
10 

+··· 

-~-~ .... 
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rt(w) l 2 l 3 
log (-

1 4 
) - 2w + w + 1- w 

- w 3 
51 w4 + ~ w5 

2 . 5 

+ 21~ w
6 

- 66f w 
7 

+ 184 w
8 

+ 47~ w
9 

- 2744* w
10 

(5.18) 

+ 449~-\ w
11 

+ 19074} w
12 

- 9161\~ w
13 

+ l92537¥w
14 

+ 95263~ w
15 

- 3910844f w
16 

+ 

rsc(w) log (1_
1
6w) - 3W + l~ w

2 
+ 2w

3 
- llf w

4 
+ 6~ w

5 

- 4lw
6 

- 27gf w7 + 568~ w
8 

- 12695~ w
9 

+ l099~·w 10 
(5.19) 

8 11 l 12 
+ 54335Cfl. W - 206745~W + ... , 

rbcc(w) log (l_iu) - 4w + 2w2 + 1 w3 - l5W4 + 23~ w5 

- 64~ w
6 

+ 197gf w 
7 

+ 3039~ w
8 

- 18934~ w
9 

+ 1370054~ w
10 

+ 139338\; wll - 35573416 J 2 
+ · · · , (5.20) 

rfcc(w) ( 
1 2 3 14 4'5 

log l-l2w) - 6w + 3W - 4w - 7~ + 11925w 

(5 .21) 

- 10232w
6 

+ 4835~ 7 
+ l66814tw

8 
+ 

where w is defined in terms of z and the coordination number, q, 

by 

.w = z ( -l + 11 + 4qz )2 
2qz • 

(5.22) 
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or 

z = 'lil' 

qw)2 
(5.23) 

(1 

The coordination numbers of the various lattices can be found in 

Table (ii). 

By taking z + "" and using the truncated series in Eqs. 

(5.16)-(5.21) the molecular freedoms at close packing can be calculate~ 

These along with a comparison to other methods are shown in Table (iii). 

Rough error estimates are also included. As expected more accuracy 

is obtained for models with larger q's. As an indication of what 

is obtainable "by hand" (that is, without the use of computers) sixth 

order computations are also shown. Even at this order molecular. 

freedoms are correct to 1% or 2% for lattices with small q and to 

less than 1% for lattices with larger q. At maximum order results 

are correct towithin .1% for large q lattices and within 1'2% for 

the low q lattices with the exception of the simple quadratic lattice 

where the error persists at 1%. 

For the hypercubic models in dimensions one, two, and three, 

Table (iv) shows the molecular freedom estimates order by order as 

calculated by the Hartree series and, for comparative reasons, by 

Nagle's series extended by Gaunt. The Bethe approximation (order one 

in Nagle's series) , being more physical, is a better starting point 

than the Hartree' approximation (order one in the Hartree series) 

although after a few orders both methods approach exact or estimated 

molecular freedoms in a similar.manner. 

... 1:. 

packing 
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The dimer d.e:1si ty, p, normalized so that at close-

1 
p =-. q 

is 

p=_g_zdi' 
q dz (5.24) 

The quantity %P is the number of dimers per site, whereas p is the 

number of dimers per bond. The entropy, S, and molecular freedom, 

<P, are 

s -pR.nz+_g_r q • 

<P = exp(qS). 
(5.25) 

Tables (v),(vi), and (vii) show the numerical values of P and S as 

a function of __ w __ 
w 

max 
( w is the Hartree expansion parameter [ Eq. ( ~)] 

and 

1 
wmax = q •. (5.26) 

is the maximum physical value of w ). These numerical values were 

computed from the truncated series in Eqs .. (5.16)-(5.21). The sub-

scripts on P and S in tables ( v) , (vi) , and (vii) indicate the 

·orders at which the series were truncated. 

~=- -\ . 
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Notice that lattices with the same coordination number 

(table ( v) and table (vi)) have almost identical entropies and almost 

identical densities. Only at extremely high temperatures do they 

begin to deviate for different models. Mathematically the reason 

for this is simple: Models have a universal (as far as q is con~ 

cerned) Hartree expansion to order 
2 

w : 

q 
r(w) 

1 ) 
log (1-qw ~ w + r w2 

+ (non-universal) • 

Because the Hartree series at second order is already a good 

(5.27) 

approximation models with the same q have almost identical propertie~ 

Furthermore in higher orders, they will have many identical Feynman 

graphs. In fact for lattices without triangles subgraphs, Eq. ( 5. 27) 

is universal to third order 

q 
r (w) log (l-~W ) - ~- W + r w

2 
+ ~ w

3 
+ (non-universal). (5.28) 

f'(' ,... 
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Next., notice ihat w is a good approximation to the density, P. 

For the simple quadratic and.tetrahedral lattices, for the planar 

triangular simple cubic, and body-centered cubic lattices· and 

for the face-centered cubic lattice, p and w never differ by 

more than about 5%, 3%, and 1%. The reason for this is simple: 

Equation (5.24) implies the 

p < t t zn .... n_,.n .... n .... 
x x x' x' 

> {5.29) 

where 5t and Jtr are nearest neighbors • In the Hartree approximation 

t 2. 
p ::: z( < 11:1~ >H) = w {5.30) 

In other words, w is the Hartree approximation to the density. 

From this point of view the Hartree series has a more physical 

flavor: it is an expansion in a parameter which is approximately the 

density. 

Tables (iii), { v), {vi) , and {vii) have error estimates. 

The. uncerW.inty is in the last two figures, so that, for example, the 

sq lattice at w = .225 has P
15 

= .22998±.00020. These errors are 

set to the contribution of the last order. Doing this works only when 

the numerical coefficient of the maximum power of w is not unnaturalJy 

small. This turns out to be the case for all the models considered. 

Since the Hartree series seem to converge this is a rough but reasonable 

measure of the error. As a check, the exactly solvable one dimersional 

dimer model can be used. Its Hartree expansion to16th order is 



1-d 1 1 2 2 ' r (w) = log (l-2w) -w + ~ + 3ur 
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3 4 1 ') 
4w - 15w 

+ lg_w
6 

+ -:Aw7 - 4lw
8 

- 7lJ + 1~J 0 + 2~J 1 

3 7 8 9 5 ·11 

12 1 13 4 14 . 4 15 3 16 
- 3a;z w - 7113 w + 122:Jw + 2285w - 4o2f6 w + • • •• 

Table (viii) displays the approximated ~ 6 , the exact P, the 

(5.31) 

approximated _s
16

, and the exact s. The same error estimate method 

was used. As can be seen the exact results always fall within the 

"error bar" region. In fact estimated errors are roughly 5 times 

actual errors. For the one dimensional model this is a conservative 

method of estimating errors. 

Tables ( v) , (vi) , and (vii) show excellent accuracy. In 

90% of the physical region (as. measured by w) the density and entropy 

are at least computed ·to .1% for all models. For the bee and ·fcc 

lattices the minimal accuracy is about 5 decimal places. It is only 

for dense systems (i.e. 90% maximal dimer density) that errors ~re 

even of the above stated size. For example, at 10% maximal dimer 

density results for the six models are accurate to an estimate~ 17, 

18, 11, 14, 14, and 11 decimal places. As expected at low dimer 

densities best accuracy is achieved for those models for which the 

series has been computed to the most orders whereas at high densities 

best accuracy occurs for models with the highest q. 

VI. THE 1/N EXPANSION 

This section develops another expansion method: the 1/N 

expansion (N is not to be identified with the total number of sites). 

In recent years 1/N expansions have been popular in particle physicf~ 

Like the Hartree-improved perturbation series, they are 

.. 0:. 
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semi-perturbative in the sense that they include the. effects of 

higher order graphs. In many body theory the 1/N expansion is 

similar to the "ring approximation" or the "random phase approm

imation"24. Throughout this paper I will use the terminology "1/N 

expansion" rather than "ring approximation" or "random phase 

approximation". 

This section is organized as follows: A brief introduction 

to the 1/N method is presented. The method is then applied to the 

two-dimensional dimer model. This calculation, carried cut to 

second order, is illustrative. The 1/N expansion is applicable 

to any dimer model and can be generalized to any fermionic-like system. 

Next 1/N Feynman rules are given. This is a useful set of 

graphical rules. Finally the meaning of 1/N is explained. Given 

any dimer model in any dimension or on any lattice, a modified dimer 

model with a local U(N) symmetry can be constructed. As N + "" 

these models become exactly solvable. This is one of the important 

results of this section: a whole class of (limiting) dimer problems 

is solved. 

Sections IV and V showed how to calculate corrections to 

the Hartree approximation by considering the Hartree-improved graphs 

of Fig. 18. That method expands in the number of graph edges ; box 1 

of Fig. 18 is of second order, box 6 of Fig. 18 is of forth order. 

The expansion parameters, waS= gazaSgS, are given in Eq. (4.20)for 

dimer models in d-dimensions. Another expansion is the 1/N expansio~ 

Its zeroth order is also the Hartree approximation. It also allows 

one to systematically calculate corrections to the Hartree approx-

imation. Instead of expanding in powers of graph edge, it expands 

-'·~; .-'-. 
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in the number of graphical loops (in particle physics loop expansions 

are called semi-classical or ~ (Planck's constant) expansions). 

Boxes 1, 2, 6, etc. in Fig. 18 have one loop, boxes 3, 4, 5, 11, etc. 

have two loops, anu so on. First order in 1/N sums all the one 

loop graphs, second order sums all two loop graphs,etc. After f'irstorder 

the ef:f'ect cf tl:e 1/N expansion is to eli:ID.ina.te all graphs with 

vertices of degree two. 
s 

Inste.<J.d a "superpropagator". G 00 ~, 

(see Fig. 25) is used which includes all vertices or degree two. 

~a~ is a sum over all graphs of the type in Fig. 25 which go from 

a to a~. In terms of the super propagator, denoted by a bolder 

line, the one loop graphs are represented as in Fig. 26 and the two 

loop graphs as in.Fig. 27. 

The 1/N expansion will be illustrated for the two-

dimensional.dimer model. The method, of course, can be applied to 

any dimer problem. The imbedding of Fig. 26 graphs into the two-

dimensional lattice is related to finding all closed random w~ks. 

Such a problem has been considered by Temperley
27

. His method will 

be used here. Consider [ exp(ip ) + exp(-ip ) + exp(ip ) 
X • X y 

+ exp( -ip )1 M 
y 

= lexp(ip ) + exp(-ip ) + exp( ip ) + exp(-ip )1 
X . X y y 

lexp(ip~) + exp(-ip ) + exp(ip ) + exp(-ip ) 1 . Multiplying out the 
A X y · y 

brackets is equivalent to choosing a term from each bracket, mul1;i-

plying the chosen factors, and summing over all choices. Associate 

choosing exp(ip ) with ta'ting 1'. step in the +x direction. Likewise 
X 

associate exp(-ip ), exp{ip ), and exp(-ip ) with taking steps in 
X y y 

the -x, +y, and-y directions. Then each term in the above 

expansion is associated with a random walk M steps long. The 

coefficient of exp( inp + Hp ) 
X y 

in [2 cos p + 2 cos n 1M 
J< y 

is 

,;_- ,. 
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the number of walks from 

Call this number CM 

(0,0) 

then 

to (n,R.) in an M step process. 

n, 

7T 

c!' 
n,R. 

=f dpx 
27T 

-7T 

[ 2 cos p + 2 cos p 1M.(6.1) 

7Tdp 

f ~ exp(-ip n-ip R.) 
2Jr X X X y 

-7T 

In the Feynman graphs of Fig. 25 horizontal sides are weighted by 

~ and vertical sides by wv. In addition there is a (-1) for 

each vertex.· The superpropagator sums these weighted walks and also 

sums over M. Therefore, 

Gs 
n,R. 
~ fdp fdp ~(-l)M+l 27Tx -7ff exp{-ipxn-ip/)[ 2~cos px+ 

M 
2w cos p 1 

v y 

JdpxJdp 
=- ~ 

27T 27T 

exp(-ip n - ip R.) ( 2whcos .p + 2W cos p ) 
X y X V y 

(6.2) 
(1 + 2wh cos p + 2w cos p ) 

X V y 

Now the one loop graphs of Fig, 26 can pe summed. For a loop with M 

vertices, rule (d) of Sec. IV gives a factor of 

of one loop graphs, L{l) • is 

1 
2M. The contribut:km 

z:(l) 
N l.::!.L. ~ ~ ( 2ul cos p + 2W cos p ) ~ 

M Jdp fdp M 

. 2M 2rr 2lf h X V Y 

(6.3) 

f dp·fdp 
N (-) 2rr x if- R.n(l + 2whcos px + 2wvcos py) , 

where> N is the total number of sitE's, so the.t t1t:: contrilution to 

r is 

(1) 
r 

7T 7T 

-J dpx~~ 
27T 27T 

-7T -7T 

Jln( 1 + 2Ul COS p + 2W COS p ) • 
n x v ~ 

(6.4) 
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For the d-dimensional hypercubic dimer problem the result would be 

r (1) 
d-dimensions 

d .d . 
_ · (~ R.n (1 + .'E 2wicos Pi)· 
J(2n)d 1=1 

(6.5) 

Because wi < ~ for finite temperature, the argument of the logarithm 

cannot vanish and r(l) is analytic in the temperature. The only 

possible non-analyticity can occur for wi + ~. that is, the pure 

dimer limit. In this approximation the absence of a phase transition 

except possibly in a pure dimer limit is in complete accord with 

reference 12. 

For graphs with two or more loops, a set of 1/N Feynman 

rules are easily derived. Perhaps the graphs should be called 

"supergraphs" since they use superprogagators. 

(a) 

1 
N 

Feynman.Rules For Supergraphs 

Draw all topologically distinct graphs consisting 

of any number of vertices. Vertices must have at least three lines 

attached to them (vertex degree .::_ 3) . Tadpoles (see Fig. 28) are 

allowed. 

(b) For each edge between (cx,f3) and (cx~ f3') associate 

a factor of Gs where GS is given in Eq. (6.2). 

cx~ -cx,S'-!3 

(c) For a vertex at (cx,$) with R. lines emanating from 

it (see Fig. 14), put in a factor of (-1)~ (R,-1)!. 

(d) Put in a factor of [the order of the point symmetry 

-1 
group of graph] . 

.... .. 
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(e) ·For each pair of vertices with II, degenerate edges 

between them (see. Fig. 151 put in a factor of ~ 

(f) For a vertex with R. tadpoles (see Fig. 28), put in 

a factor of -
1
--

2R.R.! . 
(g) r = TH + ~ 1 ) + 2: (weight of graph) where rH 

connec:ted 
. . . , grapfis (l} . 
1S the Hartree approxlmahon (Eq. (4~15))and r . 1S the one loop 

contribution (Eq •. ( 6. 4)). 

The graphs in Fig. 27 respectively give a two loop contribution 

of 

r<2l S 2 s 2 . s s 3 
- 1. [ G J + ~ [ G ] L G + ~ L[G ] 

4 o 2 oo cxS cxS 3 cxS cxS 
(6.6) 

There are __ also momentum space Feynman rules: The statistical 

factors in rule_s (.a), (c), (d), (e), and (f) remain the same. In 

rule (c) one no longer sums over a vertex's coordinates, instead 

one assigns loop momentum in the standard manner
24

. There. is a 

l
n d2 

factor of ~ for each loop momentum. The momentum of a 
-n (2n) 

particular line is determined by the total loop momenta flowing in 

+ 
the line. For an edge with momentum p there is a factor of 

Gs(p) 
+ 2~ cos p t 2w cos p n x v y 
1 + 2whcos px + 2wvcos py 

(6.7) 

1 

1 + 2whcos p + 2w cos p + 
1 

· 
X V Y 

In momentum _space Eq. (.6.6) becomes· 

~ . <' 
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2 ]2 r(2) = _l [ ~ G8 (p). 
4 J( 2rr) 

1 ( - auh - auv) [J_n_ s J 
2 

+ 2 1 + auh + auv (2rr)2 G (p) (6.8) 

1 f ;p 1 f d2
p2 ..s s s 

+ 3 --2 --2 G\pl)G (p2)G (pl + p2). 
(2rr) (2rr) 

It's not too difficult to find the relevant graphs to 

several orders in loop number. When the 1/N expansion is. calculated 

to order (n) and re-expressed in terms of z (or w), it is 

guaranteed to reproduce the first (n + 1) terms in the low temperature 

z (or Hartree-improved w) expansion. Since the Hartiee-improved 

series works well, the 1/N expansion, which includes higher order 

Hartree-improved graphs, may produce an even better series. The 

drawback is that the result is in integral form (as exemplified in 

Eq.(6.8)). Although it'.s easy to write down a graph's contribution 

in integral form, the integrals themselves are cumbersome to do 

analytically (the first two terms in Eq. (6.8) can be related to 

complete elliptic integrals). This means that numerical comparisons 

are not possible unless numerical integration is performed. Such an 

undertaking is not attempted here. 

What is the expansion parameter in the 1/N expansion? 

The answer is 1/N. What is N? The answer for the two-dimensional 

dimer model is N = i. 

In general, N represents some internal symmetry index. In 

particle physics it could be the N in U(N), O(N), or SU(N). N 

might be the number of colors or flavors in a modern theory of strong 

~--

6o 

interactions (quantum chromodynamics). or of weak and electromagnetic 

interactions (quantum flavod:;irnamics ). Take. the two dimensional dimer 

model consisting of monomers and dimers. Introduce an internal 

symmetry by having different types of monomers, say N types. One 

could color them wi.th N different colors, Allow dimers (which are 

just pairs of monomers) to have colored. monomer endpoints. There 

would be N
2 

different types of dimers. The corresponding anti-

commuting vari.able acti.on is 

+ 

2-d chromodimer(~ z N) 
A · n' v' 

'E 'E 11i nit + 
[ 

N 

cx6 i=l uS uS 

N 

'E 
i=l 

(6.9) 

N (zh i it j jt + zv i it j jt )~ 
'E N nusnus11u+lSnu+lS N nusnus11uS+l 11uS+l • 
j=l 

The indices i and j label different colors. The action in Eq. (6. 9) 

is invariant under .local U(N) transformations: n!s + 'E u!~n~S 
j 

d it_ ""(u+)ij jt for NxN unitary matrices U 
0

• The 
an nus ~ . usnus Up 

subscript o~ U indicates that these unitary matrices may vary from 

site to site. 

