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iven a network in which message traf- 
fic is being routed along communica- 
tion links between nodes making up 
the network, the problem arises of 
how to determine the outimal Daths to 

route the message through traffic. In determining 
the optimal path, links are considered to have a 
cost representing the desirability of using that 
particular link to  route a message. The optimal 
path then becomes the path in which the total 
cost of routing a message between a source and 
destination node is minimized. While there are 
many conventional solutions available, none of 
them are without flaws. In order to find a better 
solution, the possibility of using an artificial neural 
network of some type as a message routing controller 
is explored in this article. Several neural network 
architectures are examined for their suitability to 
the problem of optimal message routing. Two dif- 
ferent neural network architectures are imple- 
mented and tested against a network simulator in 
order  to ascertain if their performance is ade- 
quate to  allow them to be used as a routing con- 
troller inanetwork. Acomparison between the neural 
solution and the conventional routing algorithms 
is also presented. 

The routing of packets from a source node to a 
destination node is an important issue in the design 
of a communication network consisting of multi- 
ple nodes and links, because it affects several per- 
formance measures of interest. The objective of a 
routing algorithm is to optimize some performance 
measure, such as mean packet delay or network 
throughput. 

There are many routing algorithms in use with 
different levels of sophistication and efficiency 
[I]. Routingcan be done in acentralized, distributed, 
or localized manner. In centralized algorithms, all 
route choices are made at a central node, while in 
distributed algorithms, the computation of routes 
is shared among the network nodes with informa- 

tion exchanged between nodes as necessary. In 
localized routing algorithms, each node needs to 
have the current network connectivity and computes 
the routes to all possible destination nodes based 
on this connectivity information. In order to have 
the most current network connectivity, all net- 
work nodes broadcast their connectivity to neigh- 
boringnodes to each other. The Dijkstra algorithm 
[l] can be considered as a localized algorithm. 

The centralized routing method requires a spe- 
cial node in the network which periodically receives 
information from all other network nodes and, based 
on this global information, it sets up and updates 
routing tables for all nodes. This method suffers 
from high communication overhead and reliabili- 
ty problems, since failure of the central control 
node results in shutdown of the entire network. 

The distributed routing approach can reduce 
some problems in centralized routing. In this case, 
each node makes its own routing decisions based 
on the local information it receives from its neigh- 
boring nodes. Looping of packets and deadlocks 
might happen due to inconsistent routing paths. 
The most commonly used distributed routing 
algorithm is the Bellman-Ford algorithm [ 11. 

In the localized routing algorithm, such as the 
Dijkstra algorithm, all network nodes broadcast 
their network connectivity to neighbor nodes, so 
that each network node can react quickly to changes 
in the network, but does incur the communica- 
tion cost of broadcasting such changes. 

Either centralized, distributed, or localized 
routing algorithms can be operated in a static or 
adaptive manner. In static routing algorithms, the 
path used by each origin-destination pair is fixed 
regardless of trafficconditions and networkchanges. 
In adaptive routing algorithms, the paths used to 
route new messages between origins and destina- 
tions change occasionally in response to traffic 
conditions and network changes, i.e., failed links, 
increase or decrease of link cost. 
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Motivation 

The recent resurgence of interest in neural networks 
has its roots in the recognition that the brain per- 
forms computation in a different manner than do 
conventional digital computers. Computers are 
extremely fast and precise at executing sequences of 
instructions designed for specific algorithms. A 
human information processing system is com- 
posed of many neurons  (i.e., processing ele- 
ments) switching at speeds about a million times 
slower than computer gates. Yet humans are  
more efficient than computers at computationally 
complex tasks such as speech understanding, 
visual recognition, etc. Artificial neural networks 
are designed to exploit this unique computational 
power of human brain.  From the technology 
point of view, Very Large Scale Integration (VLSI) 
circuits can put tens-to-hundreds of processing 
elements in one chip, such as Intel ElectronicTrain- 
able Artificial  Neura l  Networks (ETANN) 
80170NX. For some problems, the neural VLSI 
chip can indeed produce solutions better and 
faster than the conventional approach [lo]. It is 
the intent of this article to investigate the possi- 
bility of the using neural network approach to 
solve the message routing problem. For a com- 
munication network, each node can be equipped 
with a neural network, and all network nodes can 
train and later use the neural networks to obtain 
optimal or  near-optimal routes for messages at  
the same time. In other  words, all neural net- 
works work collectively to solve the message rout- 
ing problem. The neural approach for routing is 
neither centralized, distributed, nor localized. A 
brief review of neural networks and their applica- 
tions in communications is presented in the next 
section. Following that, the neural network solu- 
tions to the routing problems are presented. The fol- 
lowing section gives the simulation results and 
performance comparisons. A comparison between 
the neural approach and other popular routing algo- 
rithms such as Bellman-Ford’s and Dijkstra’s 
algorithms is then presented. The practical sig- 
nificance of this new routing algorithm is dis- 
cussed and further research work is suggested in 
the conclusion. 

