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Abstract. At present, algorithms of the ID3 family are not based on background knowledge. For that reason, 
most of the time they are neither logical nor understandable to experts. These algorithms cannot perform different 
types of generalization as others can do (Michalski, 1983; Kodratoff, 1983), nor can they can reduce the cost 
of classifications. The algorithm presented in this paper tries to generate more logical and understandable decision 
trees than those generated by ID3-1ike algorithms; it executes various types of generalization and at the same 
time reduces the classification cost by means of background knowledge. The background knowledge contains 
the ISA hierarchy and the measurement cost associated with each attribute. The user can define the degrees of 
economy and generalization. These data will influence directly the quantity of search that the algorithm must 
undertake. This algorithm, which is an attribute version of the EG2 method (Nt]fiez, 1988a, 1988b), has been 
implemented and the results appear in this paper comparing them with other methods. 
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1. Introduction 

The algorithms of the ID3 family have suffered various limitations with respect to their 
utilization in many kinds of problems. The principal one being the lack of background 
knowledge, which limits the process of learning. 

One of these limitations consists of  the impossibility of applying different types of 
generalization. In inductive algorithms that use languages based on logic of predicates like 
AQll  (Michalski,  1983), INDUCE (Larson & Michalski,  1977) this function is basic and 
inseparable from the inductive process itself. One of the consequences of this lack of 
background knowledge is the complexity of the generated decision trees. 

Although the decision trees generated by ID3-1ike algorithms are accurate, they suffer 
the disadvantage of excessive complexity and are therefore incomprehensible to experts. 
In order to solve this problem, many systems have been developed. These systems concen- 
trate only on the information contained in the historical data: The PRISM algorithm (Cen- 
drowska, 1989) and the INDUCT algorithm (Gaines, 1989) maximize the information con- 
tributed by an attribute-value pair. Previously Quinlan (Quinlan, 1989), Lavrac (Lavrac 
et al. ,  1986), Bratko (Bratko et al . ,  1987) proposed other techniques to generate more 
understandable and accurate decision trees. Since experts bring additional knowledge to 
bear while learning decision rules, the proposed method tries to solve this problem using 
background knowledge. 

On the other hand, one of the main difficulties with diagnosis problems is that they may 
include costly tests. One needs to acquire knowledge that economizes resources, that is 
to say, the learner should perform economic induction. 
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When an expert in brain tumors, for instance, receives a patient who suffers a headache, 
he does not recommend the Scanner as a first diagnostic test, this being the most effective 
one, because the expert has in mind economic criteria. Therefore the expert asks simple 
questions and orders other more economic tests in order to discriminate the simple cases, 
and only recommends such an expensive test for the complex ones. This means that learning 
methods should take into consideration minimizing costs of the diagnosis in the process 
of rule induction, in order to be applicable to more problems. 

The algorithm presented in this paper undertakes various types of generalization and 
reduces the classification cost by means of background knowledge. This algorithm, called 
EG2 (Economic Generalizer 2) (N6hez 1988a, 1988b) constitutes the base of the ALEXIS 
II program whose results appear in this paper (see also Nfi~ez, 1990). Although this pro- 
gram represents instances in terms of attribute-value pairs, the EG2 algorithm can handle 
composite objects as training examples. However, this facility is being implemented at the 
moment and therefore has not yet been proved with real problems. For this reason it is 
not presented in this paper. 

2. Representation and organization in EG2 

The EG2 algorithm is an inductive algorithm that generates a decision tree from a set 
of examples. Beside the training examples, the user can define the ISA hierarchy and the 
cost of measurement of each attribute, and some data about the degrees of economy and 
generalization. These data will influence directly on quantity of search that the algorithm 
must undertake. 

2.1. Economic induction 

With the goal of constructing a decision tree, the algorithm has a criterion for selecting 
attributes based on a relationship "cost/benefit." This criterion is more general than the 
one proposed by Quinlan (1979), based exclusively on the measurement of the quantity 
of information (AI). EG2 will produce a decision tree which will allow the final user to 
classify his problem and in turn, economize on his resources: time, money, labor, energy, 
level of danger, etc. The average cost of classification with the decision tree generated by 
EG2 is less or equal to that obtained using the tree generated by ID3. 