The factor of l/N in zh/N ( or z /N) in Eq. (6.9) 
v 

is put 

in for convenience, since zh (or z~) can be varied independently 

of N. More precisely, it is indicative of the limit to be considered: 

N is to become large while 
~ 

and z remain fixed. 
v 

The Feynman 

graphs in simple perturbation theory for this chromodimer model are 

exactly the same as for the normal (~ = 1) dimer models (those graphs 

typified in Fig. 20). The weights of·graphs are also the same except 

that fermion loops now come in N colors. This means that each fermion 
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loop gives an extra factor of N. Each bond gives a factor of zh/N 

or z/N because of the ~ factors in Eq. ( 6. 9) The N depen-

dence of graphs is easily determined: For. tree graphs (such as in Fig· 

17)the contribution is N times the corresponding normal (N=l) dimer 

model contribution; for one loop graphs (Fig. 26), the contribution is 

exactly the same; and for two loop graphs the contribution is 1/N times 

the corresponding N = l_dimer model contribution. Thus, if the loop 

expansion in the dimer model is 

rdimer. = t r(n) 

n=O 

with the superscript Cn) being the nll!llber of loops, then 

00 

rchromodimer =_ ~ _!... r ( n) 
. . n-1 

n= N 

(6.10) 

(6.11) 

Graphs with many loops contribute less as N ~ oo. Equation (6.11) 

explains why the 1/N expansion is called the 1/N expansion. 

In conclusion 

r 2-d chromodimer( N) N~ 
.zh,zv, __. 

N log ( l>;, + l>:1 /1 + 8(~ + zv) ) 

N 
(- 1 + /1 + 8(z + z )) . v v - 16(zv + zh) 

(6.12) 

i
lr dp fdp 

- --.2!. .::.L 
--1T 21T 21T 

R.n(l + 2whcos p + 2W cos l?y) 
. X V 

1 
+ O(N) • 

tit; "' 

62 

and the large N limit .of the model is exactly solved. For N very 

large the Harlree. approximati.on (.:times N} is the answer. When N 

is large but finite the 1/N Feynman rules systematically calculate 

corrections. This is not the first time a model has been found 

solvable in ail "N goes to infinty'-' limit. There is the spherical 

mode1
28

, whose structure and solution are similar to that of Eq.(6.12). 

The large N method, of course, is applicable to any dimer 

model. The Hartree approximation is the zero loop approximation. The 

one loop contribution, r(l)• is the Sll!ll over all closed random 
M 

walks weighted by the wae factors and a (.;;) for an M-step 

walk. The superpropagator, is determined by slllllming over all 

random walks .going from site 

Gs .. 
00~ 

a to site a weighted by (-l)M+l 

and wa.S factors. The Feynman rules are identical to thos·e given 

above except for. each edge (see Fig. 13) one uses 
s 

Gae· A chromodimer 

model can be contructed from any. dimer model. In such a model loops 

are suppressed.by 1/N factors. The chromodimer analog of Eqs.(I.3.6) 

and {_4.1) is described by the anticommuting action 

A 
N . ·t 1 N 

:E :E n~n~ + 2:E :E 
a i"'l' a.S i=l 

N zae i it · · t 
:E N na.na ~~ 
j=l 

(6.13) 

It is the same dimer model with N different colored monomers at 

each site. The models in Eq. (6.13) are all exactlY solvable as 

N ~ oo • The result is N times the Hartree approximation given in 

Eqs. (4.9) and (4.10). Thus, given any dimer model its "chromo" 

version can be constructed and exactlY solved in the N ~ oo limit. 

An infinite class of (limiting) dimer models has been solved. 

~ i. 
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VII. THE. ONE-DIMENSIONAL DIMER AND MULTIPOLYMER SYSTEMS 

This section will solve the one-dimensional dimer problem via 

the anticommuting variable method. Since it is trivially solvable by 

transfermatrix Cas well as other} methods, why solve it again using 

anticommuting variables? The answer is as follows: every exactly 

solvable model is a starting point for attacking unsolved problems 

via perturbative. and/or other techniques. It is important to find 

as many models solvable via anticommuting variables as possible. These 

can be the base for approximations as will be demonstrated. 

The formulas developed in thi.s section will be used in 

subs·equent sections. Given a solvable modei (_i.e. a quadratic action) 

all anticommuting variable correlation functions can be calculated. 

If ordinary correlation functions can be related to anticonunuting 

variable ones then all correlation functions are calculable [this 

happens, for example, with. the Ising model Csee II}] and the model is 

co!llplete1y s.ol ved. Everything possible can, in principle, be 

calculated. This section will calculate the anticonunuting variable 

correlation functions. These formulas are valuable. 

It happens that the same trick which solves the one-dimensional 

dimer model can solve the more complicated system consisting 

simultaneously of dimers, trimers • quadrimers, etc. This very 

general syste!ll again can be the starting point for approximating 

other unsolvable s;y-stems. 

The main results are the one-dimensional dimer anticonunuting 

variable correlation functions in Eq. (J,7}, the one-dimensional 

multipolYI!ler solution in Eq. C7 .14}, and its corresponding anti

commuting variable correlation functions in E9.. ( 7.15). 

(:- .. 
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The one-dimensional dimer.action is 

A 1-d dimer (z) = L (na.n~ + zna.n~na.+l n~+l) • 
a. 

(7.1) 

Suppose zn nt 11 +ln t+.l is replaced by z \n n t+l + n t n 
1

) . Then 
a. a. a. a. a. a. a. a.+ 

exp z~(na.n!+l + na.~) = 1 + z~(na.nt+l + n!na.+l) + z(na.n~na.+ln~+l) 
contains the wanted "1" term and the wanted zn ntn 

1
nt+l term 

a. a. a.+ a. 

in exp(zna.n~na.+l nl+l). What about the unwanted terms z\a.n~+l 

and z\tn 
1

? They do not contribute. If they are used x's and 
a. a.+ 

o's cannot fill all anticonunuting variable sites as Fig. 29 

illustrates. There is always a leftover "o" and "x" at the end of 

a string of @'s. They might contribute if periodic boundary 

conditions are used: they could "loop around" the entire line. For 

z < 1 these configurations carry negligible weight. In any case 

they are washed out in the thermodynamic limit. One may take 

Al-d dimer(z) =I: !na.n! + z~(na.n~+l + n~na.+l>f • 
a. 

which. in momentum space is 

(7.2) 

Al-d dimer(z) L [a at+ z~a at(ef-2nis\ _ exp(~)~\1. 
s s s s s ~2N+l J 2N+l~J 

(7.3) 

The thermodynamic limit ma;y b.e taken and results in. a gracd potential 

per unit site of 
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r(z) 
7T dp . ~ 1 2:rrx R.n[ l "." 2i.z sin px] 

·-7T . 
(7 .4) 

Rn[ ~ + ~' /1+1iZ] • 

which is the known answer. 

From the above discussion it's clear that one could break up 

.. t t 
ZTla11a11a+ l 11a+ l 

as en nt + c ,..,t,..,. 
l''a"a+l 2''a''a+l 

as long as c
1 

and c
2 

satisfy c
1

c
2 

= z (one could even allow the ci's to be position 

dependent: Z11 11t11 
1
11t+l + ca 1 ~ 11t + ca 2 +Y~tn +l as long as 

a a a+ a a a+ l . a a 

c~~c~~ = z). This replacement leads to 

- . 7T dp 

r(z) = 1 2: R.n [ l + clexp(-ip) - c2exp(ipx)] • 
-7T 

which, by inspection, is the same result as in Eq. (7.4). 

(7.5) 

Let us now calculate the anticommuting variable correlation 

functions. These depend on the way the dimer is broken up. The 

symmetric case c
1 

= c
2 

= z~ will be used. Of course, physical 

correlations -(such as dimer density) do not depend on the breakup 

precedure. Using the methods in I and II 

so that 

<a at> 
s s 

~ 

1 

1 - 2iz'lisin p ' 
X 

\; 

(7.6) 
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11T dp exp( -ip (13-a)] 

gi3-a (z) = <11a 11~ > ;: -7T 2: X . 

( 2' -~ . ) _l - 1z s1n Px . 

_l_ (-l·~r .. l , for ~..a~ 0 

ll+1iZ 2z~ 
or S-a even 

(7.7) 

--=.!____ (~ 1 ·,~'"'t-al , for 13-a odd and negative. 

...'1+4z 

n . 
The g's satisfy gn~) = (-1) gn(z). Also 

< t > = zn/2 < - t t 11a11a+n 11a11a11a+l 11a+l 
t > 11a+n11a+n ' 

(7.8) 

for n~ 0, since the terms z~t~l' for 13 = q a+ 1, ···,a+ n- 1, 

in the· action of Eq. ( 7. 2) must be used to fill· the "x" at a and 

the "o" at a + n. 

Everything is now calculable. For example, the probability 

that there is a dimer between a and a + 1 (that is at a + ~) is 

< Z11 11 t 11 11 t > = Z < 11 T] t > = Z g ( Z) 
a a a+l a+l a a+l 1 

(7.9) 

which is the dimer density (normalized to ~-for close-packing). 

Equation (7.8) was used in Eq.(7.9) and g
1

(z) is given in Eq.(7.7). 

The probability of having two dimers, one at a+~ and one at 

a + n + ~ is 

4\-:.. 
,, 
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< (znan/ na.+l n!+l) (zr\x+nn!+nna.+n+l n~+n+l) > 

z2 < t t > 
nana+lna+nna+n+l 

2 
z [ gl (z)gl (z) - gl+n(z}gl-n(z)J ' 

(7.10) 

The analog of Eq.(7.8) was used in Eq, .(_7.10). Equation (II.6.5) 

was also used. The probability that no dimer covers 

< n nt > 
a a 

go(z} 

Everything is trivially calculable. 

a is 

(7.11) 

The above_ trick of breaking up t t nana.na+lna+l works for the 

more complicated system of dimers, trimer, quadrimers, etc. By a 

trimer I mean a triatomic molecule which can occupy three sites in 

a row (see Fig. 30) , by an n-mer I mean a polymer occupying n 

sites in a row. The multipolymer system consists simultaneously 

of dimers,trimers,···, and n-mers which can be absorbed on the one-

dimensional lattice. Each different n-mer can have a different 

Boltzmann factor. The corresponding anticommuting variable action is 

Al-d multipolymer(z z ••• ) 
. 2' 3' 

t t t 
I: I nana + z2nana.na+ 1 na+ 1 
a . 

+ z3nan!na+ln!+lna+2n!+2 + .. ~ l ' 

(7.12) 

and z2,z3' etc .. are the Boltzmann factors for dimers, trimers, etc. 

One may replace Eq. (7.12) with 

1-d multipolymer( z z ... ) 
A - 2' 3' 

~- ~ 
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I: [nan! + n~na.tl + 
a 

I:\ nan:+R.-11 
R-=2 

(7.13) 

because the extra terms do not contribute. This leads to a grand 

potnetial per unit site of 

r l-d multipolymer(z z ... ) =f1Tdpx R.n!l-exp(ip) + I:z.exp(-ip \t-1)] • 
. 2' 3' . -1T 21f X R-=2 "-. X 

(7.14} 

The anticommuting variable correlations are easily calculated: 

ge-a(z2,z3' · · ·} = < nant > 

exp(-i(fl-a)p ) 
X = (1Tdpx 

)_1T 21T [1- exp(ip ) + r z exp(-ip (R.-l))j'(7.15) 
X R,=2 R, X 

Unlike the dimer case I have no cksed forms for Eqs. (7.14) and (7.15). 

The generalization of Eq.(7.8) for <n nt+ > with n>O is 
a an 

<n nt > - <n ntn nt n nt > (n > o' a a+n - a a a+l a+l''' a+n a+n • · .;.;. · ~· (7.16) 

All physical quantities are determined by the gS-a. The multipolymer 

system is completely solved. 

Although quite general, this system is not the most general 

multipolymer system. One could also include dimers (or other polymers) 

whose atoms are spaced two or more units apart. This would be the most 
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general system. Unfortunately the trick used above rails and there is 

no simple solution method. 

VIII. TRANSFER MATRIX ELEMENTS FOR THE TWO DIMENSIONAL DIMER MODEL. 

This section will calculate the transfer matrix elements of the 

two-dimensional dimer problem. This is done in the limit of Nh, 

the number of horizontal sites (or vertical columns), going to. 

infinity. For the pure dimer case, the transfer matrix is diagonal

izable and the eigenvalues have been calculated29 • For the general 

model of monomers and dimers much less is known. Iieb15 has written 

down. the form of the transfer matrix. Baxter
15 

and Runnels
15 

have 

used this transfer matrix formalism to estimate the partition function. 

These methods seem to give excellent numerical·results. In this 

section the transfer matrix elements will· be explicitly computed. 

The answer is relatively simple and in closed form. These results 

should be useful in variational computations like those of Baxter 

and Runnels. Their simplicity beckon an attempt at the exact solution. 

Perhaps somebody with enoUgh ingenuity can utilize them to solve the 

general two-dimensional dimer model. Such a formidable undertaking 

is not attempted in this work. The important equations are Eqs. ( 8. 4) 

and (8.5). One can also calculate· the transfer matrix for the two 

dimensional multipolymer system consisting of vertical dimers and 

horizontal n-mers. In the vertical direction there are only dimers, 

whereas in the horizontal direction there can be dimers, trimers, 

quadrimers, etc. The important equations are the same ones, Eqs. (8.4) 

and (8.5), except that zl-d and gij are different functions. 

'· \o 
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This paragraph. reviews. the definition of.the transfer matrix, 

T, for the two-dimensional dimer problem. The square lattice consists 

of alternating z:ows of vertical bonds and horizontal bonds. Roughly 

speaking, the t<ransfer matrix propagates a configuration of vertical 

dimers in a row of vertical bonds to another configuration of vertical 

dimers in the successive row of vertical bonds by summing over all 

horizontal dimer configurations in the interpolating row of horizontal 

bonds. Consider .the 13 = - ~. row of vertical bonds (see Fig. 31). 

The initial state, Is >, specifies the location of vertical .dimers 

in this row. For example, the configuration in Fig. 31 is 

12,3,4,8 > meaning that there are vertical dimers. at (2, -~), 

(3, -~), (.4, ~), a~d (8, ~) (the midpoints of dimers are being used 

to specify· their locations). The order of the numbers in 12 ,3,4,8 > 

is unimportant, i.e. 12,8,3,4> = 12,3,4,8 >. The_ final state, <s~l, 

specifies the location of vertical dimers in the ·B = ~ . row. In 

Fig. 31 <s ~I = <1, 71 • The transfer matrix element <s ~ IT I s > is 

the sum over all configurations of horizontal dimers and monomers in 

the 8=0 row~ compatible with the fact that some sites are· covered by 

the dimers in <s~l and Is>. Of course, if <s~l and Is> have a 

common dimer·location, <s~ITis> = 0 (for example, <1,3ITI3> = 0). 

If Is>= ls 1 ,s 2 ,···,s~> and <s~l = <s~,s2,···,s;l with si and 

s~ integers specifying dimer locations then <s~ITis> 
1 

is the 

one-dimensional dimer partition ·function with sites s
1 

through s~ 

and s 1 ~ through s~ covered by monomers. Define N 
m a nan~. Then 

in terms of anticommuting variables 

~- .~. 
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1-d dimer( \ 
Z Zhl 

X < (N ,N , 
sl s2 

N ,.)(N N 
sm sl s2 

N )> . 
si 1-d d1.1ner. 

(8.1) 

A factor of 
(~) 

z 
2 

(the square root of the vertical dimer Boltzmann 
v 

factors in the two rows of vertical bonds) has been included in the 

definition of T for convenience. With periodic boundary conditions 

in the vertical direction, 

2-d dimer(z z ) z h. v trace(l1) • (8.2) 

for a lattice of M rows. 

Because transfer matrix elements depend only on the sites 

covered in the horizontal B = 0 row. the following symmetry 

relations hold 

< s{.s;.···,s~jT[s 1 .s 2 ••• ·.si > = 

<s{.s;.···.§k····.s~ITisk.s 1 .s 2 ,···.sR. > ~ (8.3} 

<s{.s;.···· s~.sj LTis1 .s2 .···,§j····. sR. > 

= <niT Is{ .s; ••••• s~ .sl.s2 ••.•• sR. > 

where a circumflex over a position index indicates the absence of 

that index and the "vacuum" state • n • is the one with no dimers . 

~ .. 
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Equation (8.3) means that integer dimer location indices can be 

moved from one side of T to the other side. 

Using Eq. (II.6.5) in conjunction with Eq. (7.7). Eq. (8.1) can 

be re-expressed as a determinant of an (R.+m) x (R.+m) matrix. It is 

useful. however. to make use of the simplifying relation in Eq.(7.8). 

The set {s{.···.s~.s 1 .···s_q,} indicates which sites are already 

covered in the B = 0 horizontal row. Arrange these numbers in increa-

sing order and define a new set of ordered pairs {(t
1

.u
1

). (t
2

.u
2
). 

·• · .(t .u )} with t <u < t <u · • ·< t < u . The pairs (t .• u.) 
n n 1- 1 2- 2 · · · :rr- n ~ ~ 

mean that sites ti through ui are covered. In the example of 

Fig. 31. s ={2.3.4.8} and s' {1,7} yields the (t.u) represen-

tation, {Cl.4).(7.8)} meaning that vertical dimers cover sites 

(l.O). {2.0). {3.o). (4.o). (7.0). and (8.o). The states Is> and 

<s1 . uniquely determine the (t,u) pairs. Using Eq. {7.8) the 

<s'ITis> matrix element is 

where 

(i+m) 

<siTis> = z 2 zl-d dimer( ) 
v zh 

x <h nt n nt · · ·n nt > 
tl ul t2 u2 tn un 

Mij 

(R.+m) 
zv 2 zl-d dimer(~) 

gu -t (zh) • 
j i 

det(M) • 

(8.4) 

(8;5) 

and the g's are given in Eq.(7.7). For example. the transfer 

matrix element in ~ig. 31 is 
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. Nh 
z;(~ + ~!11 + 4~) {g3(zh)gl(_~)- g7(_zh}g_/~)}, 

I 

(_8 .• 6) 

for rows of Nh sites. The relativewsimple structure of the 

transfer matrix elements should'be useful in variational calculations 

like Baxter's and Runnels' and may even open the door to an exact 

solution. 

In the same manner one can handle the two dimensional 

multipolymer system consisting of vertical dimers and horizontal 

polymers. The horizontal polymers are n-mers occupying n 

consecutive sites in the horizontal direction. In the vertical 

direction only dimers are allowed so that there is a horizontal-

vertical asymmetry. The discussion proceeds as above except that 

the expressions "horizontal dimers" and "1-d dimer" are replaced by 

"horizontal polymers" and ,;1-d polymer". All the above equations are 

still valid if the g -t ( zh) of Eq. ( 8. 5) are replace?-. by the g -t 
uj i . uj i 

( ) . ( ) . 1-d d1mer( ) . z2 ,z3 , ..• '1n Eq. 7,15 and 1f Z . zh 1s replaced by 

Zl-d multipolymer( .•• )= [ N rl~d multipolymer( )] "th . z2 ,z
3

, exp h z
2

,z
3
,... w1 

r l-d mult1polymer . . E (
7 14

) 
g1ven 1n q. . • 

IX. THE ONE-DIMENSIONAL APPROACH TO THE TWO-DIMENSIONAL DIMER MODEL 

This section reconsiders the two-dimensional dimer model. The 

Sec. VII results for the one-dimensional dimer problem are used to 

attack the two-dimensional problem. Section VII displayed the 

trivial nature ot: the one-dimensional· dimer model: the partition 

function and all correlation functions were easily calculated. 