Neural Networks 
Overview of Neural Networks 

Neural networks [lo] are information processing 
systems that consist of nonlinear processing ele- 
ments and weighted connections. Each layer in a 
neural network consists of a collection of process- 
ing elements. Each processing element collects 
the value from all of its input connections, per- 
forms a predefined mathematical operation, and 
produces a single output value. There seem to be 
numerous ways of classifying neural networks for 
different purposes. From the architectural point 
of view, neural networks can be classified as sin- 
gle layer feedforward networks, multiple layer feed- 
forward networks, recurrent network (i.e., with 
feedback), and bidirectional neural networks. 
Another meaningful basis for classifying neural 
networks is the learning mode. Supervised and 
unsupervised learning a re  the main forms of 
learning. Supervised learning is often used in sin- 

gle and multiple layer networks. Unsupervised 
learning is often used in single layer networks. Some 
neural networks use batch learning. Batch learn- 
ing means that the complete design information 
is available a priori. Then, neural networks are 
designed by recording or  encoding these design 
information into desired equilibria. For example, 
the Hopfield network is a single layer network 
with feedback and can be  used to  represent a 
dynamic system. 

Neural networks offer interesting alternative 
solutions to many problems. Useful applications 
have been designed, built, and commercialized, and 
much research continues in hopes of extending 
current success. Neural network applications 
emphasize areas where they appear t o  offer a 
more appropriate approach than traditional com- 
puting has. Neural networks offer possibilities for 
solving problems that require pattern recogni- 
tion, pattern mapping, dealing with noisy data, 
pattern completion, associative look-ups, and sys- 
tems that learn or  adapt during use. Some opti- 
mization problems can also be addressed with neural 
networks. The range of potential applications is 
impressive. 

Neural Networks in Communications 

There are two neural network architectures that 
have been proposed for communication network- 
ing applications: the feedforward multilayer net- 
work and the feedback optimization network. A 
feedforward network has been used to create a 
controller for service quality control in the asyn- 
chronous transfer mode (ATM) network [2]. Brown 
[3] and Troudet [4] have shown that a feedback 
neural network can be used to schedule packet 
transmissions through a crossbar network for 
maximum throughput. Morris and Samadi [5]  have 
described their research in using feedforward 
networks for admission control and using feed- 
back networks for switch control. The feedback 
network is used as an optimizer in all these appli- 
cations.  Jensen,  Eshera,  and Barash [6] also 
showed an application example of using a feed- 
forward neural network as a controller for adap- 
tive routing in communication networks. The  
major function performed by a routing algorithm 
is the selection of routes for various origin-desti- 
nation pairs. Once the route is selected, the deliv- 
ery of messages is straightforward and accomplished 
through a variety of protocols and data struc- 
tures. 

Neural Network Approach to 
Routing 

he network proposed by Jensen, Eshera, and T Barash offers a definite solution to the prob- 
lem of optimal message routing [6]. We call this 
network the JEB network for simplicity. Figure 1 
shows a JEB network, which is simply a standard, 
two-layer, feedforward network. As can be seen 
from Fig. 1, the architecture requires one layer 
which contains neurons for each possible message 
destination and another layer which contains 
neurons for each directly connected neighbor of 
the node. Figure 2 presents an example network. 
The JEB network for node F in Fig. 2 is present- 
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W Figure 1 .  Jensen, Esliera, and Barash netwoi-k. 

from H to D 

H 

I 
W Figure 2. An example of a message network. 

ed in Fig. 3. The JEB network architecture uses 
Hebbian learning for training the net. The exact 
equation is given below. All activation and update 
functions are identity functions. 