The economic criterion applied by EG2 to build a simple decision tree is based on the 
selection of the attribute with the least ICF (Information Cost Function). This function 
is defined as the ratio between cost and the discrimination efficiency of the attribute, that 
is to say, its relationship "cost/benefit," as follows: 

f (cost of attribute i) 
ICF (attribute i) = g(discrimination efficiency of attribute i) 

The cost concept should be understood, not only as a monetary unit to measure a value 
of an attribute, but also as a concept that can be quantified (i.e., distance, time, risk, danger 
level, etc.) 
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In order to define the discrimination efficiency function, the signal/noise (S/N) concept 
as a measure of efficiency of a transmission line has been adapted. The analogy of the 
above concept (S/N), from Information Theory (Shannon, 1971), is the measure of UI/NI 
of the analyzed attribute, as follows: 

Useful information UI 
g(discrimination efficiency) = Non useful information - NI 

With a very different purpose, the Prospector system (Duda, 1981) applies this useful con- 
cept (the ratio between two opposite terms) to calculate parameters for approximate reason- 
ings, due to its sensitivity. 

Since UI + NI = TI (total information), 
therefore 

I UI] L TI ] g ( )  = N-I = N-i - 1 

In order to know the meaning of (TI/NI), we have: 

I H(TI) ] 
AI ---- H(TI) - H(NI) = 

Since 

TI = 2 "(T~) 

NI = 2 H(NI) 

Therefore 

[TI 1 AI = log 2 

2 aI I UI ] = ~-~ + l = g ( ) + l  

2 aI - 1 = g( )1 

f(cost) is cost + 1, to allow ICF to be finite when cost = 0. Cost should be >> 1. ICF 
includes a variable w to calibrate the factor of  economy. The range of w is [0, 1]: 
co = 1 means maximum economy. Thus, the ICF formula is as follows: 
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(costi + 1) ~ 
I C F i -  2 all - 1 

where: 

AI~ is the information gain of attribute i 
is a variable of calibration of this economic criterion 

ICF is calculated for each attribute. EG2 selects the attribute with the least ICE 

2.2. Kinds of generalization 

Beside the "dropping condition" generalization performed by any TDIDT algorithm 2, EG2 
performs other kinds of generalization. We next introduce the two additional generalization 
processes performed by EG2. 

2.2.1. Climbing the generalization tree 

Climbing the generalization tree has been used in various forms (Kodratoff, 1983; Michalski, 
1983; Winston, 1987), and because of its relevance to concept recognition it has been in- 
cluded in EG2. The algorithm generalizes depending on the ISA hierarchies associated 
with the attributes. For an ISA relation to be acceptable in a decision tree it has to fulfill 
certain criteria of completeness and consistency. This kind of generalization is illustrated 
in Figure 1. 

2.2.2. Union of values 

The algorithm can apply the union of symbolic values, also called "adding alternative" 
generalization (Michalski, 1983). If a union fulfills certain criteria of consistency and com- 
pleteness, the system accepts this union. Figure 2 illustrates this process of generalization: 

In general terms, the input/output specification of the EG2 algorithm is given in Table 1. 

3. EG2 algorithm 

Before describing the algorithm, we shall define as structured attributes those that have 
an ISA hierarchy associated with them. The lowest leaf values of this tree are the only 
observable values. The other values are called abstract values. The hierarchies can be 
"tangled" (Kodratoff et al., 1986), that is to say, an observable value can belong to more 
than one abstract value (see figure 3). 



THE USE OF BACKGROUND KNOWLEDGE 235 

B A C K G R O U N D  K N O W L E D G E  

ISA RELATIONS (SHAPE) 

triangle ISA POLYGON 
square ISA POLYGON 
pentagon ISA POLYGON 
circle ISA CONIC 
ellipse ISA CONIC 

T R A I N I N G  E X A M P L E S  

SHAPE CLASS 

square + 
triangle + 
pentagon + 
circle 
ellipse 

f 

Climbing the 
generalization 
tree 

DECISION TREE 

SHAPE 

P O L Y G O N ~ O N I C  

(+) (-) 

Figure I. A generalization process using ISA relations. 

T R A I N I N G  E X A M P L E S  

SHAPE CLASS 

square + Ib, 
triangle 
pentagon Union of 
circle + Symbolic Values 
ellipse + 

DECISION TREE 

SHAPE 

square OR A triangle OR o)/ 
ellipse g 

(+) (-) 

Figure 2. A generalization process using union of symbolic values. 