These calculations. can be used to approach the two-dimensional model. 

Suppose, for example, that z ""'0. 
v 

Then the two-dimensional model 

would become many one-dimensional models. When zv # 0, a 

(' 
"' 
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perturbative expansion in powers of zv is possible. The form of 

this expansion is ~nZ(zh,z ) = 
N v 

(. \ Jl. 
~ CJI. _ZhtZV 

a power series in 

zv but correct to all orders in zh. 

After writing down the Feynman graph rules, three new 

expansion series are obtained. They are the simple perturbative 

expansion [ Eq. (9 .9) l., the Hartree-improved expansion [Eq.(9.23)] , 

and the 1/N approximation { Eq. (9.28)] . .' These three series are 

the main results in this section. They work best for small zv' 

however the latter two probably work resaonably well for all values 

ot: zv. 

The dimer model has no phase transitions
12

. All the 

approximation methods developed here show no evidence for such a 

phase transition. 

Also presented are several other apprqaches to the two-

dimensional model along with the corresponding anticommuting 

variable actions. It is straightforward to develop new approxi-

mations using these actions, however such an analysis is not carried 

out. This paper has already presented good approximations. It 

would be overdoing it -to present more. So, for reasons of space they 

are omitted. 

The results of this section are easily adapted to the two-

dimensional polymer system considered in Sec. VIII. This is presented 

at the end. 

Apply.thedimer "breakup" trick (used in Sec. VII to solve the 

one-dimensional problem) to each horizontal row of dimers. The trick 

cannot simultaneously be done with vertical dimers because extra 

j;,:_, 
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configurations (of closed loops) not in the partition function are 

generated. The resulting anticommuting variable action beco:mes 

2-d dimer(z. z ) 
A · n' v 

t ~ t t 
:E{nai\x13 + zJ nnl3nn+ll3 + nnl3na.+ll3] 
nl3 

+ zvnnl3n!l3nnl3+ln~l3+l } . 

The free propagator is 

and 

2-d ( t 
ga'-a 13'-13 zh,zv) = < nnl3nn'l3'~ = 0 

v 

Ji: l-d 
ul313'gn'-a(~) 

l-d 
ga.'-a is given in Eq. (7.7): 

l-d ( .. ) fdpx 
gn' -a ~ = J2if G(px) exp( -i(n' -a)px] , 

G(p) 
l 

l-2iz~ sin px 

(9.1) 

(9.2) 

(9.3) 

A set of Feynman graph rules is easizy derived. They are 

similar to those in Sec.V under the heading "Rules for a Dimer Problem 

on a Transtationally Invariant Lattice", except that fermion loops 

are now non-local and cannot be shrunk to a point. This causes rule 

(c) to be modified. 

Feynman Rules for the Action in Equation (9.1) 

(a) Draw all diagrams on the square lattice using the 

"dotted-line" interaction in Fig. 32 and "horizontal" oriented 

fermion loops (solid lines) (see Figs. 33, 34, and 35 for examples). 

t<_-
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(b) Each Fig. 32 interaction gives a factor of z , and .· v 

there is a sum, L , over the x-coordinate of the interaction. 
a 

(c) Each fermion propagator from (a, 13) to (a; 13) (Fig. 13) 

l-d ( ) gives a factor of g , ·Zh . 
a -a 

(d) For each fermion loop there is a (-l). 

(e) Shrink fermion loops to points. Treat the points in 

different rows as being distinguishable. There is a factor of 

lthe order of the point symmetry group of the diagraml-1 • Diagrams 

in Figs. 34b and 34c have a factor of~ from this rule, but Fig. 34d 

does not. 

(f) Two fermion ·loops with R. interactions between them 

(Fig. 36) have a factor of it . Figures 34a and 35 have factors 

of 2 ~ and 
3
1
! from this rule. 

(g) If R. interactions (dotted lines) are attached to a 

fermion loop all (R.-1)! possible orderings must be considered. 

They no longer contribute equalzy as in Fig. 16, that is, all the 

possibilities on the right hand side of Fig. 16 must be considered 

separatezy. 

:E 
connected 
diagrams 

( ) 1 ( ) _ 2-d di.mer ( ) · ( 0) ) 
h ilog z zh,zv = r zh,zv = r (zh + 

(weight of diagram), where. r(O)(zh) is 

r< 0) ( zh) = r-d dimer ( zh) ' 

d ~-d dimer . . . E (
7 4 ) an r ~s g~ven ~n q. . • . 

(9.4) 

Momentum space Feynman rules can also be derived. Because 

the propagator in Eq. (9.2) has a simple 1313' structure, it is 
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convement to Fourier transform in x~coordinates only. The statistical 

factors remain the same as above. Loop· momentum are assigned in the 

24 (' } standard way • Rule _c_ becomes 

(C~')_ for each fermion· proJl8.gator with momentum, px, flowing in 

the direction of an arrowed line Csee Fig, 37) there is a factor of G(p) 

(gl,;v;{;l.!l in Eq. (9. 3 )_). ·No longersum over the_ x~coordniate o-f the inter~ 
· · _ . wa 
action as in rule (b). Instead~s~gnafactor ofJ ·~ for each loop!lDmentum. 

'"'T 

In first order perturbation theory there is one graph (Fig. 33}. 

In momentum_ space the contribution is 

( L
w a \ 2 ,;_ zv ~ ( 1} 

zv 2WG(k}/ ~1+4z ~r (zh,zv}' 
w . h . 

(9.5} 

wl).ere Eq. (7.7} has been used. 

There are four second order graphs (Fig. 34). Figures 34b 

and 34c have the same weight and Fig. 34d has twice the weight of 

Fig. 34b. Hence 

r(2}(zh,z) 4r(b}(zh,zv} + r(a)(~,zv}' (9.6) 

where, in momentum space, 

r(b)= (~ !_} z
2[Ja G(k)] 

2[fa G(k)G(k)J 
2v2W 2W · 

(9.7) 

(a} 1 2 ftlkl Ja2fa3 ·r ] f = '2 zv 2Tf 2'Tf 2Tf G(k
1

}G(k
2 

+ k
1

}G(k
3 

~ k 2 )G(k
3

) • 

The loop momentum assignment assignment for r(_a} is shown in Fig. 38. 

r(b} and r(a} can be explicitly calculated: 

(. ~., 
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r<o}Czh,zvl 
~ ( zv ) 2 [ (1 +~h} 

1 + 4zh 
· (1 +11 + 4zh}- + .j 

. ( z- ) 2 (_ ) 1. v 
r a (zh ,zv) = 2 1 + 4zh [ 

(1 + /1+ 4zh}
4 

+ 16z! j 
. - - 4 2 • (9. 8) 

(1 +11 + 4zh} ~ 16zh 

This-concludes the calculation to second order for the two~dimensional 

dimer model treated as a perturbation of one~dimensionSl dimer models: 

r2~d dimer(_zh,zv) r<o} + rCl} + rC2} +···.., (9.9) 

with r<o}, r(l}' and r< 2 l given in Eqs. (9.4), (9.5), and (9.6). 

Equation (9.9) is an expansion in powers of zv but exact to all 

orders in zh. 

Now.consider the Hartree treatment of Eq. (9.1}. It replaces 

z n nt n nt · ..... z <n nt > n nt v al3 aS aS+l aS+l v aS a~ _ · aS+l aS+l . . H 
(9.10} 

+ z n nt <n -nt > -' z .,..._ nt ><n nt > 
v aS aS ''al3+1 aS+l H v ~~aa a~ · aS+l al3+1 

and determine.s - nt > 
m = < naS aS_ H self-consistently. Substituting 

(9.10} into Eq.(9.1} gives 

1 
m = 1 + 2zvm 

with g
0 

given in Eq. ( 7 . 7 } . 

equation for m: 

1-d ( zh · ) 
go 2 

(1 + 2z m} 
v 

{9.11} 

This leads to a forth order polynomial 

~o.--:. 
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2 4 3 2 
4zvm + 4zym + (1 + 4zh)m - 1 = 0. (_9.12) 

Numerically Eq. (9.12) was found to have a unique positive root so 

that m is determined unambiguously. Equation (9 ,12) can be solved 

using standard (messy) formulas for a forth order equation. 

The effective anticommuting variable action becomes 

Aeff. 2-d dimer(zh,zv) ~[ t ) 2. t t. 
~ naBna.B(l + 2zvm - zvm + zv.nasYlis!1~1~+1 

+ z~(nasn!ns + n!sn~lB)] . (9.13) 

The normal ordering symbol : means "do not take (self-interaction) 

Wick contractions within the colons". Rescaling anticommuting 

variables by a factor of 1//1 + 2z m yields 
v 

2-d dimer(z z ) 
z h' v 

(1 + 2z m)Nexp(-z m~)Jdndntexp(AHartreee),(9.14) 
v v 

where N is the total number of sites and AHartree is the action 

for generating the Hartree improved perturbation series: 

AHartree(zh,z ) = I:tnasn!s + E;~[nasn!+lB + n~Bna+lB) 
v aB 

(9.15) 

+ ~; 
t t ~ 

naBna.BnaB+lna.B+l:f 

with 

~ 

\, 

c 

zyjc 2 

z /c
2 

y 
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1 + 2z m. 
v 

\!'- • 

(9.16) 

From Eq. (9 .14 )_ the Hartree approximation, rH, is 

rll(zh,z) 
2 

tn (1 + zvm) - zvm (9.17) 

Equations (9.17) and (9.12) summarize the Harteee approximation in 

the one-dimensional approach to the two-dimensional dimer problem. 

rH includes the effects of diagrams in Fig. 33, 34b, 34c, and 34d 

as well as higher order ones of the structure indicated in Fig. 17. 

Next consider the Hartree-improved perturbation expansion. 

The calculation will be done to third order in ~· The action in 

Eq. (9.15) is almost of the same form as in Eq. (9.1) except that 

~ + ~, zv + E;v' and there is normal ordering. The Feynman rules 

used above are still valid with the replacements 

z +I" 
h '"h ' 

(9.18} 

zv + E;v • 

In addi.tion, normal ordering means that. graphs with a fermion loop 

connected to a single interaction dotted line are to be ignored. 

The first term in the Hartree-improved ser~es is the second order 

(in E; ) graph shown in Fig. 34a. The contribution is the same as 
v 
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before (Eq. 9.8} when theEq.(_9.18) substitutions are mode; 

r(2)(zh,zv) 
,;, l ( . zv )2 (c t . c t 4 zh) + 16zh ·r··. lc 2 ~ 21 

2 . ' 4 2 . 

2 c + 4zh (c + Jc2 + 4zJ - 16~ J 
(9.19) 

In third order there are four graphs (.s~e Fig. 35). It turns out 

that all four have the same weight. In coordinate space the 

contribution is 

r (3)(z ,z ) 
. h v :E 3 4 . 12 

(i;V') 3f l~(i;h)gn (i;h)gm_/i;h) 
n,m 

z )3 2 v 
-- 2 
- 3 ( c + 4zh 

:E 2jmj 2jnj 2jm-nl 
a a a , 

n,m 

where Eq. (7.7) has been used and 

a= 

. - c + /c2 + 4zh 

2z~ 
h 

2~ 
zh 

kc c + c + 4zh 

Equation(9.20) yields 

z 3 [ 4 8 ] r (3 l ( z z ) = R ( v )· 1 + 4a + a 
h' v 3 2 . 4 2 . . 

c +4zh -(1-a) 

(9.20) 

(9.21) 

. (9. 22) 

This completes the calculation of the Hartree-improved series to third 

order in [,v: 

Hartree exp.(z z ) 
r · h' v rHCzh,zv) + rC

2
}(zh,zv) + r( 3 )(~,z) +···, 

(9.23) 

where the r•s are given in Eqs. (9.17), (9.19), and (9.22). The 

(; \; 
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constants, i;h' i; >c, a, and m are determined by Eqs. (9.16), v . 

(9.21}, and (9.12). Likelq. (9.9}, Eq. (_9,.23) produces a series correct 

to all powers in zh. Of course, Eq. (_9.23) will produce a series with 

a much better z behavior since higher order (in z ) effects v . v 

are taken into account. 

Finally, consider the 1/N expansion approach. The one loop 

correction will be calculated. 'The zeroth order contribution is rH 

·and is given in Eq. (9 .• 17). The one loop contribution involves 

summing the graphs of Fig. 39. Graphs with an· odd number of fermion 

loops give zero. For a graph with M fermion loops, there is a 

statistical factor of (-,l)M/2M from rules (d) and (e), a factor of 

~· a factor of eM, the number of closed· one-dimensional· random 
0 

walks of M steps ( w~ich is the. embedding factor in the vertical 

""' 2 2 2 direction) and a factor of ~ g. g •.• g g 
~ .. ·.1\t ~-~ ~-~ '\1-'\1-1 '\ -<M 

for the propagators: 

1-loop(z ,z ) 
r h v 

;. (-l)M ..M M ""' r·2 2 2 ] 
~ - l; __ c ~ g g ... g 

M=l 2M v o a2 •• 'OM a2-al a3-a2 al~ 

Using the same method as in section VI 

J
dp M 

M _ ..:.:£ (2cos py) • co - 2 'If 

and Fourier decomposition of the propagator factor gives 

""' • • . 2 . - v ___!_ 1 -~ 

(9.24) 

(9.25) 

~ l
2 

] ( 
z )Mfdp ( 4 

v ~ g - g - - 2 2'1f 4 2 
a 2• · ·~ ~ <Xr <Xr <\1 c + 4zh 1 + a -2a cos 

t. 
px 

(9.26) 

,_ 
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leading to the final result 

( 2cos p >( 1 - a 
4 

. )] 
y 4 2 ' 

l+a -2a cos px 

1-loop(z ,z ) 
r h v 

lfdJirPY J ( zv ) 
- 2 21rJ -2n~t ~ 2 + 4zh 

(9.27) 

where c and a are given in Eqs. (9.16) and (9.21). The 1/N 

expansion gives 

1/N exp. (z z ) 
r h' v 

(9.28) H( ) 1-loop r ~ z + r (z z ) + .•• 
n'v h'v ' 

with rH given in Eq. (9.17) and rl-loop given in Eq. (9.27). 

Higher order corrections are easily calculated. 

A phase transition (or non-analyticity) could occur if the 

argument in the logarithm in Eq. (9.27) vanishes. It would first 

happen in the integration region near p = 0, p = 0. 
y X 

The condition 

for a phase transition is 

1 =( 
2 

zv ) (2 ) (·1 + a:). 
c + 4zh 1 - a 

(9.29) 

Condition (9.29) when combined with the definitions of m, c, and 

a[Eqs. (9.12), (9.16), and (9.21)1 implies 

)[( 
~2)~ . 

2 2 -~+..rz:-+z 

(-zh+/zh+zv 2 h v +1+4zh}=0·(9.30) 

For zh,zv > 0 Eq. (9.30) cannot be satisfied; hence condition (9.29) 

cannot be met and no phase transition. occurs in the 1/N approximation. 

The two previous approximations in this section [Eqs. (9.9) and (9.231 

are also analytic functions of ~ and zv and hence also predict 

'( • 

84 

no phase transition. Thus the three methods in this section as well 

as the ones in Sees. V and VI all predict no phase transition in the 

two-dimensional dimer model in complete agreement with reference 12. 

The action in Eq. (9.1) can be modified so that sucessive 

terms in Eq.(9.28) get multiplied by factors of 1/N. This is done 

in the same manner as in Sec. VI. The modified action is 

N [ • ·t 
A = L L TJ~8TJ~8 + 

a8 i=l 

i it i it + zv ""' i it j j t ] 
zhna8TJa8TJa+l8TJa+18 :Ni~TJa8TJa8TJa8+1TJa8+1 

j 

Equation (9.31) generates the series 

(9.31) 

( ) H( ) l-1oop( ) 1 2-loop( ) 
rN ~,zv = Nf zh,zv + r zh,zv + N( zh,zv +··· 

(9.32) 

where rH, r1-1oop, etc. are the same quantities as in Eq. (9.28). 

There are other ways to attack the two-dimensional dimer 

model. First, the method of this section can be applied along 

diagonals as in Fig. 40 instead of horizontal.rows. The corresponding 

anticommuting variable action would be 

A2-d dimer(~,zv) :E ~ T] T]t t z ~( t 
evenr v a8 a8Tlae;f~l + h TJa8na+l8 
sJ.-ces 

+ TJ~8 TJa+l8)] 

(9.33) 

+ ~ [zhna8TJ~8TJa+l8TJ~+18 + z~(na8TJ~8+lTJ~8TJa8+l)J 
SJ.~es 

where an even site, (a, 8) , means a + 8 = an even integer and an 

odd site, (a,8), means a + 8= an odd integer. This " staircase" 
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approximation, unlike the horizontal breakup, generates an expansion 

series symmetric in zh and z (as should be the case) . 
v 

A second approach is the :following: Break up both horizontal 

and vertical dimers: 

zhnasn!sna+l8n~+l8 ~ z~(nasn~l8 + n!snat-18) ' 

(9.34) 

t- t 
zvna8na8na8+lna8+1 ~ z~nasn!8+1 + n!sna8+1) 

In this case (closed loop) configurations will be generated which 

are not contained in the partition function (see Fig. 41 for example). 

They must . involve the eight corners of Fig. 42. By adding terms to 

the action to cancel these corners, the unwanted configurations can 

be eliminated. The corresponding action is 

dim ' t 1.:!( t + nt n ) A2-d er(z. ,s ) = .L..{na8na8 + zh na8na+l8 . a8.a+l8 
h v aS 

+ z;(na8n~8+1 +n!sna8+1)- (zhz)\asn!s1n!.-1BhStl 

+ n!S+lna-18 + na8+ln!+l8 + na+l8n!8+1 + noe-1~ 

+ na:,lsn!s-1 + n!+ 18na8-l + n!s-1 na+ 1sJ }. ( 9 · 35 ) 

The "cancelling" corners are the last eight terms in Eq. (9. 33). 

When integrated, the action in either Eq. (9.33) or Eq. (9.35) 

generates the two-dimensional dimer partition function. One could 

<. ,, 
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apply the same scenario of approximation schemes to obtain even 

more series expansion. This is not done :for reasons of space. These 

two representations (aiong with previous ones) show that the anti-

commuting variable method offers many avenues of attack. It is up 

to one's ingenuity to find the best approximation in the region of 

interest. 