WiJ = w , o j  
where W O  is the weight from neuron i to neuron j; 
a; is the input to neuron i in the input layer; oj is 
the output of neuronj in the output layer; q is the 
learning rate (set to I ) .  

Forthe JEBnet, trainingoccursevery time ames- 
sage is received at  a node, meaning that the net- 
work is being continuously trainedwhile being used. 
This allows the individual neural network located 
at each node to keep abreast with changes in the net- 
work topology. In order for this training to occur, 
each message packet must contain the necessary 
information for the neural net to be updated. I n  
this case, this information includes the origin of 
the message, the destination of the message, the 
neighboring node from which the message was 
received, and the cost of the path the message 
picked up. In  reality, the cost of a path in one 
direction could be different in the opposite direction, 
i.e., the cost of a link is asymmetric. Hence the 
cost picked up by each message is the cost of links in 
the direction toward the message origin. For any two 
nodes it needs two messages heading for different 
directions to pick up the cost of each direction. 

The exact training procedure is summarized here: 
kssertaoneon theinputnode(aneuronintheinput 
layer) corresponding to the origin of the mes- 
sage packet. Assert zeroson all other input nodes. 
Assert the cost of the path the message picked 

uponarrivingat thecurrent nodeon theoutput node 
(a neuron in the output layer) corresponding 
to the neighboring node through which the 
message passed to reach the current node. 
Update theweightofthelineconnectingtheinput 
node to the output node using the Hebbian learn- 
ing algorithm. 
To actually determine the appropriate message 

routing path for an outgoing message, the follow- 
ing steps are followed. 

Assert a one on the input node corresponding 
to the destination of the message packet. Assert 
zeros on all other input nodes. 
Pick the lowest value output neuron. This indi- 
cates that this neighbor the message should be 
routed through for the minimal routing cost. 
This procedure would be repeated at each net- 

work node until the final destination was reached. 
Note that the neural networks for each node are 
kept up to date about the status of the network as 
long as there are messages passing through them. 
Some experimental  results with the J E B  net 
architecture are given in [h], and show that the 
JEB neural routing performs better than random 
routing or hot potato routing, but worse than the 
static routing paradigm by 3 percent. The static 
routing paradigm is a lookup table method con- 
structed with optimal paths at the start of run. 

JEB Network Problems and Proposed 
Solutions 

There are several routing problems that need to 
be overcome if the J E B  network is to function 
adequately for thc task of message routing. These 
problems and the proposed solutions are present- 
ed below and implemented later in our simulator. 

Piobiem 1 ~ Node sends but never receives mes- 
sages. Since the JEB nets are only updated when 
a message is received by a node, in this case with 

Destination 
neurons 

Input layer 

W Figure 3. Example JEB net for node F of Fig. 2. 
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no messages ever being received, the node in 
question would never be updated with the new 
message network topology. Under certain cir- 
cumstances, this could easily lead to a definite 
performance degradation of the network should this 
particular node be sending out numerous messages. 

So/u i ion 1 - To solve this problem, a scheme 
called “message echoing” is proposed and imple- 
mented in o u r  simulator. With this attribute, any 
node receiving a message would send back a spe- 
cial class of message, called “echo message” to 
the originating node. This echo message would 
contain the message originating node, the desti- 
nation node, and the cost it takes the original 
message to reach the destination node. The origi- 
nating node, upon receiving the echo message, 
would update its J E B  net  using the cost con- 
tained in the echo message. Note that the origi- 
nating node would need to first determine which 
neighboring node it used to  send the original 
message and update that destinationineighbor 
neuron combination. 