Table 1. Specification of the EG2 algorithm. 

GIVEN: 

• BACKGROUND KNOWLEDGE: 
ISA hierarchies 
Measuring Costs 

• USER DEFINED FACTORS 
Economic factor (co) [0..1] 
Completeness threshold (ct) [0..1] 

• TRAINING INSTANCES: 
Training examples 

DETERMINE: 

• A decision tree 
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ISA hi~r~lrchv of an attribute: 

. ~ 

M. NUNEZ 

ABSTRACT_VAL 1 ASTRACI'_VAL 2 

ABSTRACT VAL 3 ABSTRACT VAL_4 ABSTRACT_VAL 5 ABSTRACT VAL__6 1s A 
observable val a observable val b observable val c observablejal d observable val e 

Figure 3. A "tangled" ISA hierarchy. 

3.1. Description of the algorithm 

EG2 is an amplification of the ID3 algorithm (see Table 2). The algorithm works as follows: 
EG2 selects the attributes using the economic criterion mentioned above. It then initializes 
an internal LIST with the more general abstract values and those observable values that 
do not have abstract values associated. If the selected attribute is structured, it selects only 
one abstract value according to a certain criterion, explained below. If  the selected attribute 
is not structured, the algorithm selects one of the observable values. Then, EG2 generates 
a subtree according to this value (abstract or observable). If this subtree is consistent and 
complete, the algorithm stores it temporarily; the algorithm will try to get a better generaliza- 
tion than the one stored, but if this attempt does not work, it will keep the stored subtree. 

In order to get a better generalization, the algorithm tries the best union of abstract values 
and observable values. Therefore EG2 attempts the former valid value and other values 
(abstract or observable), and builds a subtree according to this union. This process is repeated 
until an inconsistency or incompleteness is detected. When that happens, EG2 recalls the 
last stored subtree. If an observable value cannot be generalized, EG2 generates a subtree 
according to this observable value (like ID3 does). The process for each selected attribute 
ends when there are no more values in the internal LIST. Table 2 shows the EG2 algorithm. 

Inconsistency is detected when a leaf cannot terminate because there are at least two 
examples in the subset of examples that are described equally but have different classes. 

Incompleteness of a generalization is detected by measuring the proportion of its observ- 
able values in all leaves of the subtree below the said generalization. This measure should 
be greater than a threshold predefined by the user (cO. If  each leaf contains each of the 
values of the generalization, the completeness is 1. In general, this factor is calculated as 
follows: 

• leaf j with the i-th value of the generalization 
i=l j=l 

Completeness factor = 
m leaves * n values of the generalization 



THE USE OF BACKGROUND KNOWLEDGE 237 

~ - ~ j / z ( i ,  j) 
i=l j i 

m * n  

where 

#(i,j) = (10 iftheleafjcontainstheobservablevaluei 

if the leaf j does not contain the observable value i 

Figure 4 illustrates the detection of the incompleteness of an attribute (attribute__3) in 
one of its generalizations (a, b are observable values of ABST VALUE__l); we suppose 
that the user specified a completeness threshold of 0.7. 

Table 2. The EG2 algorithm. 

EG2 (set~of___examples) 

IF all the examples have the same class, then label the leaf with this class 

ELSE 
Select attribute. /* in accordance with the economic criterion ICF */ 
Initialize LIST with the abstract values of the first level of 

abstraction and the observable values that do not have abstract values associated. 
Let Last~valid_generalization = nil; let Last~valid__subtree = nil 
WHILE LIST is not empty: 

Reorganize LIST 
Construct SUBSET of examples in accordance with: 

Lastvalid__generalization OR first element of LIST 
EG2 (subset) /* generate a subtree */ 
IF said subtree is consistent and complete 

Let Last valid~eneralization = Last__validgeneralization 
OR first element of LIST 

Let Last__valid__subtree = generated subtree 
Destroy generated subtree 
Delete the first element of LIST 
IF LIST is empty 