So far, the approximation methods work best for small 

zh or z 
v 

(although some are still very good for large zh and z,). 

Is there an approach which works best for large zh and z ? The 
v 

answer is affirmative since as zh +"" and z + "" the dimer 
~ 

model becomes the pure dimer problem which can be solved by the 

anticommuting vari~ble method25 • One needs to calculate monomer-

monomer correlation functions in the pure dimer problem. This is 

easy to do using anti commuting variables. ·ActUally, this has already 

been done in reference 30. Reference 30 shows how pfaffian pertur-

bation theory works in simple cases, and calculates monomer-monomer 

correlations. In principle all monomer correlations (i.e. a product 

of many monomers) are calculable using the.method of reference 30. 

The anticommuting variable approach reproduces the results of 

reference 30 with much labor saved. Most of these results follow 

immediately or in a few lines of algebra. 

The methods of this section can be adapted to the two-

dimensional multipolymer system discussed in Sec. VIII. Roughly 

speaking, one merely replaces the word "dimer" by "multipolymer"· 

and uses the anticommuting variable correlation function in Eq.(7.15) 

instead of Eq. (7.7). For example, l-d in Eq. (9.2) is replaced 

~~. ... 
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bythe.g in:Eq. (7.15). 

in Eq. (9.31 with 

This corres})Onds to replacing the GCr>) 

Gmulti(.P) 
-1 

[1- exp(_ip l + l;z 0 exp(- ip (!/,-1))] 
X !/,=2 ,_, X 

(9.36) 

. . ( 4) . rl-d multipolymer The r~ght hand s~de of Eq. 9. ~s replaced by 

(z
2

,z
3

, •.. ) {Eq.(7.14)). To obtain the perturbation series for the 

two-dimensional multipolymer system replace the G(px) [Eq.(9.3)) 

by Gmulti(px)[Eq.(9.36)) in Eqs.(9.5), (9.6),(9.7), and (9.9). 

Equation (9.11) determines the Hartree factor, mmulti, if the g0 

in Eq. (7 .15) is used. Equations (9.13) through (9.17), which give 

the Hartree approximation, are valid if 
multi 

m is used. The 

Hartree propagator in momentum space is 

Gmulti{p ) 
H X 

-1 

[1....; c-
1

exp(ipx) + :E !;;iexp(-ipx(i-1)] , (9.37) 

!/,=2 

where 

!;;!/, = 
2 

z!/,/c • 

(9.38) 

c = 1 + 2z mmulti 
v 

Then rCl} and r{2) of the Hartree series are the same as simple 

perturbation theory [Eqs. {9.5), (9.5), and {9.7)) if z +!;; and v . v 

~ulti{p ) is used. 
. X 

It is straightforward to compute several 

orders of the Hartree series. It is also straighforward to obtain the 

1/N expansion. 

~-- ,. 
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SECTION X BOSON!ZATIONS 

This section considers bosonizations of the anticommuting 

variable actions. This means that the anticommuting actions are 

rewritten in terms of commuting (boson) fields. Bosonization can 

lead to new insights and new methods, although none are developed 

here. The analysis is carried out for formal purposes and so no 

numerical calculations are presented. Instead, contact is made 

with previous approximation methods such as perturbation theory, 

the Hartree approximatitm, etc~ Much insight is· gained into the 

perturbative techniques discussed in Sees. IV and VI. The dimer 

model in its complete generality is treated, although the methods 

are applicable, in principle, to any anticommuting variable action. 

Because the whole class of dimer models is being considered all at 

once, this section is abstract in character. 

In two dimensions there is a direct way of establishing a 

fermion-boson correspondence. A summary and review with references 

can be found in reference 31. In higher dimensions it is not 

possible to rewrite fermion operators directly in terms of bosonic 

ones and vice versa. It is, however, possible to find bosonic actions 

which reproduce the partition function (and correlation functions). 

A common way to do this is by the use of auxilary scalar fields.
32 

This section applies the auxilary field m.ethod to the abstract dimer 

problem. The result is Eq. (10.6). What then follows is a 

description of how the Hartree approximation, the Hartree-improved 

series, and 1/N expansion are recovered from the bosonic action. 

In addition, a second bosonization scheme is discovered. It is based 

on Feynman graph rules. A boson action is found which exactly 
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reproduces the Feynma.n graphs {_o;t' :;>ec, IV)_ and their weights, This 

bos.on action is presented in Eq. (10.16).. The Hartree and 1/N 

theory are also easily recovered [ Eqs. (10 .17} through (10. 25 )J • 

The importance of the auxilary field method (and other 

bosonizations) is that it allows semi~assical methods to be used. 

. 7 8 
In a s~ries of papers ' Dashen, .Hasslacher, and Neveu developed the 

semi-ciassical method for bosonic field theories. For fermionic 

fields it was. necessary to first bosonize the system
8

. In this wa;y 

semiclassical techniques become (indirectly) applicable to fermionic 

systems. Thus the auxilary field method is important because it 

allows semi-classical methods to be used. 

For the dimer problem, the semi-classical method recovers the 

Hartree approximation. Calculating successive orders of quantum 

corrections generates the 1/N expansion. For most dimer models, its 

accuracy explains why the partition function is well approximated 

by the saddle point and a few orders of quantum corrections: the 

partition function receives its contribution from a "deep well" in 

function space. 

This bosonization method, which will be called the auxilary 

field method, works for a field theory whose interaction term is 

a product of four anticommuting variables (or fermionic fields). 

It introduces an auxilary boson field to linearize the fermionic 

degrees of freedom. This trick is sometimes useful
8

• The method is 

used here formally so that no numerical results are obtained. The 

purpose is to make the reader aware of the auxilary field method. 

<:, 
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Take the general dimer interaction term, ~ Ezal3nan~n 6 n~, and 
as . . -

rewrite it as 

exp(~ ~ zal3nan!n 13n:) = (10.1) 

"' 

a~ f 
-"' 

dA 
~exp 
I21T [ -.!. EA2a + "'£.~ Aas<nan~ +nan~>] • 2 al3 a., ·aS · 

Recall that a and· 13 label vertices. Thus Aal3 represents a 

"bond" variable between vertices a and 13. For convenience Aal3 

has been choosen to be different from A8a. Those Aal3 for which 

za~ = 0 ma;y be ignored (or integrated to yield a multiplicative 

factor of 1). Equation (10;1) is true because Gaussian integration 

over the A's still works for sources such as t 
nana 

Integrate over the anticommuting variables in Eqs.(4.1) and 

(t.3.6) to get 

H [~ + ~~ (Aal3 + Aaa>] (10.2) 

The bosonized action is 

Adimer 1 2 ~ rz;;, 
- 2~Aal3 + ~R.n[l + ~~ T(Aal3 +~a) • (10.3) 

This effective action involves arbitrary powers of A's (when the 

logarithm is expanded) and is not so aesthetic. It is easy to verify 

directly that exp(Adimer) when integrated over the Aas's generates 

the partition function. 

~:-. 
._ 
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Equation (10.1) relies on the identity t 2 -
Cnc/\x) - o. lt is 

useful to explicitly cancel this ;factor by using two auxilary fields 

A(l) 
a.B 

and A(2) 
a.B 

These two can be grouped into one complex field, 

A ., • 
a.B· 

Aa.B 

* 
Aa.B 

A(l} + i A(2 ) 
= ~ . -~ 

h 

A
(l) . A(2) 
afl - ~ aB 

h 

(10.4) 

In terms of these variables the action which yields the dimer 

potential is 

* - :E {AaBAaB) 
a.B 

p;:;, t 

+ :E/ f (AaBnana. 
aB 

* t 
+ AaBnBnB ) 

and leads to the bosonic representation of 

zdimer=(a.~J~· ditasdA:e)exp [- ~ AaBA~+ ~R-n[rtVf(AaB 

(10.5) 

+A~ )J 
(10.6) 

The Har-bree approximation of Sec. IV becomes the semic-lassical 

approximation iii. the auxilary field representation. The integrals 

in Eq.(l0.6) can be approximated by their saddle points. The equations 

of motion are 

~-
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;z;:; 
*ct / ~ ·• 

A = p~r. . d. . *c,l 
a.B 1 + :E (.AYB+ AByl 

A cR. 
a.B 

1 + 

y 

:E 
'Y 

/Sl 
~~ cR. *cR.) 

/2(A + \B By 

.-

(10.7) 

where AcR, denotes the classical field, that is, the saddle point 

solutions. Equations {10.7) imply 

A cR.* = JC.R-
afl tsa 

One then concludes that the functions 
-cR. -
AaB = 

- .t 
A~~B). 

cR, r 2 
AaB zaB 

independent of a. (that is, ~c! 
a.,. 

Call these 

- -cR. - IF: gfl = A = A c! - cR. __g_ 
a.B a~B- A B z a a.B • 

{10.8) 

are 

gB: 

(10.9) 

The g's satisfY. the same Hartree .equations as in Sec. IV [Eqs. (4.9) 

and (4.16)]: 

g 
1 

l +:EzyBSy 
y 

(10.10) 

In :fact this is not surprising since in the mixed representation 

of Eq. (10.5) the classical equation of motion for ~B is 

fi-R, 
Ac = n nt 

aB a a 
(10.11) 
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The classical value of A is .just the IW.rtree expectation < nr,t'>H. 

The saddle point contribution (to Jl,n Z) in Eq. (10.6} is 

!. :E g z. g + :E R.n(l +I: zcxaga)· 
2 aS ex aS S a a 

(10 .12) 

which is .the same as the Hartree approximation in Eq. ( 4 .10) . 

The advantage of using complex fields as in Eq. (10.5) is that 

no new auxilary fields ·need be introduced when the N colored 

modified version is introduced. As discussed in Sec. VI given any 

dimer model a modifie.d "chromo" model can be constructed with a 

local U(N) symmetry. The coupling between auxilary fields and 

fermions becomes 

N ;z;; .. t * i it 

E :E I "if ( Aaan~n~ +Aaanana ) 
as i=l 

(10.13) 

Integrating over anticommuting variables and rescaling the A's yields 

I f . * ) [ N=l ] Zchromodimer=\aH (~)dAaSdAaS exp -N(A ) • (10.14) 

where AN=l is the same action as in Eq.(l0.6). The point in 

deriving Eq. (10.14) is to show that 1/N plays the role of ~- On 

general grounds33 , a loop expansion in the A's will generate the 

1/N expansion. This is, of course, what was noted in Sec. VI: 

that the 1/N expansion is an expansion in interaction loops after 

fermion loops have been shrunk to points. The dotted interaction 

line in Fig. 11 may be identified with A. 

The second bosonization method is similar to the auxilary 

field method except that the boson fields are defined at vertices 

,, 
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rather than on bonds.. In ·Sec. TV Feyilll)an rules were gi yen for 

contracted diagrams (that is , ferinion loops contracted to points) . 

Can a functional integral over a scalar field be found which 

reproduces these rules? The answer is yes. Define a matrix, G, 

whose elements are zas= GaS = zas·· Let H be the inverse of G, 

so that 

z H = H z ·= cS 
aS Sy aS Sy ay' 

GH = HG = 1, (10.15) 

Gas zas· 

Then 

zdimer =..NrrJdljla exp [- ~ H sljls + E £ (-1) t $!]. (10.16~ 
a ·12-iT 2 a a a Jl.=l 

N' ~ li 
works, where .;r = (det G) • The term (-1) ~N produces the 

- Jl, ~ 

correct combinatorial factor of (-l)(R.-1)! in rule (c) of Sec. IV. 

The second term in Eq. (10.16) i:s I: Jl,n(l-$a). Rewriting eXIJ[ I:-· R.n(l-4>~) 
a · a 

as · rr(l.,-ljla)' it is not hard to verif'y directly that Eq. (10.16) 
a 

produces the dimer partition function. 

The Hartree approximation is recovered through the equations 

of motion and evaluating Eq. (JO .16) at the saddle point. The 

stationary point of Eq; (10.16) is 

.-: 
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c ... _ R, • 
0 ( - 1 ) 

~ Hcxa<Ps - 1 - <P~ (10.17) 

cR. 
Setting <Pcx -'E zcxBgB and using Eq. (10.15) transforms (10.17) 

~ 
into 

1 

lis 
1 +I: zBo.ga 

. Cl 

(10.18) 

which is again the Hartree equations (Eq. (4.9)}. The saddle point 

contribution again yields the Hartree approximation [Eq. (4.10) or 

Eq. { 10 .12 )} • 

For the chromodimer modified problem a factor of N multiplies 

~<Po. 
the action in Eq. (10.16) and J~ becomes J /Jr d<P o. 

Again 1/N plays the role of .fl. and the loop expansion of Eq. (10.16) 

generates the 1/N expansion. 

Now shift <Po. by the classical solution, <P~R, • As should 

be the case terms linear in <P are absent from this shifted action: 

shifted = _ ~ ~ <PaHo.B<PB 
Adimer 2 o.B 

co ( R, 
- ~ I: go.<Pal 

a R-=2 R. 
+ [-' ~~:Ho.B<P~R. +~ Rn (l-<P~~-

(10.19) 

The last term [ in b:reckets ) in Eq. ( 10 .. 19) is the Hartree approximation. 

This shifted action generates the Hartree improved series for the 

dimer model. The Feynman rules for this scalar field theory are pre-

cisely the same as the Hartree improved rules of Sec. IV. The 1/N 

t . bt . d f th . d t. . f A shifted superpropaga or ~s o alne. ..roil) e. qua ra ~.c p~ece o d:i.mer 

Al(N . = - ~ ~ A-. rH + 2o J<P -
d~er 2 ~ ~alaB gu aB B 

L I: (ga<Pl' 
a R-=3 --R.- + [

Hartree]. (lo.20) 
Approx. · 

~ 
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It is the inverse of this quadratic piece: 

where 
2 

g 

G~B= (( H + g
2
) -l}ilB ' 

denotes the multiplication matrix 

(10.21) 

2 2 
(g v)a = gava (a not 

summed) for vectors, 
s 

GaB the sum over all random walks v. Is 

. ( )number of steps 
from a to B we~ghted by zaB factors and a .-1 ? 

Yes. Multiply the identity GS(H + g2 ) = l by G (Eq. 10.15) from 

the right: 

GS(l + iG) G, 

Gs 2 2 2 
G - Gg G + Gg Gg G 

2 2 2 
Gg Gg Gg G + 

(10.22) 

or in indexed notation 

Gs , 
aa zaa' 

2 
L zaBgBzBo., 
B 

2 2 
+ L zaBgBzBy~\a' - ... ' (10.23) 

By 

which is exactly the series depicted in Fig. 25. 

The first 1/N correction to the Hartree approximation, the 

~ ~ (ga<Po.) 
one loop correction, is obtained by dropping ~ ~ R, and 

a R-=3 
doing the quadratic integration: 

-1 l-!:2 ' s -1 J') [det (GS) G. = exp\-ltr Rn[(G) G · · 
(10.24) 

The factor of G in Eq. (10.24) comes from u1f in Eq. (10.16). 

Upon using (10.15) and (10.21), Eq. (10.24) becomes 
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r'-ll. 1 2 :- 2 tr ~n (1 + g G} 

1 2 2 1 2 . 2 2 . . 
· = E 4 gaza8g8 - 6 E · gaza8g8z8ya,\a + 

a8 a8y · 
'(10.25) 

which is exactly the term~ in Fig. 25. 

SUIIllll8.rizing, the bosonic actions in Eqs. ( 10 .16) , (10 .19) , and 

(10.20) with the Hartree self-consistent equations [Eq. (10.13)] 

respecti ve1y generate simple perturbation theory, the Hartree 

improved series, and the 1/N expansion. 

XI. THE FREE-FERMION EIGaT VERTEX MODEL CORRELATION FUNCTIONS 

Once a model is solved via the anticommuting variable 

method, it is straightforward to compute anticommuting variable 

correlation functions. It is then possible (in practically all 

cases) to compute physical correlation functions. This was 

demonstrated for the Ising model in Sec. VI of II. 

This section calculates all the vertex correlation functions 

for the free-fermion model described by Eq. (I.4.3) and Fig. I.ll 

of paper I. It is just a simple eXtension of the methods used in 

II. The answer is expressed in terms of a Pfaffian of (in general) 

a large matrix. A few simple. examples are worked out [see Eqs. (11.2), 

(ll.4), (11.14), (11.16), and (ll.25)]. The main result is a set of 

computational rules. B.Y blindly following them, all vertex 

correlation functions can be calculated. 

In Sec. VI of II Ising model spin correlation functions were 

calculated. It is just as easy to calculate vertex correlation 

functions in the free-fermion model [Eq. (I.4.3) and Fig. I.ll]. 

It 
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Equations (II. 5.18) _; (II. 5, 27) are all that's nee.ded. 

·Let 

ht h 
Ba+~8 = zhna8na+l8 

(11.1) 

vt v 
B - z n n 
a8~- v a8·a8+1 

B~ 8 represents the operator which produces a unit of horizontal 

wall between (a,8) and (a+l,8). 

unit 'of vertical wall between (a,8) 

Likewise B B+% produces a 
a 2c. 

and (a,8+1). If B's are 

inserted in the integral of Eq. (I.4.3) then walls must occur where 

B's operate. A closed polygon partition function with contraints 

that walls be in certain places is obtained. Hence 

< Ba~ > = the probability that a wall occurs at (a~,8) 

ht h 
zh <na8na+l8 >' 

< BaB~ > = t.he probability that a wall occurs at (a .8~) 

• 
t 

< v v > 
zv na8na8+1 (11.2) 

Because Eqs. (II. 5. 8) and (II. 5. 9) have computed these anti commuting 

variable correlations, these probabilities are explicitly known. In 

general 

B 
< Ba 8 a282 

l 1 

Ba. 
8 

> = the probability that walls 
mm 

(11. 3) 

simultaneously occur at (a
1

,8
1

), (a2 ,82 ), · • ·(am,8m) · 

f'j 
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In Eq. (11.3) one of the indices a. or S. is half integer. 
~ ~ 

To calculate (11.3) insert the definitions in Eq. (11.1) factor out 

the zh's and zv's to obtain the expectation value of a product of 

2m n's. Use Eq. (II. 6.3) to express this as a Pfaffian of 

a matrix M. The elements of M are the anticommuting variable 

correlations given in Eqs. (II.5.18)-(II.5.27). The answer is 

just a 2m by 2m dimensional Pfaffian (or an 2m by 2m 

determinant since (Pf M)
2 

= det M). For example, the probability 

that horizontal walls simultaneously occur at (a + :!a, S) and 

(a'+ :!a, s1 is 

2 [ ht h ht h . 
< Ba+laSBa'+laa' > = zli < naBna+l? <na'S'na'+lS' > (11.4) 

h+ h h ht ht ht h h ] 
+ < naSna'+ls-><na+lSna'S' >- < naSna'S' > < nClHSna'+lS' > 

The quantities on the right hand side of Eq.(ll.4) are given in 

Eqs. (II.5.18), (II. 5.22), and (II. 5.25). 