frobierrr 2 -Cost change occurs on path between 
nodes. This problem occurs when a cost increase 
in a link takes place. Should this change dictate a 
change in the optimal routing path, only nodes 
which receive messages through a link in which 
the cost change has taken place will be aware of 
this change. This occurs due to the fact that nodes 
unaware of the link cost change will use a differ- 
ent path, thus not providingupdated information on 
the link cost. An example is given below to illus- 
trate this problem. Referring to Fig. 2, a message 
is transmitted from node B to node H. Assuming 
all JEB networks are currently set such that the 
optimal path is always chosen for any message, 
the message would take the path B->E->F->H 
with a cost of 6 (as indicated by the heavy lines in 
Fig. 4). Now the cost on the link E->F  is changed 
to 15 and F->E is changed to 13, as shown in Fig. 
5. Oncc again a message is sent from B to H. This 
path will still be B->E->F->H, however, with a 
cost of 19 this time. Because this message picked 
up the new cost of link F->E, nodes F and H are 
made aware of the cost change. Nodes F and H 
update their networks with new cost only for des- 
tination B. Later on, a message from node H to node 
B will use the path H->G->E->B, so that node 
B does not have a chance to learn about the cost 
increase of link E->F. Hence, should a message 
from B to H be sent, the old path B->E->F->H 
will still be used. Any other cost changes on desti- 
nation nodes are not updated with the new link 
cost information. Hence, the JEB net is not fully 
updated. 

Solution 2 - Using only message echoing is not 
enough to completely solve problem 2. A method 
called “local link awareness” is used in coopera- 
tion with message echoing to solve problem 2. 
Local link awareness makes nodes aware of any 
cost changes to the links to which they are direct- 
ly connected.  T o  implement this, the  node is 
alerted to the cost change and informed of the 
new cost. The node then causes its JEB net to update 
costs of all destinations which pass through the 
link whose cost has changed. 

Making nodes aware of changes in their local 

H to D 

Figure 4. A routing example using the JEB net. 

H to D 

Figure 5. A routing exarnple after link cost change. 

links still does not  resolve the JEB net update 
problem, (i.e., only the destination node ever 
getting updated), but it will allow for consider- 
ably bet ter  routing decisions to be made. For 
instance, referring to  Fig. 2, a message going 
from B to  H after a cost change on the E - > F  
link, a new path would be followed if E is auto- 
matically made aware that  a cost change has 
taken place. Given this awareness, B will still 
route the message to E as i t  will still think that it 
is the best path, but E will not route the message 
through the E - > F  link, as it would now be aware 
that the line is no longer a good path. Instead, 
the final path of B->E->G->H would be followed 
with a cost of 7 - a considerable improvement 
over a cost of 19. 

Unfortunately, this improvement is not with- 
out  a penalty. Since E is immediately aware of 
the cost change on link E->F ,  a message sent 
from B to H is never routed through the E - > F  
link. This has the effect of ensuring that not only 
is node B kept unaware of the cost change, but 
also node H is kept in the dark. This results in a 
message being sent from H to B, using the path 
H->F->C->B with a cost of 11 rather than the 
better path. H->G->E->B.  Originally, total cost 
for messages going from B to H and from H to B. 
after the link cost change, would bc 29 (19+ I O ) .  
Making the nodes aware of cost changes reduces 
the total cost to 18 (7+ 1 1 )  - a definite improve- 
ment. With immediate local link cost awareness, 
any destinations that would normally have used 
the E-F link (not just nodes B, H),  would pass 
their messages to  node E (or  F), which would 
then choose an alternatc. cheaper route. 
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Problem 3 - How to handle downed l inks  - 
Since a downed link effectively blocks any mes- 
sage from passing through it, the JEB network at 
each  node  could never learn tha t  a link was 
downed. Downed links might trap messages at a node 
and result in unroutable messages. 

Solution 3 - To solve this problem requires the 
use of local link awareness, at least to the extent 
that nodes are aware that a link is down. Unfor- 

from H to D 

H 

W Figure 6. A routing example with downed link. 
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I Figure 7. a) Sample test network for a Hopfield net; b) corresponding Hop- 
field network. 

tunately, this only partially solves the problem of 
routing around downed links. In certain situa- 
tions, it would be possible for a message to be 
undeliverable due to running into a downed link 
despite an alternative path being available. For 
example, referring t o  Fig. 6 where a message 
from C to  G is being sent: the dashed line indi- 
cates that the link between A and G is down and 
the heavy lines indicate the partial path of the 
message from C to G. 