A different set of questions can be asked, such as what is 

the probability that one of the configurations in Fig. I.11 occurs 

at (a,S). Define 

o(a) 
as 

h ht v vt 
(~bv - ala3 - a2a4)nasnasnasnas 

(b) h ht v vt 
0as = bhnasnas<1 - bvnasnas), 

(c) v vt h ht 
0as = bvnasnas< 1 - bhnaSnaS)' 

(11. 5) 

(11.6) 

(11.7) 

• 
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o{_d} = ht v vt h 

a !;I alnaSnaBC1 - a3TiaSnaS) ' (11.8) 

O(e) - vt ht v h 
aS - a2nasnas(l - a4nasna8) ' (11.9) 

O(f) = a vt h ht v 
aS 3naSnas<1 - alnasna:s> • (11.10) 

0(g) = a v h vt ht 
aS 4nasnas(l - a2naSnaS) • (11.11) 

(g) 
o(h) 
as 

1- :E o(j) 
(j)=(a) aB 

h ht v vt 
(l - bhnasnas)(l -bvnasnas) 

ht v vt ht vt h v h 
X (l - alnasnas}(l - a2nasnas) (l - a,nasnaJ.l..a4naST)as)• 

(11.12) 

In Eq. (11.12) the sum lets j be "a" through "g". The 

superscripts (a), (b), ···,(h) refer to the configurations in Fig I.ll, 

i.e. 0~:) should be associated with Fig. I.lla. The probability 

that configuration (a) occurs at (a,S) is 

<o(a) > 
aS 

Prob. that conf. (a) occurs at (a,fl). (11.13) 

The reason for this is simple: when 0(a) 
aB 

operates all the anti-

commuting variables are used up; no walls can enter the (a,s) 

site so that nothing can happen (which is exactly what is depicted 

in Fig I.lla). The factor of (bhbv - a
1

a
3 

- a2a4 ) assures 

that this site has the appropriate weight of configuration (a). 
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A similar conclusion i.s reached for .the other octS Is. The 

probability in Eq. (11.13)' is ea~ily calcUlated 

(a) [ h ht v vt · 
< oa:s > "' (.bhbv - a1a 3 - a2a 4 ) ( nasnaS > < naSnaS > (11.14) 

h v · ht vt h vt ht v ] 
- < nasnas ><Tlasnas > + <nasnas > <nasnas > . 

In general 

(c
1

) (c
2

) . (c ) 
< 0 D 0 . D • • • O(l ~ > = the probability that SiteS (11.15) 

al.,l <l2p2 m.,m 

(a
1 

,13
1

) through 

through ( c ) • 
m 

(a ,S ) have configurations 
m m 

Equation (11.15) is calculated using Eqs .. ,{11.5)-(11.12), 

(cl) 

Eq. (II.6.3), and Eqs. (II.5.18)-(II.5.27). The result would be 

a sum of Pfaffians. A similar sum was encountered in Sec.VI of II 

in computing Ising model. spin correlations [see Eqs. (II.6.9)~ 

(II.6.ll)l . There, it was possible to rewrite this sum as a 

single Pfaffian. The same tr~ck works here .. For example, 

where 

< o(b) > 
ctS 

· h ht v vt 
= < bhnaSnaS(l - bvnasnaS ) > 

(- bhbv)(Pf t-1), 

M34 = - M43 = 
1 

< n3n4 > - bv 

all other Mij = < ni nj > , 

~ 

(11.16) 

(11.17) 

102 

and the abreviations 

h ht v vt 
~"' netS ~"'na:S · rs=naS ~=netS ' 

(11.18) 

have been used. In other words the contraction between 
v vt . 

netS netS ~n 

calculating Pf M (via Wicks th~orem or Gaussian integration) 

gets an e~ra contribution of - t . A systematic set of rules 
y 

can be developed to calculate Eq. (11.15) as a 4m by 4m 

Pfaffian. 

Rules for Calculating Equation (11.15) 
1 

the Vertex Correlations 

1. Use the following abreviations for anticommuting variables 

h h+ + 
v v 

n4~ 3 = na s ,n4~ 2 = na s ' n4~ 1 - ~ ~ . - ~.~ ~ 
na s • n4~ = na s 

~ ~ ~ ~ 

where 

for ~ = 1 , 2, · · • • m . 

2. Equation (il.l5) is 

(cl) 

< 0a s 
1 1 

(c ) 
0 m > 

ctml3m 

Mij 

( 
m (c.)) 
U f ~ Pf M.J' 

. i=l ~ 

< ninJ > + t.ij . 

It remains to define the f's and t.ij's: 

3. The f's are 

;·) ;:. 

(11.19) 

(11.20) 

(11.21) 
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(a) - f (h) = (b b. ~- ala3 - a2a4)_ = f • f - h y 

f(b) = f(c) = - bhbv, 

(11.22) 

f(d) = f(f) = + ala3 • 

f(e) = f(g) = + a2a4. 

4. The ~ij's are somewhat more awkward to define. 

~ij is antisymmetric in i and j, t~is ~ij =- ~ji' so 

that M in Eq. (11.21) is an antisymmetric matrix. Each of the 
(c.) 

m operators, 0 ~ , involve the four anticommuting variables 
(li i 

at (Cli .ail. It is usefUl to group these into 

cluster associated with 

(c2) 

(c.,) 

o(l 1 ~ is n1 .n2 .n3 , 

o(l a it is n5. n6,n7.n8. etc. 
2 2 

If l1:i_ and 

"clusters". The 

and n
4

, with 

nj are from 

different clusters then ~ij = 0 (in fact most ~ij are zero). 

It is thus sufficient to define ~ij for i· and j within 

the ~th cluster. This depends on (c~), the configuration 

associated with the ~th cluster. The results are tablulated as 

follows: 

Configuration TYpe 

(a) 

(b) 

(c) 

Non-zero ~ 

all ~ij = 0 

~ij 

~ij 

l 
=- b 

v 

l 
-;;-

h 

i,j Values 

for i 4~-l. j 4~ 

for i = 4~-3, j = 4~-2, 

(11. 23) Continued on P. lo4 

10- • 

...._ 
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Configuration TYpe 6 Non-ze~ i ....LY._alues 

(d) l 
6ij -= a3 for i = 4~-3. j = 4~; 

(e) l 
6ij = a4 for i = 4~-3. j = 4~-l. 

(f) l 
~ij = - al for i = 4~-2. j = 4~-l. 

(g) l 
llij = a2 for i = 4~-2. j = 4~. 

(11.23) 
-bh 

llij = f for i = 4~-l. j = 4~. 

-b 
v 

~ij = f for i = 4~-3. j = 4~-2. 

(h) 

-al 
~ij = f for i = 4~-3. j = 4~. 

-a2 
llij = f for i = 4~-3. j = 4~-l. 

a3 
llij = T for i = 4~-2. j = 4~-l. 

-a4 

llij = f for i = 4~-2. j = 4~. 

where f in defined in Eq. (ll. 22} • Equation (ll. 23) defines llij 

for i < j. For i > j. llij =- llji. All other ll ij are zero. 
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Equations (11.16)_, {11.17h and (11,18) ;form a simple 

example of these rules. As a Il)ore complicated ex8.II)ple let us 

calculate the probability, PCaB). (cl (n
8
) -. of having simultaneously 

al 1 a2~2 a3 3 -

configurations (a), (c), and (h) at sites (al'B
1

), (a
2

,B
2

), and 

(a
3 

,8
3

). Set 

M5,6 = < n5n6 > 
1 -

bh 

.b 

M9;10 = < n9nl? -
..:!... 
f 

M9>11 = < n9nll> -
a2 

f 

M9,"12 = 
al 

< n9n1? - T • 

MlO,ll = < 'lcJlu> 
+ a3 

f ' 

M10,12 

M11,12 

a4 

< ~o'l? - r-·' 
< > bh 1hn12 - T' 

' 

' 

all other Mij = < ninj>' · (i,j ltol2). 

(11.24) 

The n 's are defined via Eq.(ll.l9) for ~ = 1,2, and 3. The answer is 
i 

p(a) (c) (h) 
a.1Bla2B2a3B3= ( -bhbv)(f)2Pf Mij' (11.25) 

where f is given in Eq. (11.22). It is easy to calculatP free-

fermion vertex correlations using the above rules. If m configu-

rations are specified the answer is a Pfaffian of a 4m by 4m matrix. 

~ 
,, 
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I conclude thi_s section with. ~ ;few:. relllarks: 

Remark (_a); It is trivial to adapt the ;formalism to handle 

walls and vertex configurations simultaneously. Everything is 

calculable in terms of a.Pfaffian. The probability of having a 

wall at (a,B) and a (b) vertex configuration at (a~ ,B~) is 

easily calculated and would be a Pfaffian of a 6 x 6 matrix. 

Remarlt._ Q.bl: When vacuum expectation values are taken, other 

operators work equally well. For example 

t t < bh_hvv> 
~ vna-1BnaBnaBna8 

The reason for this is simple. 

< o(c) > 
a.B 

B wh" a~ 1.ch is 
ht h 

zhna-1Bna.8 

(11.26) 

produces a unit of wall which enters the (a,Bl site from the 

t 
n~ 8 n~ 8 uses up the vertical variables at (a.,J3) left. Because 

this wall must continue straight through thus yielding configuration 

(c); it is impossible to use any of the corners at (a,J3). 

In a sense the 0 's 
aB 

are not unique; many operators will 

work. Those defined in Eqs. (11.5.)-(11.12), however, have the 

advantage of using only those anticommuting variables at one site. 

Remark (c): The matrix elementsof"M in Eq.(ll.2J.) involve the 

anticommuting variable correlations. These, in turn, are given in integal 

form in Eqs,(II.5.l8)-(II.5.2J')• Jhprinciple, the integrals inEqs.(II.5.18)-

(II. 5. 27) can be done in terms of elliptic functions. Appendix A 

demonstrates this for th~case (a,B) = (a~,S~). The method of 

Appendix A generalizes for the case when (a,S) I (a',B') but is 

quite tedious. There appears to be no 

"' 
__ .;; 
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simple analytic expression for the general case. For each (a.,8) 

and (a.' ,8') the integrals probably must· be computed in the. 

same laborious manner as for the Ca., 8} Ca.' ,8'") case. 

XII. THE EIGHT VERTEX MODEL: PERTUBBATION THEORY 

The eight vertex model is tiE I!Dst gmeraJ. clofEd non-overlapping 

polygon partition function on the two dimensional square lattice. 

At each site there are eight configurations (li'ig. I.ll), the weights 

of which can be assigned independently. Many models can be mapped 

into the eight vertex model. Examples are the usual two-dimensional 

Ising model, other Ising-like systems, the free-fermion model, ice-

type models, the Baxter model, etc. All the above mentioned are 

exactly solvable. The most general vertex model, however, has not 

been solved. The ice-type and ferroelectric type models are 

obtainable from the polygon re·presentation by converting to "arrow" 

notation in the standard way
34

• Reference 34 summarizes many of 

the known results and has a good set of references on the eight 

vertex model. The large number of models contained in .the eight 

vertex model make it a very interesting system. 

The main philosophy of this paper has been the following: 

Given any unsolved model (i.e. the eight vertex model) find a model 

(i.e. the free-fermion model) which is exactly solvable via 

anticommuting variables and can approximate the unsolved model. 

The eight vertex model can be considered as a perturbation of the 

free fermion model. It is an interacting fermionic-like field 

theory. As such one. can use the powerful mathematic methods 

bestowed to us from field theory. 

" 
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This section contains two main results. The first is a set 

of Feynnan graph rules. Using these one ca.il compute the perturbation 

series for any action representable in anticommuting variable form. 

Because of their generality, these rules are somewhat abstract! 

The eight vertex model is used to exemplify them. This gives rise 

to the second main result. The eight vertex model is solved to 

second order in a free fermion breaking parameter, 1:1. Equation 

(12.12) contains this result. 

In the most. general case, the interaction will be a product 

of an even number of anticommuting variables, i.e. g4nl n2n3n4 or 

g6nl n2n3n4n5n6 with g4 and g6 coupling constants. The 

Feynman graphs are constructed from vertices associated with these 

interactions. A 2n product of anticommuting variables corresponds 

to a vertex of degree 2n. The 2n endpoints have labels to 

distinguish the different types of anticommuting variables (see 

Fig. 43). For g2nn
1

n2 ···n2n the labels 1 to 2n correspond 

to the variables nl to n2n· Vertices of this type will be called 

bare vertices. It is convenient to define another type of vertex. 

Group the anticommuting variables in pairs, i.e. g4(n
1

n
2

l(n
3
n4) 

or g6( n
1 

n2 l ( n
3

n
4

) ( n
5
.n6) • Likewise group corresponding labels in 

pairs. Draw oriented lines between them to denote the order as 

discussed in I (see Fig. I.7). These vertices will be called 

"directed vertices" and graphs associated with them "directed graphs". 

Figure 43 also displays examples of directed vertices. 
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Feynman Graph Rules For Any Anticommuting Variable· Action 

(a) Graphs are constructed using directed vertices and 

drawing dotted lines between anticoi!Dnuting·variable labels (see 

Figs. 44, 45, .and 46, for example)~ Draw all such topologically 

distinct directed graphs. In deciding whether graphs are topologically 

equivalent disregard the orientations of lines. Two graphs G
1 

and 

G
2 

are topologically equivalent if for each vertex (and anti

coi!Dnuting variable label) in G
1

, one can associate a vertex (and 

label) in G
2

, and dotted lines in G
2 

are attached between 

anticoi!Dnuting variable labels in precisely the same manner as in Gl. 

(b) . For each vertex there is a coupling constant factor. 

(c) The dotted and solid lines form closed loops. There 

is a (-1) ·for each closed loop. 

(d) Transverse each closed loop in a particular direction. 

There is a (-1) for each arrow in the opposite directions. 

(e) For each dotted line, oriented from labels a to 8 

there is a factor of G a :: <n na > , a.., a.., o 
where G, the bare propagator, 

is the anticommuting variable correlation function when the inter-

action potential is dropped. It is the inverse of';the quadratic 

pi-ece of the action •. [ .If the quadratic form is i aiB nOI.HOI.
13

n
8 

then 

HG = GH = 1 (in matrix notation) defines G. G satisfies 

Ga.a = - <:&a I. 

(f) Form a bare graph by converting vertices to bare vertices, 

dropping labels and orientations, and converting dotted lines to solid 

lines (Figs. 44d, 45b, and 46b. are examples). Let G be the point 

symmetry group of this bare graph. There is a factor of 

<i •· 
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[The order of G ]-1 . 

(g) r:: log Z = [Pf(H)] + :E~ d(w'eigh of graph). Here · · connec e · 
grap s 

H is the quadratic fo~ in rule Ce)., so that log (Pf(H) I is r for 

the unperturbed system. 

Consider a particular graph, G, with a particular 

labelling of anticommuting variables. Now consider all graphs 

obtainable from G by relabelling, that is, erase all the· anti-

commuting labels and reassign them. These graphs all have the same 

bare graph. Their contribution can be lumped together by using 

the £-symbol, £ 
ala2 

corresponds to taking 

a , 
2n 

v 

for each vertex of order 2n. This 

g2n 
= = e: n n ····n 

~ 2 nJ ! al a2· · 0 2n al a2 a2n 

(summation over repeated indices implied). As an example consider 

the_ graphs of one vertex of degree four. Figure 

4 are three of them. They have ~eights g Gl2G34 

g4G24G
31

(Fig. 44b), and 
. g4 . 

-g4G23G41 (Fig. 44c). 

44 shows there 

(Fig. 44a), 

The sum of these 

1S lf £ili2i3i4Gili2Gi3i4 g4Pf G. It is always possible to 

sum graphs with different oriented structure but the same bare 

structure: 

Rules for Bare Graphs 

(a~) Draw all topcik:g:ically distinct bare. graphs. For each 

bare graph choose one directed graph associated with it (see Figs. 

44~, 45a, and 46a for examples). 

(b.~) For each vertex of order 2n, use labels i
1 

to i
2
n. 

There is a factor of £. . . and a coupling constant factor. 
1112"""12n . 

·~ 
I) 
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( c~) , (d~ ) , Ce~ ) , (f~). Rules Cc) and Cd) still determine 

the overall sign. Rules (e) and Cf} still hold, There are 

now two new statistical factors associated with bare graphs. 

Append to (f) the following: For each pair of vertices with t 

lines between them (Fig. 15) there is a factor of Rf . For 

each vertex with R, tadpoles (Fig. 28) there is a factor of ~ 
2 t! 

On a translationally invariant lattice anticommuting 

variables have a location label, 
.... 
x, besides a type label, 

t : n!. Daggered and undaggered labels can be absorbed into the 
X 

index, t. The propagator associated with a dotted line oriented 

+ + . tm t m... 
from x to y between labels t and m 1s G = <n n.?. . 

++ -+--+o 
For 

XY xy 
a translationally invariant lattice there is a sum over a vertex's 

location, E • One can go to momentum space. The rules are similar .... 
X 

to ordinary many body theory. 

Momentum Space Rules For a Local Interaction 

All the above rules hold except for (e). Replace (e) by 

(e~) write propagators in the form 

GRJ:n 
........ 
XY 

1T d . ' 

f .... .... .... )) ~ exp[-ip · (x- Y 
-n (2n) 

Gtm(p), (12.1) 

wf><:.·e d is the dimension of the space. Assign an independent set 

of loop momentum (the loops are determined by the bare graph). 

1T ~ 
Associate a factor Jl ~ for each loop. Determine the 

·-lf ( 21T) 

momentum in dotted lines by requiring momentum conservation at 

.... 
each vertex. If a momentum p flows through a dotted line in the 

direction of the line orientation from label t to label m there 

• 
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is a factor GRJ:n(p). 0f course 1 if the orientation is opposite to 

the momentum flow there is a factor of 
tm·_,. rot+ 

G (-p) = - G (p). 

Let us apply these rules to the general eight vertex model. 

This is the model in Fig. I.ll with all weights assigned arbitrarily. 