As can be seen from Fig. 6, the network begins 
by at tempting to  route  the message using the 
optimal path, which is C->B->A->G. However, 
upon reaching node A it cncountcrs a downed 
link to G,  making the  message undeliverable 
from A. At this point, some sort of backtracking 
mechanism must be used to back up the route till 
reaching a node with an alternate route, as other- 
wise the network will report the message as unde- 
liverable despite the fact that alternative paths 
are available. 

Hopfield Nehork for Routing 

The second neural network implemented to solve the 
routing problem is the Hopfield network. This 
approach is based on a solution proposed for the trav- 
eling salesman problem (TSP) as given in [SI. The 
message routing problem is considerably similar 
to the TSP problem in that it is concerned with find- 
inganoptimalroutewhich travels between a source 
and destination node (city). 

In order to map the optimal message routing 
problem onto a Hopfield neural network archi- 
tecture, the same approach used in [SI to solve 
the TSP problem is taken to construct the net- 
work  f o r  th i s  p r o b l e m .  T h i s  a r c h i t e c t u r e  
requires n sets of n neurons where n is the num- 
ber of nodes in the message network. One set of 
n neurons is assigned to each node. The output 
of tha t  par t icular  set  of neurons  determincs 
what position in the path to  b e  followed. This 
approach allows for either a centralized routing 
scheme or an isolated routing scheme (a special 
case of distributed routing) to be implemented. 
For a centralized scheme, the entire path found 
from the Hopfield network would be included 
with the message. In  an  isolated scheme, each 
node would have a Hopfield net which is used to 
find t h e  next n o d e  t h e  message needs  t o  b e  
passed to. 

Figure 7 presents a sample message network 
and its corresponding Hopfield net. Assuming a mes- 
sage was being routed from A to  D, using the  
path A-> F->E- >D, the output of thc nctworkwould 
be interpreted to be as shown in Table 1. 

The ones indicate these nodes forming a path, 
A->F->E->D, for a message sent from node A 
to D to follow. For the TSP problem, there would 
be a 1 in every row and column to  form a com- 
plete closed path traversing all nodes. For a rout- 
ing problem, it is not necessary nor desirable to  
visit all nodes. In  order  to  satisfy the require- 
ments of routing, the  energy equat ion is con- 
structed as follows. 
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The evolution of Hopfield’s net is described by 
the differential equation 

duxildt = - U X ~ / T  - A I.+ i  Vxi - B I y t  x Vyi 
- C( <valid pa tk>)  
- D C Y  ~ X Y  (Vy.i+I + VY.i+I) 

In the above equations, the term <valid path> 
is 0 if the current output of the Hopfield network 
represents a valid routing path and 1 otherwise. 
A hard-limiter isused tocalculate the outputsrather 
than the sigmoid function. 

Sim ula /ion Results 
network simulator was written to investigate A the  per formance  of t h e  J E B  ne t  and  t h e  

Hopfield net in routing messages. Network con- 
figurations shown in Figs. 8 and 9 are used to test 
the  JEB neural  router .  T h e  Hopfield neural  
router is tested using the network shown in Fig. 7a. 
A snapshot of the  output  of t h e  s imulator  is 
included in the Appendix at the end of this aritcle. 
This simulator is capable of displaying various 
message network configurations and of running 
scripts to simulate message traffic. These scripts 
specify what messages are sent, any cost changes 
which occur, and what links go broken. To create 
these scripts, a random script generator was also 
written. This generator is capable of generating 
scripts of any desired length. To determine the mix 
of message types (send message, change cost, 
up idown l ink) ,  p e r c e n t a g e s  re f lec t ing  t h e  
chance of any particular type of message occur- 
ring can be passed into the program to generate 
a script. The following assumptions are used to 
generate the scripts and explain the simulation 
environment: 