Except for certain subcases (the Baxter model and the free-fermion 

model) this system is unsolved. Let w. 
1 

be the weights shown in 

Fig. I.ll(i). They satisfy one constraint known as the free-fermion 

constraint, which is 

w(a)w(h) + w(b)w(c) w(d)w(f)· + w(e)w(g)" 

Now add 

(. ) . t t ( ) . .a h h v- v 
v a = ~ 6 naSnaSnaSnaB 

as 

(12.2) 

(12.3) 

to the action in Eq. (I.~4). This modifies the weight of configuration 

(a) in Fig. I.ll [V(a) is proportional to 1:0(:) (Eq. 11.5)) 
as a~ 

Weights (b) through (h) are unchanged while weight (a) becomes 

(ala3 + a a4 - b b ) - 6(a) 2 h v • (12.4) 

The minus in front of 6(a) is due to the (-l)N in Eq. ( I. 4 • 3) • 

Many potentials can be used to break the free-fermion 

constraint. Examples are 

(b) (b) ~ h ht vt v 
v = zv6 £j na8na8naSnaS+l ' 

aS 

u(b} 

v(c) 

t t . (b)~ h h v v 
zv6 . ~. naSnaBnaB-1 naB 

(c) ht h v vt 
zh6 1: na8na+li3naSnai3 

ai3 (Eq.(l2.5') cont. onp.113) 



Adding 

7 

u (c)= z a< d 
·h 

v(d) = z a(d) 
h 

u(d) 

v(e) 

u(e) 

v(f) 

u< f l 

v(gJ 

ulg) 

z ll{d) 
v 

z Ll{e) 
v 

z t:.(e) 
h 

z ~(f) 
h 

z Ll(f) 
v 

z Ll(g) 
h 

z t:.(g) 
v 

v(i) (or u< i) l 
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E 
a.S 

E 
a.S 

E' 
a.S 

E 
a.B 

.ht . h v . v t 
na.-l~na.Sna.Bna.B , 

ht h ht v 
na.-lSna.Bna.Bna.e ' 

ht v yt v 

na.ena.en~Bna.B+l 

vt v vt ht 
na.S-lna.Bna.ena.e , 

E h t h vt h t 
a.S na.-lBna.ena.Bna.e ' 

E 
a.S 

E 
a.e 

E 
a.B 

E 
a.B 

vt h ht h 

na.ena.Sna.Bna. +lB ' 

v+ v vt h 

na.B-1 na.Bna.Bna.B 

v h ht h 
na.B n a.B na.B na. + 1 B 

v"t v v h 
na.Bna.S+lna.Bna.B. 

(12.5) 

to the action in Eq.(I.4.4lwill 

break the free fermion constraint by adding -Ll( i) to the weight of 

configuration (i). Although these interactions look non-local in 

the sense that all anticommuting variables are not multiplied at the 

same space point, a redefinition of one of the variable's location 

makes the interaction local. For example, for 

as v . 
na.B' 

then a local interaction is obtained. 

<: 
.. 

v{b) 
redefine n~S+l 

It is also possible 

ll4 

to find interactions which .:inodify two or more configuration weights. 

. . . h t h yt v 
For example ·. ~ zvll ~ na.-l.Sna.eTla.end.S+l adds -a11l to (d) and ll 

to (h). All these interactions generate the general eight vertex 

model 

v{a) 

with 

and heil.ce they are equivalent. This means that a theory with 

for one value of Ll (a.) , a
1

, a
2

, • • • is the same as a theory 

v< i) for some corresponding valu~ of Ll ( i) , a
1

, a
2

• • · • • 

However, they are not equivalent in the sense that some will yield 

better perturbation series (or Hartree-Fock series or 1/N expansions) 

for certain eight vertex models than others. Each will generate 

different perturbation, Hartree-Fock, and lfN. expansions. Maey 

different series can be obtained from Eqs. ( 12. 3) and ( 12. 5). It is 

up to one's ingenuity to determine which is best. I know no simple 

way to decide this. 

I will use v<al as the interaction. The calculation will 

be done to second order in t:. = t:.(a). It will be convenient to use 

numbers to label the different types of anticommuting variables: 

so that 
1 h 2 

na.e= na.B' na.B 

1+-+h, 

2 +-+ ht, 

3+-+v, 

t 4+-+v, 

ht 
na.B' etc. 

. ·~ 

ll2.6) 

;ftJ 
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The lowest order diagraJllS are shown in Figs. 44a, 44b, and 

44c. The· corresponding bare graph is Fig. 44d and a "label blind" 

graph is shown in Fig. 44e ~rom which one concludes 

r(l) = t±. il i2 i3 i4 

8 Eil i2i3i4 < 11a8Tla8 > < Tla8Tla8 > (12.7) 

_ [ h h t v vt v h , _ h + v + 
- t:. < 11aB11a8 > < Tla811a8 > + < 11a811a8 _, · < 11a811a8 > 

ht v vt h ] 
< na811a8 > < 11a811a8 > · 

These anticommuting variable correlations are given in integral 

form in Eqs. (II.5.18)- (II. 5.21), (II. 5.24), and (II. 5.27). In 

Appendix A they are computed in terms of elliptic functions. 

In momentum space (with loop momentum as shown in Fig. 44d) 

Eq .. ( 12. 7) becomes 

d2k d2 ( N. . (k1 )N. . (k2)) 
(l) _ f··· l f K2 l l.ll.2 l.3l.4 

r -t:.--2.--2BEiiii ' 
(2n) (21T) l 2 3 4 L (k )L(k ) 

l 
2 

. (12.8) 

where L(p ,p ) and N .. (p ,p ) are the denominators and numerators 
X y l.J X y 

in Eqs. (II.5.18)- (IL5.27), that is, L(p ,p) is given in 
. X y 

Eq. (II. 3.4) with Eq. ( II.2 .2). For Eqs. (II. 5 .18) ~ ( IL5. 24), 

the N.j(p ,p ) are precisely the numerators, i.e. N
12

(p ,p ) = 
l. X y · X Y 

N t.(p ,p ) = [h(-p )v(p )v(-p ) - a
1

a
3
v(p ) - a

2
a

4
v(-p )l, etc. The 

hh X Y X Y Y Y Y 

propagators must be put in the form of Eq. ( 12 .1 ) so that for Eqs • 

(II.5.25) - (II.5.27) the 

momentum flow: N
22

(px,py) 

N.j(p ,p) are the· numerators with opposite 
l. X y 

= N t t(p ,p ) = a
3

a
4
[v(-p ) - v(p )] , 

h h X y y y 

ll6 

N
44

Cpx,py) = N + +(px,py) = a
1

a
4
[h(p) - h(p)l, and N42(px,py) -

v v 
N + +(p ,p ) = a

4
[ a

1
a

3
_ + a

2
a

4
) - h(-p )v(p )] . It is true that 

vh xy x y. 

N .. (p,p)=-N .. (-p,-p)forall i and j. 
Jl. X y l.J X y 

There are two bare graphs at second order. These are shown 

in Figs. 45 and 46. The result is 

r(2) = r(2) + rC2) 
l 2 ' 

(12.9) 

where in coordinate space 

r(2) 
l 

( ~;) l 

B Eili2il4Ejlj2j3j4 
E 
a~B~ 

ili2 i3 j3 j4 i4 jl j2 
x < nai3na8 > < naBIJa~B> < na~B~naB > < na~B~na..:B~ > ' 

(12.10) 

f(2)- (t:.2\_1...E E , . ~~ 
2 - 2 ·J4! ili2ii4 jlj2j3j4 (l 8 

jl i1 i2 j2 j3 i3 i4 j4 
x < n , 8 ~n. 

8 
> < n 

8
n ~ ~ > < n ~ 8 ,n ~ > < n 

8
n ~ 8 ~ >, 

a a a a ~ a ap a a 

and in momentum space (with loop momentum as in Figs. 45b and 46b) 

f(2)= ft:.2)!_ E .... E Jd~l Jd~2 fd~3 
l \ 2 8 ].1].2].3].4 jlj2j3j4 (21T) 2 (2n) 2 (21T) 2 

X (Nili~(kl)) ci3j3:k2) \ cj4i!(k2)) ~jlj~(k3)) 
. L(k

1
) L(k

2
) 1 L(k

2
) L(k

3
) 

(2) (t:.2) l fd~l Jd~2 d~3 }. 
f = - I E .... E --. --· -:---:2 l2.ll) 

2 8 ·4 • ].1].2].3].4 jlj2j3j4 (2n) 2 (2n) 2 f(21T). 

(
N,. (k ))(N .. (k+k.))(N . (k+k ).)fN. ·· (k )). 
. Jll.l .l . l.2J2 .l 2 . j3l.3. ·2 3 ].4j4 3 

X 
+ "+ + + + + 

L(k
1

) L(k
1

+k
2

) L(k
2

+k
3

) ' L(k
3

) 
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If rto) is defined to .be the r for the free fermion 

model [Eq. (:U. 3.6) 1 then the· general eight vertex model has been 

solved to second order in the free· fermion breaking parameter, 11: 

r8-vertex = r<o) + r(l) + r(2) + ••• ' (12.12) 

where r<o) 
' 

r(l), and r( 2) aregiveninEqs.(II.3~6),(12.8), 

and (12.9). Equation (12.12) is a main result in this section. 

XIII. THE HARTREE-FOCK APPROXIMATION FOR THE EIGHT VERTEX MODEL 

This section presents the Hartree-Fock equations for the 

general eight vertex model. Not only is the Hartree-Fock appprox-

imation of interest by itself but it is the first step in obtaining 

the Hartree-Fock improved expansion or the 1/N expansion. Such 

expansions are expected to have a range of validity much greater 

than the perturbation theory of Sec. i2. Unfortunately the Hartree-

Fock equations are formidable. This is not unexpected for such a 

general unsolved model in which there are seven coupling constants. 

The system is six algebraic non~linear equations involving elliptic 

integrals. Because of their ·formidability no attempt is made to 

solve them. Instead, this section simply presents the equations. 

They can be the starting point for future work. Given a particular 

model computers can be used to find solutions. The important 

equations are Eqs. (13.4) and (13.5). 

The Hartree-Fock equations for the 8-vertex model are easy 

to write down. To solve them is a more difficult matter. The inter-

action in Eq. (12.3) will be used.. The Hartree-Fock approximation 

consists of the replacement 

•. 

h h t v vt 
t.na8nCL13nCLI3na.8 
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+t. h h v v )>+<h h> v v 'l t t t t 
n a8 n a8 ~ CLI3 n a8 H n CLI3 n a.8 H n a8 n a8 

vt h ht v vt h ht v 
- naanaa <na8ncxiH- < naanaa ii'na8na8 

v h vt ht)> 
- TJCLI3TJCL13 < naJ3nCLI3 H 

v h vt ht] 
<n a8. na81f n CLI3 n a8 . 

+ 11r < rfa8rP; 1i <n: 8 n:~~ + <i1~~rPci8><~1n~>H 

v h vt ht J 
+ < Tla8n<li3>H < n<ll3na8> H " (13.1) 

More precisely, the first four terms represent Hartree-Fock. In 

this model all contractions must be made. Equation (13.1) might be 

more appropriately called the Hartree-Fock BCS approximation. 

This replacement makes the anticommuting variable action quadratic. 

The Hartree-Fock expectations, < >H, are determined self

consistently. This leads to six non-linear equations. They involve 

the functions in Equations (II. 5.18)- (II. 5.21), (II.5.24), and 

(II.5.27) at (a~,8~) = (a,8). It is important to make explicit their 

functional dependence on bh' bv' a
1

, a2 , a
3

, and a
4

• Write 

- i j 
fij (bh' bv' al' a2, a3' a4) - < na8na8 > (13.2) 

where (i,j) take on the six values (h,ht), (v,vt), (ht,v), (v"~", ht) 

(v+, h), and (v,h) and the six anticommuting variable correlations 

are given in Eqs. (II.5.18) - (II.5.21), (II.5.24), and (11.5.27). 

i.. 
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In these equations all functional dependence on bh~ bv' a1 , a2 , a 3, 

and a
4 

must be made manifest including the dependence of h(.P), vC.P)• 

and L(p , p ) on these parameters. Set 
X y 

t 
b~ = b + ~ < T)v T)v > 

h h al3ai3H 

b~ 

v 

a{ 

a; 

a; 

h ht 
bv + ~ < naBnaB >H ' 

vt h 
al - ~ < naBnaB >H ' 

a2 - ~ < n~Bn~B >H ' 

ht v 
a3- ~ <nal3nal3 >H 

~ vt ht 
a4 = a4 - ~ < naBnaB >H 

where the Hartree-Fock expectations are 

i j 
< nal3na6 >H (b ~ b~ ' ~ ' "') 

f ij · h' v • al ' a2 • a3' a4 -' 

and the indices (i, j) take on' the same six values as above. 

(13.3) 

(13.4) 

Because of Eqs. (13.3) the Hartree-Fock correlations appear on both 

sides of Eq. (13.4). 

In Appendix A the fij functions are explicitly computed 

in terms of elliptic integrals. Equation Cl3. 4) represents six 

algebraic non-linear equations involving elliptic functions. In 

gen~ral, they are diffi~ult to solve. Perhaps, at low temperatures, 

'at high temperatures, apd at critical points approximate solutions 

• 
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can be found by using the asymptotic forns for elliptic integrals, 

For a particular model in which many of the constants, bh, bv, a
1

, a2 , 

a
3

, a
4

, and ~ have numerical values, approximate solutions can be 

obtained via computers. The bootstap technique can be applied: 

Guess a solution, plug into the right hand side of Eq. (13.4), 

calculate a new set of <. >H•s as input. Hopefully the process 

converges to a fixed point solution. 

Equations (13.4) along with Appendix A represent the· 

system to be solved to obtain the Hartree-Fock approximation. They 

are the key equations. 

Given such a solution, rlf·F· 
' 

the Hartree-Fock 

approximation to 
l 
N log Z, is 

r H.F.(b b ) rf.f.( ~ b~ ~ ~ ~ ~) 
· h' v'al,a2,a3,a4 = .bh' v'al,a2,a3,a4 

+~ <hh'><vv +<vh <hv> 
[ 

t t t t 
- nal3nal3 E naBnaB ~ naBnai>H naBnaB H 

v h vt ht ] 
+ < nal3na?H < nal3nal3 >H. (13.5) 

where rf.f., the free-fermion solution given in Eq.(II.3.6), is 

computed using the values, b~,b~,a{,a;,a:3, and at; in Eqs. (13.3). 

Corrections to the Hartree-Fock approximation can system-

atically be computed in the same manner as in Sec. IV: Use the 

parameters, b~_;o;,a{,a2,a3, and a~ ~n the anticOlllllluting variable 

correlation functions·, use the Feyilman rules . of Sec. XII, but ignore 

all graphs. with. self energy tadpoles. 
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XIV. OTHER TECHNJ.QUES 

This section briefly discusses other approximation 

methods. Paragraph {b) studies the effects of explicitly doing some 

of the anticommuting integrals. The two-,dimensional dimer problem 

is used as an example. Paragraph (c) discusses methods of obtaining 

upper bounds·on the free energy. EquatiiDn (14.17) displays result for 

the three-dimensional close-packed dimer model. Finally paragraph 

(d) explains how correlation. functions can be computed via the methods 

of this paper. 

(a) Standard Many Body Theory. Although many approximation 

methods have been considered in this paper there are still others. All 

the standard techniques in many body theory
24 

can be adapted. For 

example, there is the Bethe-Salpeter equation which sums the ladder 

diagrams. This metl:Dd .would be particularly good for bound state 

problems. The closed polygons in the general eight vertex model can 

be thought of as particle trajectories. For certain values of 6 a 

two particle bound state will form. Even if bound states do. not 

occur, the ladder diagrams may still be a good approximation scheme. 

(b) Partial Integration and the Re!iormalization Group. 

This method should be useful near critical points. There are two 

approaches. The first is to use the renormalization group equations 

to sum leading infared diverges. Consider the eight vertex model as 

a perturbation of the free-fermion model. Some free fermion 

correlation functions diverge logarithmically at the critical point. 

When perturbation theory. is used these infared logarithms will 

manifest themselves. The renormalization group equations sum the 

leading logarithmic behavior and calculate, for example, critical 

'· 
.. 

122 

indices. This. approach should be particularly useful in under

standing criticai phenomenon. The other approach is to do a subset 

of anticommuting variable integrals. This can lead to many interestirg 

transformations, insights, and techniques; 

Take the two dimensional dimer.model (in the isotropic 

case z = z = z 
h v 

for simplicity) and integrate out every other 

site, i.e. the odd sites. Each anticommuting integral at (a,8) 

. (a+ 13= an odd integer) results in the factor 

1 + z BaB ' 

(14.1) 

Ba8 Na+lf3 + Na-18+ NaB+l + Naf3~1' 

where Naf3 is the monomer operator at Ca,f3): t 
naf3nae· Baf3 is the 

sum of the four nearest neighbor [ to (a ,13 )J li).OnQJ!)er operators • The 

factor in Eq. (14.1) can be exponeniated to yield 

exp [R.n(l + zBetf3)) exp r zBetf3 
z..:. (B )2 + 
2 etf3 

z
3 

3 z
4 

4] 3 (Baf3) - 4 (Baf3) · 

(14.2) 

Higher powers in Betf3 are absent from Eq. (14.2) because squares of 

anticommuting variables are zero. After the integration over odd 

sites is done, variables are located at only even sites. A diamond 

type lattice is obtained. By rotating it 45° and rescaling the 

lattice spacing by a factor of ~ a square lattice is obtained 

just like the original one except that there are half as many sites. 

Equation (14.2) generates polymers on this new lattice: They are 

" 
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nearest ne:j.ghb.ot · di.mers, next nearest neighbor· di.mers 
1 

r:i.ght angle 

trimers, and square quadrimers. Monomers are also generated and when 

combined with the original monomers at even sites a factor of 

(l + 4z) , Cl4. 3) 

multiplies these operators. Rescaling n + l n and 
,t'lT4"Z 

n t + --
1
-- n t returns this factor to 1. The conclusion is. 

ll+'4z 

2-dimer(z N) z .• 4 
N/2 polymer· NN NNN N) 

(l + ~) Z (.w
2 

,w
2 

, w
3

, w4, 2 , 

(14.4} 

where N is the number of sites, 
NN NNN 

w2 • w2 ' w3' and w4 are the 

new weights for nearest neighbor dimers, next nearest neighbor dimers, 

right angle trimers, and square quadrimers, These polymers are 

shown in Fig. 47. There are two kinds of each of the two types of 

dimers corresponding to the two directions they can point. There are 

rour kinds of right angle trimers. 

NN 
w2 

NNN 
w2 

w3 

w4 

;: 

"' 

The weights 
2" 

-2z 

(l + 4z)
2 

2 
-z 

(l + 4z}
2 

2z
3 

Ll + 4zl3 

-6z4 

(1 + 4z}
4 

in Eq. (14.4) are 

(14.5) 
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Notice that. the w•s are now at most of intermediate magnitude. 

This seems to happen often for models which I have .looked at: After 

integrating out sites, even a strong coupling problem gets mapped into 

a model with an intermediate (less than unity} coupling. The magnitu:es 

of the w's 
l l l 

are bounded by 8• ]])• 
32

, 
3 

and ·128 • Perturbative 

methods will now work better. 

The action corresponding to Fig. 47 is easily written down. 