The  uniform message distribution is used to 
generate the message destination, implying 
that the probability of node i sending a mes- 
sage to node j is the same for all i, j ,  and i j .  
The propagation time is omitted; the link cost 
is the queuing cost only. 
All links are  equally likely to become down, 
and all downed links a r e  equally likely to  
become up. 
A command determines an action and, at one 
time. only one command is executed. The for- 
mat of a command (an action) is shown in the 
Appendix. 
The  link costs of test networks for the JEB 
neural net are asymmetric. 
The link costs of test networks for the Hopfield 
neural net are symmetric. 
The simulation results are obtained by averag- 
ing more than 30 runs of scripts with the same 
characteristics, i.e., same percentage of link 
cost changes, link down, link up, etc.) 
For the purpose of simulating different mes- 

sage routing conditions, several scripts were 
generated. Each script was generated randomly 
using a script generator. The command line for 
the script generator is shown in the Appendix. 
T h e  scr ipt  used dur ing  learn ing  consis ts  of 
20,000 actions where an action is simply send- 
ing a message to  a destination node,  with n o  
variations in the network. The  value 20,000 is 
determined by the largest network size, i.e., test 
network two in Fig. 9. The scripts used for testing 

W Table 1. Example of a Hopfield oritput. 

from 

H 

H to D 

W Figure 8. Sinidation test network one. 

W Figure 9. Sim~ilation test network two. 

consist of a total of 200 actions, where an action 
could be either sending a message, changing a 
link cost or  breaking a link. For these scripts, 
moderate (high) variation in cost is defined as a 
15 percent  (30 percent)  chance of an  action 
being a cost change. A moderate (high) chance 
of a downed link is defined as a 5 percent (10 
percent) chance of an action causing a link to 
become broken. These percentages reflect the 
approximate number of actions of that particu- 
lar type that would be present in a script. For 
example, with moderate variation in cost, 30 of 
the 200 actions would be cost change actions. 
By making  use of t h e s e  d i f fe ren t  types  of 
scr ipts ,  networks with little o r  considerable  
fluctuation in their topology can be modeled. 
There are five scripts used for testing the network 
routing performance in our simulation as listed 
in Table 2. 

~ 
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JEB Network lest Results 

In testing the JEB network, various options were 
used or not used. These options are as follows: 

Optimal Initialization -When turned on, the JEB 
nets would be initialized with the current optimal 
paths when the simulation starts up. If not on, 
nets are initialized only with the cost to the node’s 
neighbors. 

Local l ink Awareness -When activated, nodes 
are aware of all cost changes to links to which the 
node is directly connected. If off, nodes can only 
learn of cost changes when a message is received. 

Message Echoing - Destination nodes echo 
back to source nodes the cost of the path. Allows 
for both source and destination nodes to learn 
from a single message. 

The JEB network solution was tested using the 
five scripts with different options. Table 3 pre- 
sents the option settings for the JEB network. 

We ran each script 30 times, for example, 30 
versions of script 3, and computed the average 
value over these 30 runs. From our  simulation 
results, it shows that JEB 5 has the best perfor- 
mance. Optimal initialization is a n  important 
factor for the JEB network to achieve satisfacto- 
ry performance. Tables 4 and 5 summarize the 
test results obtained from running the shortest 
path algorithm, the static routing algorithm, the 
J E B  5 a lgor i thm and  the  J E B  6 algorithm. 
Because the JEB 6 algorithm does not start with 
optimal init ialization, we apply the  learning 
script to the JEB 6 first before testing. The simu- 
lation resul ts  for  all J E B  1 to  J E B  4 a r e  not  
included for brevity (they are  available upon 
request) The numbers indicate the percentage 
of messages which were routed using the opti- 
mal or  near-optimal path by the specified algo- 
rithm. For these tables, the near-optimal path is 

defined as being within one or two cost points of 
the optimal path cost as determined by the short- 
est path algorithm. 

Test Results D iscuss ion  - Examining the test 
results of the JEB network reveals several interesting 
aspects of its operation. Note that to properly 
evaluate the performance of an algorithm, both the 
total cost of the routable messages and the num- 
ber of unroutable messages should be examined. 

First, it can be seen that the JEB nets which 
have gone through the learning phase give results 
as good as the JEB net with optimal initialization. 
This is to be expected, as a significant number of 
messages must be sent before the individual JEB 
nets really learnwhat the optimal paths are. The JEB 
network performs better when only moderate 
variation is present as opposed to high variation. 
When running with moderate variation, the JEB 
nets  ou tper form the static routing by a fair  
amount ,  but do  worse than the static routing 
when running with high variation. Actually, this 
behavior should be expected. Since the JEB nets 
depend on message traffic to update themselves, 
if there is a lot of variation as compared to the 
volume of message traffic,  the J E B  nets  a r e  
unable to update themselves fast enough to keep 
up with the network fluctuations. 

Also, the JEB nets perform considerably better 
than the static routing when downed links are 
present. In some cases, performance approaches 
the shortest path, with only a few more unroutable 
messages than the shortest path generates. Final- 
ly, it should also be noted that, in general, the 
JEB nets perform best with all options activated 
(optimal initialization, local link awareness, and 
message echoing). 

Overall, the performance of the JEB network 
is satisfactory. This approach shows that it is able 
to adapt reasonably to changing network traffic 
and topologies while producing optimal or near- 
optimal path solutions. 

Hopfield Test Results 

The major advantage of the Hopfield network is 
that an analog circuit can be constructed to solve 
an optimization problem. But in simulation, the 
Hopfield network does not always generate valid 
solution especially when applied to large systems. 
Table 6 below summarizes the test results obtained 
from running the static routing algorithm and the 
Hopfield algorithm. The shortest path algorithm 
is also included in the table for comparison purposes. 
The numbers indicate the percentage of messages 
which are routed using the optimal or near-opti- 
mal path by the specified algorithm. For  this 
table, the near-optimal path is defined as being 
within one or two cost points of the optimal path cost 
as determined by the shortest path algorithm. 

Test Results Discussion - The Hopfield network is 
able to deliver reasonable results. Testing with script 
1 yields 89 percent of the messages being routed 
along optimal or near-optimalpaths. Even theworst 
performance under script 2 still has two-thirds of 
the messages being routed on  optimal or  near- 
optimal paths. These results are fairly good when 
one considers that no pre-initialization has been 
performed on the Hopfield network. The network, 