To save space it is omitted. By now the reader should have no 

problem transcribing pictures into equations. For example, the first 

trimer in Fig. 47(e) corresponds to an action of 

w3 ~ Na-l~ Na~Na~+l where Na~ = na~n!~ 
There are several continuations to the representation of the 

two dimensional dimer model as a polymer system in Eq. (14.-4): 

(i) One can try to integrate out more sites, Unfortunately 

because of the next nearest neighbor interactions, integrals over 

only one forth of the new sites can be done. This will lead to even 

more complicated polymer structures. 

(ii) Because the couplings in Eq. ( 14.5} are small low 

temperature expansions should work. Rushbrooke, Scoins, and 

Wakefield
20 

have adapted the Mayer cluster expansion to lattice 

polymer systems. Their method is amenable to Eq. (14.4). 

sufficiently small Eq. (14.4) will be an ideal gas: 

For z 

2-d dimer( ) - l ( 4 ) NN NNN 1 r .z . 2 log l + z . + w2 + w3 + 2w3 + Z"4. (14.6} 
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(iii) TheHartree approximation can be applied. This consists 

of the replacements 

NlN2 :NlN2: + <Nl> ~2 + Nl <N2>H- <NJ?>H <N? H ' 

NlN2N3 :NlN2N3: + (:NlN2: <N3 >H + :NlN3: < N2 >H + :N2N3:<N::(>H) 

+ (Nl <N2>H<N3>H + N2<Nl>H<N3>H + N3<Nl>H<N2>H) 

- 2 <N?H <N2 >H <N3 >H (14.7) 

NlN2N3N4 :N
1

N
2
N

3
N

4
: + ( :N

1
N

2
N

3 
<N

4 
>H + permutations) 

+ (:N
1

N
2

:<N
3

>H<N4>H +permutations) 

+ (N
1

<N2 >H<N
3

>H<N
4

>H +permutations) 

- 3 <Nl >H<N2 >H<N3 >H<N4 >H 

where Ni stands for any of the monomer operators, the colons denote 

normal ordering, meaning that contractions are not allowed within 

the colons, and < >H denotes the Hartree expectation to be deter

mined self-consistently. The Hartree approximation ignores the 

normal order interaction terms and uses the action linearized by 

Eqs. (14. 7). The self-consist equations are 

< NetB >H 
NN NNN 

[l + 4(w
2 

+ w
2 

) 
2 

< NetB >H + l2w3 <NettfH +4w<N >3 
)

-1 

4 etB H • 

(14.8) 

~ 
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Equation Cl4 .8) is a fourth order polynomial in < NetB >H and can 

be solved algebraically. Given the solution, theHartree approxia,mtion 

is 

2-dimer H.A.( ) 1 ) 1 .[ 4 NN NNN) < > f _ z = 2 log (1 + 4z + 2 log l + Cw
2 

· + w
2 

. .N ~ H 

+ 12w3 < NetB>i + 4w4 < NetB >~] - < N >2 ( NN NNN 
etB H w2 + W2 ) (14.9) 

-4w <N >3 
3 etB H 

3 4 
- 2 w4 < NetB >H 

There are factors of ~ in Eq. (14.9) due to _the· tact that there are 

only ~ sites. Corrections can systematically be computed using the 

normal ordered interactions in a manner similar to Sec. IV. 

(iv) One can try to approximate the polymer system by a dimer 

system and then use the renormalization group method35 • Unfortunately 

the process of approximating a polymer system is rather arbitrary. 

Its success depends on the ingenuity of the approximation. Furthermore, 

there is no systematic way to calculate corrections. These are great 

disadvantages to this approach. 

Let us replace the monomer operators in the next nearest 

neighbor dimers, in the trimers, and in the quadrimers by c-numbers, 

c, so that they become a linear combination of nearest neighbor dimers, 

monomers,and constants. The process is shown in Fig.48. The next 

nearest neighbor dimer replacement is, as indicated in Fig.48a, 

2 . . 
NaBNa+lB+l + cNaB + cNa+lB+l - c , and so on for the other polymers. 

The constant, c, represents a rough approximation to the vacuum 

expectation of <NetB >. In lowest order perturbation theory c = 1. 
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A better approximation might be to set c=<n nt > 
aB aB H 

determined 

from Eq. (14.8). When the replacements in fig. 48 are done the 

following renormalization group equation is obtained: 

where 

z(_z,N) Cl + 4z)N/2(1 + 4cw~NN 2 
4c w3 

N 2 NNN 
x exp 2 C-c w2 

z" 

4 
+ c w4 l .- N) 

z(_z , 2 • 

NN 2 
w

2 
+ 4cw

3 
+ 2c w

4 
NNN 2 3 2 

(1 + 4cw
2 

- 4c w
3 

- 4c w
4

) 

4c3w )N/2 
4 

Cl4.lo) 

(14 .11) 

Let us consider the case c = 1 which is at least valid at a low 

temperatures. The only fixed point of Eq. (14.1) is 

Eq.(l4.1) the z"·•s which are generated occur between 

z = 0. Under 

0 
-48 

and 529 

for z ranging from to infinity. The positive real axis is mapped 

onto a small negative interval below 0. Successive.transformations 

move tranformed z ,-. 1 s closer to zero so that the flow is up the 

negative axis towards zero. No phase transition is indicated in. 

accord with reference 12. 

(c) Lower Bounds. The methods used in I and II to exactly 

solve models in two dimensions do not extend to three dimensions. 

A prime example is the close-packed dimer model on the simple cubic 

lattice. The solvability condition in Sec. IV of II is not satisfied 

because of non-planarity. In terms of anticommuting variables, 

extension of the method of solution in IV to three dimensions doesn't 

work because of minus signs due to reordings of variables. Instead 
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of calculating 

z L (Boltzmann factor of configuration), 
configurations 

(14,12) 

anticommuting variable integrals calculate 

.. 
z L ± (Boltzmann factorl? Ll4.13) 

configurations 

so that some configurations have negative weight. Equations ( 14 .12) 

and (14.13) imply that 

Z > Z" , (_14 .14) 

so that a lower bound on Z can be calculated. This method of 

calculating lower bounds works for many three dimensionil.l unsolved 

systems (.i.e. , the three dimensional Ising modell. I will use the 

three dimensional close-packed dimer model as an example. 

Let us apply the techniques in Sec, IV of li. First arrange 

bond orientations so that all elementary polygons. are clockwise odd. 

Choose bonds in the z direction to point in the z direction 

unless the bond 1 s location is (2JI., 2m, z) (with Jl. and m integers 

and z half-integer), in which case the orientation points in the 

negative z direction. The midpoint of a bond specifies its location. 

Likewise choose bonds in th.e x di.rection (respectively y direction) 

to point in the positive x direction (_respectively y direction) 



129 

unless the bond's position is (x, 1 + 2R,, 1 + 2,m} [respec~ively 

(1 + 2R-, y ,2,m}] where R, and m are integers ·and x and y 

are half-integers. Now use the Graphical RUles When· condition c Holds 

(Sec. IV of'II). A unit consists of an elementary lattice cube of 

eight sites. Within the cube there are twelve [type {_a}] bonds 

(see Fig. 49a) and contingent are twelve type (:b} bonds which go to a 

neighboring site Csee Fig. 49b). A standard configuration is shown 

in Fig. 49c. When type (b) bonds are "folded'' back into the elementary 

cube, the ·weights indicated in Fig. 50 are ob.tained. Here 

and zx, zy' andz 
z 

h(p) 

v(p ) 
y 

z [ 1 - exp( ip. ) ] 
X . X 

z I 1 - exp(Jp 1 I 
y y 

u(pz) = zz [ 1 - exp{.;ipz) I 

(14.15) 

are the Bqltzmann factors for dimers in each 

of the three directions. The nine coverings of the miniature dimer 

problem are easily found. They sum to 

2 
L(p ,p ,p ) = [ h(p )h(-p ) + v(p )v(-p ) + u(p )u(-p ) I , (14.16) 

X y Z X X Y Y Z Z 

so that 

r3-d pure dimer( ) > l 
zx,zy,zz. - 4 J

;rrdpx 

21T 
-1T 

f
1Td f1Td 

. .!I. ...2 
21T 21T 

-1T -1T 

(14.17) 

2 2 2 1 
x R,n [ 2zx(J.-cos px) + 2zy{_l-cos py) + 2zz(l-cos pz) . 

.. 
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Figure 51 shows an eXample of a configuration wi.th a negative weight 

so that the' inequality in Eq. (14.171 is strict unless one of the 

z's vanishes in which case the.right.hand side becomes exact. The 

right hand s.ide of Eq. (14.17) is analytic in z , z , . . . . . X y and z 
·z 

rf it were a good approximation to the exact answer it would 

indicate .the absence of a phase·transition. 

This method of obtaining lower bounds on the free-energy 

is applicable to many systems. As an approximation to the exact 

partition function it suffers from the same disadvantage as the 

real space renormalization method: corrections are either difficult 

or impossible to calcUlate. All configurations of negative weight 

·must be found and compensated for. 

(d) The. ·CalcUlation· of· Correlation Flinctions. Because 

.statistical systems have been rewritten as fermionic-like field 

theories, the approximation methods use to calculate partition 

functions can be applied to correlation functions. The free energy 

is the sum of vacuum bubble diagrams. Anticommuting variable 

correlation functions are calculated by using Feynman graphs with. 

external legs. When physical correlation are related to anti commuting 

variable ones, a perturbative computation·of physical correlations is 

possible. More sophisticated approaches can also be incorporated 

including the Hartree-improved perturbative and 1/N techniques. 

The same systematic methods work for correlation functions. 

XV. CONCLUSION 

These papers have demonstrated the power of anticommuting 

variables. Models, which are solvable, are trivially solved. For 

models which are uns·ol vable there are powerful approximation methods . 
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I. have trie.d to choose s.imple but interesting .models to exemplify 

the techniques. However, the anticomirruting variable method is 

applicable to a wide range of systems. Whenever there is a constraint 

that objects can overlap (be it polygons, polymers, or surfaces) 

the anticoiiillluting variables will be useful.. 

Although many many new results have been obtained, much 

more can be done: the Ising model in thr.ee-dimensions has been 

expressed in anticoiiillluting variable form and is ·thus amenable to 

new approximation schemes. The eight vertex Hartree-Fock. equations 

beckon a solution. Perhaps the two-dimensional dimer model can be 

exactly solved using Sec. VIII results. Polymer (~nstead of dimer) 

systems can be treated. Computer work needs to be done so that 

physical quantities for several expansion series can be calculated, 

And so on. The most important progress, however, can be made in the 

area of critical phenomenon. This paper, for the most part, has 

avoided the critical region. I felt it was best to develop and 

check the techniques where they are simplest to apply. What is 

needed is an adaptation of renormalization group methods. In short, 

this large body of work is a small piece of what can be done with 

anticoiiillluting variables. 

I would like to conclude with what I call "The Optimistic 

Philosophy." Reality demands that most systems be unsolvable. The 

Optimistic Philosophy accepts the reality of unsolvability but 

postulate.s the existence of a model which. is, in an abstract sense, 

not far away from the system of interest, The physics of the model 

approximates that of the actually system. A few correction orders 

then yields an even better approximation. It requires greai: ingenuity 

~ 
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to find the. right model. The relevant degrees of free.dom must be 

extracted. But once found, perturbative or semi-perturbatiye methods 

yield a "physicist's solution", that is, not an exact answer but a 

good answer. Systems are almost solvable because they are stable, 

and stability, in some sense, means a quadratic action. Hartree-Fock 

attempts to find better quadratic actions than those gi yen in 

perturbation theory. In the dimer models, the Hartree. approximation 

searches for a good monomer approximation. Of course, one. model 

is not expe.cted to reproduce the physics in the entire physical 

region. Different models are req_uired in different areas. In 

QCD perturbation theory is good at short distances in processes 

like deep inelastic scattering but a string or bag model is required 

for large distance phenomena. The latter is an example of when the 

model differs .vastly from the underlying fundamental theory. The 

Landau-Ginsberg theory of superconductivity is another example. 

This paper has been written in the spirit of ''The Optimistic 

Philosophy.'·' It has found "fermionic" approximations to interesting 

physical systems. 
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APPENDIX A 

This Appendix calculates the antico:milluting variable correlati.ons 

·(Sec. v of II) when· (a', 8') = (a ,81· Althoilgh.ileeded for first 

order perturbation theor:Y (Eq. 12.7)., they are even more important for 

the Hartree-Fock approximation (Sec. 13). • 

Related quantities have been computed in Section 8.4 of 

reference 4.- Unfortunately, .there are a number of misprints and 

mistakes. Reference 36 has done the computations when e: = 0 

[see Eq. (A.4) for the definition of E l Only the corrected results 

are presented since the calculational techiiique is des.cribed in detail 

in reference 4. I have kept to the notation of reference 4 except 

that n+ and n used here are -A and -ll, and v + and v_ 

correspond to v 
2 

and v
3

. The corrected results are contained in 

Eqs. (A. 7) through (A.ll). The anticommuting variable correlations 

are related to these via Eqs. (A.5) and (A.6).. The calculation 

techiiique can be extended to anticommuting variation correlations for 

(a', 8') 'f (a;8). One must decompose cos(np} and sin(np) type 

factors into products of sine's and cosine 1s, do some polynomial 

long division, and follow reference 4. 

Define 

1T 

I J dpx 

21T 

-1T 

1T 

f
dp 
~ 
21T 

-1T 

R.n L(px, py). , (A.l) 

so that I is twice the quantity in Eq. (II.3.6).. Write the function 

L(px' py)_ [ ()q. CI.I.3.4ll as 

., 
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L(p. ,p ). =a+ ::£cos p + 2y~os p + 2(_o +e:). cos p cos p , 
xy - x -y · ·x y 

(A.2) 

+ 2(0 -e) sin p sin p 
X y 

The constants a,(! ,y ,o, and e: can be coli)puted in terms of bh, 

by, a1 , a 2 , a
3

, a4, zh' and zy, however they take on a simpler 

form when expressed in terms of the vertex weights of Fig. I.ll. 

Let w
1

, w2' , w
8 

be the weight in Fig. I.ll with Boltzmann 

factors z and z included: 
h y 

wl (a
1 

a
3 

+ a
2

a
4 

- bYbh) , 

w2 = - bhzY ' 

w3 = - byzh ' 

(A.3) 
w4 = - a ~ 1 h y 

w5=-a2~v 

w6 = - a /Z:Z_ 3 h y 

w7 = - a4 /Z:Z__ ·hv 

WB = zhzv 
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The w's satisfy the.· constraint in Eq. (._12.2}. Then 

2 2 2 2 
a = w

1 
+ w

2 
+ w

3 
+ w

8 

13 = - w1w3 + w2w8 ' 

(A.4) 

y =- wlw2 + w3w8 ' 

( o + £ ) = w2w3 - wl w8 ' 

Co-£ } = w4w6 - w5w7 

In terms of the integral, I, in Eq. {_A.l} 

rf ht .!..ll_ 
< :af3naf3 > = 

2 ()bh 

v vt 1 ar: 
< nuanua > =--

2 Clb 
v 

CA.5) 

ht v = .!. ....a!... < nuanua > 2 aa1 

vt ht = .!. ..aL < nuanua > 2 ()a?. 

vt h =.!. ~ 
< nuf3naf3 > 2 ()a3 

< y h > 
naf3no.f3 

- 1 Cli 
- ~ aa4 
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B,y using the chain rule 

E.!= au Cli ~ .M ar + .£I. E.! + ato. + e:} 
Clc Clc Cla Clc aa Clc Cly Clc 

()I 

a a+£) 

LA.6l 
+ a(o - e:) ai 

Clc Cl(o - e:} ' 

where c stands for bh bv' a
1

, a 
2

, a
3

, or a
4

, it is sufficient 

Cli Cli Cli Cli ()I 
to calculate au , aa , ay , a(o + e:l , ana aCo _ d 

en- 2 
Cla - 1rf K(k) , (A.7) 

ai _ 41 (1 
+ n+) ( 2n+ ) l aB- 1Tf 1 - n_ K(k) - 1 -n+ Til (n+ -:-: l,k) ' (A.8) 

ll-~ +- 41 +- 5 k l(v \) \ 0' \) ) '( 2 ) 
ay - 1Tf v + - v-' v + - nl v-+ , k 

(
v -\\)f _v_) { 2 ) . ~ 

+ v= _ v+ ,--v_ ' nl ~- ,k - K(k)). (A.9) 

Cli ~ (\)1 - \)6) (\) - \)4)' (-\) - \) )' ( 2 
.,;. . _,=~~ vl_v+ v~_v_ 11 5 n1~l ,k) 

+ (\)+ - '\!6) (\)+ - \)4) (-\)+ .. -
\)_\) \)_\) 

'+ - + 1 
n 1 (~, k) \)5) 

(A.lO) 

( \) - \)6) ( \) - \)4) ( \1 - \) ) ( 
2 

) 
+ v= - V+ v= - \!1 . - v_ 5 Til ~-' k -K(k) 

+ '("\)1 .,. "'4)·(·\)1 .,. \)6) [f ri\ 
\) - ·\) ·\) - \) ~ 

. 1 . . + . 1 -

X ~]1T. ~ 
.; ~ '2ll + \)l J 

. 1 . 5 . (·\) - \) ) 
- ·\! X 

1 



,J:37 

ar an;.. Co ..,.. . E}g { Cv+ + 1} . 

an-=-n = TI(y + o + E)f - Cv+ -v 
1

l(v+ .,.. v) ( 
v+ - "5) n (k2 ; \ 

v+ . 1 v+ KJ. 

where 

(v + 1} .. 
( v ~ \)- \)5 ) . Til ( ~: ? k) 

Cv _ .:. v
1

l ( v_ - v+) 

(v
1 

+ 1) 

(Y) - ( v1 - "+ ) C v;.--=---vJ 
n .(k2 ' 

1 \)1 

(A.ll} 

k)- K(k) 

7T ;r-+vl \) - \)5 
[ 

f~Ti:;:" .1. 

. (ex + 213) - fvl {k2 + vl) J J ' 2(v
1

- v+)(v
1

- v_) 

f =I n_(a - 2b + c) 

ex+$ 
g= y+o+c 

2 2 2 
a = ex -4(y + ~.o - E). ) , 

b = 2cx13 - 4y Co + El , 

2 
c = 4C.I3 - 4od • 

n± = -
(c - a) ± 2 ~ 2 

- ac 
a-2b+c 

n_ .,. n+ 

k = n_ 

{A.l2) 

(A.l3) 

(A.l4) 

{A.l5) 
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_ . (<o- E)±/l- 4oE. ')

2 

\1± - - l + J4. \. y + 0 + E 

\11=11+-·1' 

v4 = - 1 + n+ (y : ~ : ·~ } 

v
5 

= - 1 + n (ex - 28 ) 
'1-. ex+ 213 ' 

"6 = - 1 - 1\ . 