IEEE Network March/April 1995 

- ~~~ 



starting from a cold start, is able to deliver the 
optimal path for the message in many cases. 

Since the Hopfield network can be implement- 
ed by the analog circuit, which is one order faster 
than any digital table lookup implementation and 
is smaller in size, it could be applicable to a situa- 
tion where time and space are critical and near- 
optimal solution is acceptable.  In [9], it has 
demonstrated that the Hopfield network can be 
used to  solve larger problems if the Lagrange 
multiplier method is used. 

Comparison Beheen Neural and 
Other Routing Algorithms 

he commonly used routing algorithms are the T Bellman-Ford algorithm, Dijkstra algorithm, 
and the Floyd-Warshall algorithm. The Bellman- 
Ford algorithm iterates on the number of hops in 
a route. It is based on first finding optimal routes 
from a prescribed source node to all other nodes 
(subject to the constraint that no route contains 
more than one  hop),  then finding the optimal 
routes subject to the constraint no route contains 
more than two hops, and so forth. The amount of 
computation is at worst O(N3). Dijkstra’s algorithm 
iterates on the length of a route. The general idea 
is to find the shortest routes in order of increas- 
ing route length. It first finds the shortest route from 
some node to the destination node and establishes 
this route. It then finds the next shortest route and 
establishes it, and so forth. The number of com- 
putation in the worst case is O(@). The Floyd- 
Warshall algorithm iterates on nodes allowed as 
intermediate nodes in routes. It computes short- 
est routes between all pairs of nodes. The Floyd- 
Warshall algorithm is used in some networks 
with centralized routing such as TYMNET. 

The JEB neural routing method can be consid- 
ered an isolated routing algorithm in the sense 
that no information exchanged between nodes. In 
distributed routing algorithms, such as the dis- 
tributed asynchronous Bellman-Ford algorithm, 
the computation of routes is shared among net- 
work nodes with information exchanged between 
them. Dijkstra’s algorithm needs to know the cur- 
rent link status of the network for computation of 
the shortest routes. Hence each node needs to 
broadcast to all other nodes its connectivity to 
neighbors. Now we construct a table to compare 
the neural network approach, using JEB 6, with 
the distributed asynchronous Bellman-Ford 
algorithm and the Dijkstra algorithm. N is the 
number of nodes in the network. 

The amount of computation of the JEB net- 
work is approximated in terms of the number of 
messages required to learn all the shortest routes 
in the network. For a network with N nodes, a 
node, say node i, needs to receive at most N - 1 
messages from node j to learn all possible routes 
from node i to node j .  Hence a node has to receive 
at worst (N - 1)2 messages from all other nodes 
to learn the shortest routes for all other nodes. A 
network with N nodes, the total number of mes- 
sages used during learning is O ( f l ) .  Since each 
node has a neural network, all network nodes can 
start the learning process at the same time. To avoid 
link contention, this learning process should be 
done in a distributed asynchronous manner, which 

1 (JEB 6 is tested after running learning script.) I 
W Table 4. JEB net test results fortest network one. 

1 (JEB 6 is tested after running learning script with 20,000 actions.) I 
Table 5. JEB net test results for test network two. 

80 74 78 63 

72 66 68 72 
I 

W Table 6. Test results summary for the Hopfield network. 

Asynchronous distributed O(N3) 
Bellman-Ford 

Dijkstra OW2) 

; 
i 

Neural nets (JEB 6) O W )  = no of 
messages 
required in 
learning 

Each node broadcasts Yes 
to its neighbors of the 
latest route cost 

Each node broadcasts Yes 
to all other nodes of 
its connectivity to 
neighbor nodes 

L-.- - 
W Table 7. A comparison of the neural approach and other routing algorithms. 

is similar to the distributed asynchronous Bellman- 
Ford algorithm. The major advantage of the neu- 
ral approach is no communication cost. Each node 
updates its JEB network upon detection of a cost 
change or a failed link through the incoming mes- 
sages. Dijkstra’s algorithm has the least compu- 
tation load, but it has the largest communication 
overhead among the three approaches in Table 7. 

Conclusions and Future Work 
he results obtained using the enhanced JEB T network and Hopfield network show that the 

problem of optimal message routing can success- 
fully be solved through the application of neural 
networks. 
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The major problem of the JEB network is the 
unroutable messageseven when there is avalid path. 
This problem could be solved through the use of 
backtracking mechanisms to  back up the route 
until an  alternate route can be found. Another 
possibility for solving the problem of messages 
getting trapped when using the  J E B  network 
might be making use of the second neural net- 
work. This second network could be used to store 
the network topology, but, for this network, only 
the interconnections would be stored, not the 
costs. This second neural network can be a two- 
level associative memory, which has been designed 
and tested through simulation on the New Jersey 
LATA network for automatic network restoration 
[ll]. This would, in effect, give each node a current 
map of the available paths with the network, some- 
thing which the JEB network does not provide. 

To solve the unroutable message problem, each 
node would consult this second network before 
making its routing decision to verify that the node 
is not about to send the message into a trap. In order 
for  this to  be effective, the incoming message 
would need to contain the path i t  has followed up 
to this point. Thiswould allow the node to determine 
the proper routing for the message by using the 
stored network topology and the path the mes- 
sage has already traveled. 
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Appendix 
1. The format of a command is given below. 
Send message - Send <from node > <to node > 
Change cost - Change <from node> <to node> <new cost> 
Down a link - <from node > <to node > 
Down a node - Downnode <node> 
U p  a link - <from node > <to node > 
U p  a node - Upnode <node > 
2. The command for the script generator is : 
scrptgen 

3. A snapshot of the output of the network routing simulator: 

Downlink 

Uplink 

<length> <% send messages> <% cost changes> <%down links> <% down 
nodes > 
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