(A.l6) 

K(k) and ~ {_v,k) are complete elliptic integrals of the first and 

third kind: 

K(k) ::; J
7T/2 

(1 - k 2 sin 2 cp}~d<f> ~ 

0 

7T/2 

Jt ( v,k) = J . (l - k 2 sin 2 cp)-~(l + v sin
2 cp)-1dcjl • 

0 

(A.l7) 

Using the fact that the partition function is invariant under inter-

change of horizontal and vertical directions, there is an alternative 

formula for ~ obtained from using ~ : 

ar 4 ! ( 1 + r( ) ( 2n' ) } 
ay = 7Tq 1 -n; K(k) - 1 _ ~+ II1 (n~ - l,k) (A.l8) 

where 

, _ ·( ex ~ 213 + 2r - 2o · ~ 2E ) 
n+ - ex + 2S - 2y. - 2o - 2E n.. · (A.l9) 
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TABLES 

The Hartree Approximation for the One Dimen~ional 

Dimer Model. 

Molecular Freedoms at Close-Packing as Computed in the 

1/q Expansion for Various Lattices. 

Molecular Freedoms at Close-Packing as Computed by the 

Hartree Series With a Comparison to Other Methods. 

An Order by Order Comparison of Nagle's Series to the 

Hartree Series for Molecular Freedoms on the Hypercubtc 

I;;attices. 

The Density, p, and the. Entropy, S, of the Simple 

Quadratic and Tetrahedral Dimer Lattice Models. 

The Density and Entropy for the Dimer Models on the 

Triangular and Simple Cubic Lattices, 

The Density and Entropy for the Dimer Models on the 

Body-Centered Cubic and Face-Centered Cubic Lattices. 

Table Vl::I:l: A Comparison of the Exact Density and Entropy to the 

Hartree Estimated Density and Entropy for the One

Dimensional Dimer Model. 

Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 
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FIGURE CAPTIONS 

(a) Intersecting Polyhedrons. Such intersections are 

allowed. (b) Overlapping Polyhedrons. Such overlaps 

are forbidden. This configuration would be drawn as 

in (c). 

The Three Different Types of Faces. (a) An x-face or a 

face in the x-directian. (b) A y-face. (c) A z-face. 

A Cube of the Dual Lattice. The spin, a, sits in the 

middle of the cube at (a,S,y). The twelve surrcunding 

edges and the cartesian coordinates of their midpoints 

are shown. The three bolder lines show the three types 

of edges. 

Aface' 

Linking. (a) The faces of Figure 4( a) can form larger 

area elements. Here five faces link. (b) But a face 

in the x-direction is unable to link with a face in the 

z-direction. The object in Figure (c) is needed. 

A 
corner 

To the left is the edge and its coordinates. 

In the middle are the possible anticommuting variables 

which could enter. These variables come from Aface· 

To the right are the four types of corners needed 

to link faces. 

The Minus Sign Problem. (a) A cube of polYhedron. 

(b.) The anticommuting variables used to construct the 

cube trace out this object. (b) By breaking qUartics into 

products of bilinears, the object factorizes into a product 



Fig. 8: 

Fig. 9: 

Fig. 10: 

Fig. 11: 

Fig. 12: 

Fig. 13: 

Fig. 14: 

Fig. 15: 

Fig. 16: 

Fig. 17: 

Fig. 18: 
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of three· planar .polygons. Reordering minus factors 

reduce to the planar case. 

The z
3 

Factor. When drawing polyhedrons around regions of 

down spin z
3 

enters twice for each down spin. 

Redundant Quartic Terms. Figure (a) shows how the 

anticommuting vi3.riables construct a polyhedron. It is 

not hecessary to "gift wrap" so lavishly. Figure (b) 

shows a simpler way to "gift wrap." This simplification 

of quartic terms also applies to the three dimensional 

H = 0 Ising model representation treated in Sec. II. 

A Plaquette •. Here is a "square" of the lattice. The 

anticommuting variables. sit at lattice sites, the U's 

sit on the links (or edges), and the spins sit in the 

middle of plaquettes. The action in Eq. (3.12) is a 

sum over plaquettes (like this one) of a product of 

U's around the square (the U's shown here). 

The Dimer Potential. 

Simple Perturbation Theory to Third Order. 

Figure 11 in Contracted Form. 

A Vertex, a, With t Lines Attached. 

Two Vertices With ~ Lines Between Them 

Explanation of the ( t - 1)! in Feynman Rule (c) 

A TYPical Bubble Tree Graph Included in the Hartree 

Approximation. 

The Hartree-Improved Perturbation Theory Graphs and 

Their Statistical Weights to Sixth Order. 

Fig. 19: 

Fig. 20: 

Fig. 21: 

Fig. 22: 

Fig. 23: 

Fig. 24: 

Fig. 25: 

Fig. 26: 

Fig. 27: 

Fig. 28: 

Fig. 29: 

I 
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The'Embeddings of Figure 12 Graphs· for the Two-

Dimensional Lattice. 

Diagrams to Third Order for the Two-Dimensional 

Dimer Model. 

How TWo Graphs Can Have Identical Embeddings 

The Embedding Graphs. 

The Weight of an Embedding Graph is the Sum of 

Contributing Figure 18 Graphs. 

The Embeddings of Figure 22 Graphs for the Two-Dimensional 

Lattice. This Figure shows the Hartree expansion 

computation to fifth order. 

The Superpropagator. The bolder line on the left denotes 

s 
the superpropagator, Gaa'. 

The One Loop Graphs. 

The Two Loop Graphs. 

Tadpoles. Here is a vertex with t tadpoles attached. 

The 1/N Feynman Rules ( c) and (e) give rise to a 

t 
factor of [(-1) (m + 2t- 1)!][1/(2 i!)]. 

The Dimer Breakup Trick. The bilinears in figure (a) 

generate the wanted dimer operators in figure (b), but 

they also generate those typified in figure (c). The 

latter occur, for example, when the bilinear n~na+l 

"links" up with the bilinear, n:+lna+2, in the adjacent 

site. The form of these terms is a set of ®' s with an 

"o" at one end and an "<e" at the other end. The leftover 

"o" or "x" means that these terms do not contribute. An 



Fig. 30: 

Fig. 31: 

Fig. 32: 

Fig. 33: 

Fig. 34: 

Fig. 35: 

Fig. 36: 

Fig. 37: 

Fig. 38: 

Fig. 39: 

Fig. 40: 

Fig. 41: 

Fig. 42: 
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exception occurs when periodic boundary conditions 

are used as in figure ( d). 

One-Dimensional Polymers. On the left are a trimer 

spanning sites a, a + 1 and a + 2 and a quadrimer 

spanning sites a through a + 3. Such polymers are 

produced by the anticommuting variable operators 

t t t d t t t t 
z3nanana+lna+lna+2na+2 an z4nanana+l na+lna+2na+2na+3~a+3 

and there would be a piece of the action with these oper-

ators. Similar type operators can produce polymers 

of arbitrary shape in higher dimensions. 

The Set-up for the Transfer Matrix Elements. 

The Potential. 

The Lowest Order Graph. 

Second Order Graphs 

Third Order Graphs. 

Illustration of Rule (f). 

The Fermion Propagator. 

The Loop Momentum Assignments for the Graph of Figure 34a. 

The One Loop 1/N Graphs. 

The Staircase Approximation. The dimer breakup trick of 

Sec. VII is applied to those dimers lying on the solid 

lines. 

A Configuration Generated by the Breakup in Equation 

(9.34) Which Is Not Contained in the Partition Function. 

The Eight Different Types of Corners. 

Fig. 43: 

Fig. 44: 

Fig. 45: 

Fig. 46: 

Fig. 47: 

Fig. 48: 

Fig. 49: 

Fig. 50: 

Fig. 51: 
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Vertices. .At the left are bare vertices and at the 

right are the corresponding directed· vertices. 

First Order Graphs. Figures (a), (b), and (c) are 

the first order graphs corresponding to the bare graph 

in (d). Graphs (a), (b), and (c) can be organized into 

the single graph in (e). 

(a) One of the Second Order Graphs. (b) The Bare Version 

of (a). 

(a) The Other Second Order Graph. (b) The Bare Version 

of (a). 

The Polymers Generated From the Two-Dimensional Dimer 

Model. The nine kinds of polymers and their weights 

(the w factors) are shown here. 

Reduction of the PolYffier System to Nearest Neighbor 

Dimers by Replacing Operators by c-Numbers. 

Dimers. (a) The Type (a) Dimers, (b) the Type (b) 

Dimers, and (c) a Standard B-Dimer Configuration 

The Weights of the Miniature Dimer Problem. 

A Configuration with Negative Weight. Except for the 

eight dimers shown in (a), all A-dimers are put in the 

standard positions. The latter dimers do not generate 

any minus signs. The other eight when combined with 

standard B-dimers create the closed polygon in (b). 

Fig. I. 8 sign rules reveal that this polygon has 

negative weight. 



1. 

2. 
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TABLE I 

Exact Hartree % Expansion 
z r. r Error Parameter 

10-2= 01 0.0099 0.0098 0.48 % 0.010 

10-1.\ .032 0.0302 0.0298 1.36 % 0.028 

10-1= .1 0.0877 0.0848 3.30 % 0.073 

10-" 5% .316 0.2251 0.2116 6.01 % 0.153 

10° = 1 0.4812 0.4431 7.91 % 0.250 

10"
5% 3.16 0.8532 0.7829 8.24 % 0.337 

10 1.3088 1.2094 . 7.59 % 0.400 

101.~ 31.62 1.8157 1.6954 6.63 % 0.441 

10
2 = 100 2.3526 2.2186 5.69 % 0.466 

10
2

"
5
% 316.2 2.9063 2.7642 . 4.89 % 0.481 

10
3 = 1000 3.4697 3.3227 4.24 % . 0.489 

103.5 3162 4.0384 3.8886 3.71% 0.494 

104 = 10000 4.6102 4.4588 3.28 % 0.496 

1o10 11.5129 11.3595 1.33 % 0.500 



TABLE II 

exact 

~estimate 
or 

model q best ~stimate % error 

1-d 2 .94 1 6 % 

sq 4 1.67 1.79 6.5 % 

t 4 1.67 1.70 2 % 

sc 6 2.40 2.45 2 % 

bee 8 3.13 3.19 2 % 

pt 6 2.21 2.36 6.5 % 

fcc 12 4.41 4.57 3.5 % 



TABLE III 

sq pt t sc bee fcc 

Exact 1.7916 2.J565 ----- ----- ------- ------

,Bethe Approximation 1.69 2.41 1.69 2.41 J.l4 4.61 

Nagle's Series 
1.769 2 • .)52 1.701 2.442 ------ 4.564 Truncated 

~agle's Series 1.77J 2.J60 1.701 2.451 J.l89 4.565 
~xtended by Gaunt, 

Truncated I-' 

'cB 

" Gaunt's Pade Improved 1. 78-1.80 2.J56 1.702 2.449 J.l98 4.570 

ffartree Approximation 1.47 2.21 1.47 2.21 2.94 4-41 

~artree Series at 1.75 ± .OJ 2.J7 ± .06 1. 70 ± .02 2.44 ± .01 J.l7 ± .01 4.56 ± .OJ 
Sixth Order 

ffartree Series, 1. 776. ± .009 2.347 ± .015 1.700 ± .OOJ 2~449 ± .005 J.l87 ± .OOJ I 4.57L:- ± .004 -Truncate.d . . .. 

- --- - - ------ --- --



1 - d 

order Hartree Series 

1 0.735S 

2 0.9447 

3 1.1161 

4 1.0162 

5 0.9428 

6 0.9932 

7 1.03S5 

g 1.0036 

9 0.9736 

10 0.997S 

11 1.0204 

12 1.0014 

13 0.9842 

14 0.9990 

15 1.0131 

:ro- -11.0007 

exact 1. 

TABLE IV 

2 - d Simple quadratic 

Hartree Series Nagle's Series 

1.4715 1.6S75 

1.6674 1.6S75 

1.73S4 1.6875 

1.6783 1.7297 

1.7235 1.7297 

1.7518 1.7392 

1.7292 1.7520 

1.7437 1.7501 

1.7629 1.7644 

1.7534 1.7618 

1.75S6 1.7696 

1.7720 1.7704 

1.7671 1.7712 

1.7671 1.7750 

1.7759 1. 7728 

1. 7916 

3 - d simple cubic 

Hartree Series Nagle's Series 

2.2073 2.4113 

2.3991 2.4113 

2.4439 2.4113 

2.4019 2.4345 

2.4445 2.4345 

2.4402 2.4414 

2.4353 2.4459 

2.4519 2.4455 

2.4457 2.4506 

2.4466 2.4488 

2.4540 2.4527 

2.4493 2.4515 

.... 
\Jl .... 



Simple 

w -- w pl5 w 
max 

0.1 0.025 0.025534345332921949 ±(15) 

0.2 0.050 0.05180380074377 ± (41) 

0.3 0.075 0. 07838101424 ± ( 14) 

0.4 0.100 0.1049369153 ±( 85) 

0.5 0.125 0.13122827 ±(19) 

0.6 0.150 0.1570755 ± (22) 

0.7 0.175 0.182330 ± (16) 

0.8 0.200 0.206800 ± (73) 

0.9 0.225 0.22998 ± ( 20) 

t 

TABLE V 

Quadratic Lattice Tetrahedral 

sl5 pl6 

0.116814864054067036 ± ( 37) 0.02553353977813695063 ± ( 60) 

0.1949643466614 ± (12) 0.051790983870680 ± ( 32) 

0.25349328917 ± (39) 0.078318571157 ± (17) 

0.295353081 ± (12) 0.104 7525671 ± ( 13) 

0. 32135808 ± ( 17) 0.130819262 ± (37) 

0.33132011 ± ( 73) 0.15632504 ± (52) 

0. 3240767 ± ( 45 ) 0.1811370 ± ( 42) 

0.296955 ± (74) 0.205148 ± ( 23) 

0.24426 ± (38) 0.228209 ± ( 71) 

Lattice 

. 
sl6 

0.1168118264806264350 ± ( 21) 

0;194927214968692 ± (84) 

0.253349894577 ± (34) 

0.2950219984 ± ( 19) 

0.320810503 ± (33) 

0·33064735 ± (16) 

0.3235364 ± (13) 

0.296918 ± ( 23) 

0 • 24440 ± ( 14 ) 

1-' 
V1 
1\) 



TABLE VI 

Planar Triangular. Lattice 

w 
s1o -- w plO w 

max 

0.1 1 0.01689214299601 ± ( 89 0 .0841945595015± ( .36) 
60 

0.2 2 
0.03405266733 ± ( 74) 0.1422176561 ± (23) 

60 

0.3 3 0.051266315 ± (34) 0.187111775 ± (85) 
60 

0.4 4 0.06838822 ± (49) 0.22104537 ± (94) 65" 

0.5 5 
0.0853296 ± ( 35) 0. 244670 3 ± ( 49) 

60 

0.6 
6 

0.102041 ± ( 16) 0.257883 ± (14) 
60 

7 0.7 0.118500 ± (54) 0. 259825 ± ( 17) 
60 

0.8 8 0.13470 ± (13) 0.248409 ± ( 39) 
60 

0.9 9 0.15069 ± (20) 0. 21841 ± ( 16) 
60. 

-- ----~-

. Simple Cubic Lattice 

pl2 8
12 

0.01690068657]6503 ± (31) 0.084231124247639 ± (12) 

0.034114158049 ± (10) 0.142428661957 ± (32) 

0.0514487921 ± ( 10) 0.1876342661 ± (27) 

0.068760241 ± (27) 0.221940351 ±(51) 

0.08594040 ± (31) 0.24589635 ± (42) 

0.1029054 ± (21) 0.25930907 ± (66) 

0.1195810 ± (93) 0.2612807 ± (20) 

0.135880 ± (29) 0.249809 ± (13) 

0.151661 ±(57) 0.220254 ± (63) 

i 
I 

I 

i 

' 

I 

I 

I 

I 

1-' 
V1 
w 



-

Body-Centered 

w -- p12 w 
max 

0.1 0.0126308078545463 ± (13) 

0.2 0.0254353696746 ± (42) 

O.J 0.03830861920 ± (44) 

0.4 0.051173247 ± (11) 

0.5 0.06397071 ± (13) 

0.6 0.07665304 ± (75) 

0.7 0.0891737 ± (38) 

0.8 0.101475 ± (12) 

0.9 0.113467 ± (23) 

TABLE VII 

Cubic Lattice 

8
12 

0.0666064413803685 ±(54) 

0.113584413678 ± (14) 

0.1508592102 ± (12) 

0.180052915 ± (24) 

0.20157738 ± (21) 

0. 21524997 ± ( 92) 

0.2203287 ± (19) 

0.2152042 ± (20) 

0.196182 ± ( 19) 

Face-Centered Cubic Lattice 

p8 s8 

0.0083890254360 ± (42) 0.047655678485 ± (20) 

0.01684367298 ± (88) 0.0821056143 ± (34) 

0.025312649 ± (18) 0.110062846 ±(59) 

0.03376250 ± (14) 0.13266446 ± (39) 

0.04217243 ± (67) 0.1502187 ± (15) 

0.0505306 ±( 22) 0.1626165 ± ( 36) 

0.0588309 ±(53) 0.1693450 ± (60) 

0.067070 ± ( 10) 0.1692448 ±(59) 

0.075243 ± ( 12) 0.1595724 ± (42) 

~ 

1-' 
\.n 
-!="' 



w -- w p16 w 
max 

0.1 0.05 0.0522332644055048897 ± (81) 

0.2 0.10 0.10776772972370 ± ( l~J) 

O.J 0.15 0.16476080022 ± (23) 

0.4 0.20 0.221456997 ± (18) 

0.5 0.25 0.27639331 ±(50) 

0.6 0.30 0. 3285028 ± ( 70) 

0.7 0.35 0.377125 ±(58) 

0.8 0.40 0.42195 ± ( 31) 

0.9 0.45 0.46291 ± (97) 

- - ---- -- ----- ----------

TABLE VIII 

pexact 3
16 

0.0522332644055048890 0.202159043168350649 ± (23) 

0.10776772972363 0.32877414039132 ± (83) 

0 .164 76080017 0.41476557223 ± (30) 

0 . 22145699 3 0.46487405i ± (13) 

0.27639320 0.481211845 ± (94) 

0.3285014 0.4652904 ± (25) 

0.377115 0.417789 ±(58) 

0.42191 0.33720 ± (53) 

0.46284 0 . 2158 ± ( 25) 

s 
exact 

0.202159043168350647 

0.32877414039119 

0.41476557217 

0.464874048 

0.481211825 

0.4652909 

0.417798 

0.33726 

0.2159 

f-' 
Vl 
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