Add Last__valid__subtree to the final decision tree 

Let Last__valid generalization = nil 
Let Last valid subtree = nil 

ELSE 
Destroy generated subtree 
IF Last~valid__generalization ~ nil 

Add Last__valid__subtree to the final decision tree 
ELSE 

IF the first element of LIST is an abstract value: 
Decompose said abstract value into observable values 

ELSE 
Inconsistency detected 

Let Last__valid__generalization = nil 
Let Last~valid__subtree = nil 
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leafl 

Attr 3 

st value 1 

Attr 5 

(_) Attr2 
/ N  

Abst value 1 / N 

/ \ a b 

J ~ (+) (-) 
leaf2 le~ff3 
Abst value 1 

a b 

Abst_value_l 

a b 

completeness [g(leafl, a)+/a(leafl, b)] + [/.t (leaf2, a)+g(leaf2, b)] + [g (leaf3,a)+ g(leaf3,b)l 
measure of 
Abst value 1 #leaves * # values in the generalization Abst value_l 

2 + 1 + 1  

2*3 

= 0.66 < ct (generalization rejected.t) 

Figure 4. Illustration of an incompleteness detection. 

Figure 5 illustrates the functioning of EG2 with the following exercise. Suppose that 
the selected attribute is ATTRIBUTE_._4 and the background knowledge contains the 
Abstract Values (AV-1, AV-2 and AV-3) associated to the observable values (a, b, c, d, e 
and f) of the ATTRIBUTE___4 (note that the value c belongs to two ISA relations): 

c, f ISA AV-1 
a, b ISA AV-2 
e, d, c ISA AV-3 

3.2. Search of generalizations 

As it was explained above, EG2 tries a UNION between the generalization(s) that has(ve) 
been previously validated and other values (abstract or observable) not selected before. 
I f  a value is selected, it goes to the head of the internal LIST. 
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LIST: (AV-3 AV-2 AV-1) 
Execution of AV-3 subtree: consistent/complete. 
Therefore, AV-3 disappears l\-mn LIST and its observable 
values (e d c) make disappear other abstract values. 
Since AV-1 also considers c. AV-1 disappears from LIST 
and therefore it is decomposed into its values (without c). 

LIST: (AV-2 f) 
Execution of AV-3 OR AV-2 subtree: inconsistent 
FIRST BRANCH: AV-3 

ATTRIBUTE-4 

lAST: (AV-2 f) 
Execution ofAV-2 subtree: incomplt:te 
substitute AV-2 for values a b 

LIST: (f a b)  
Execution of f subtree: consistem/complete 
Let Last valid .generalization: f 

LIST: (a b)  
Execution of f OR a subtrec: consistent~complete 
Let Last valid generaliz:ltion: f OR :1 

LIST: (b) 
Execution of f OR a OR h sul~m:c: inconsistent 
SECONDBRANCtt: f OR a 

LIST: (b) I v 
Execution of b subtree: consistent 

f THIRD BRANCtt: b 

A TTR I B UTE-4 

AV A OR a 

ATTRIBUTE-4 

Figure 5. Illustration of a generalization process executed by EG2. 

The criteria to select a value (abstract or observable) in order to put it at the head of 
the internal LIST are the following, in priority order: 

1. Abstract values with more observable attributes (they are more general). 
2. If there is a conflict (more than one abstract values with the same number of  observable 

values or abstract values mutually exclusive) OR if there are only observable values, 
then partition the set of examples into subsets, each one according to each possible 
generalization. Measure the entropy -P.  p • log(p) of the class of  each subset of ex- 
amples and select the generalization that produced less entropy. The purpose of this 
step is to choose the generalization that best classifies the examples. 

4. Results 

The following examples have been processed by the ALEXIS II program. In the first one, 
the algorithm applies different types of generalization (climbing the generalization tree and 
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union of values) and optimizes the classification cost. The other examples show the per- 
formance of the economic criterion used by EG2 compared with other approaches in two 
domains. 

4.1. An example 

In this example (see Table 3, and Table 4), the user has supplied background data of the 
problem: his knowledge about the ISA hierarchy and the cost associated to the attributes. 
He also has supplied the generalization requirements, that is to say, the completeness 
threshold (ct = 0.6), and the economic factor (w =1). 

Table 3. Background knowledge and training examples of a classification 
problem. 

Background Knowledge 

Attribute ISA Relations Measuring Cost 

SHAPE square ISA POLYGON $10 
triangle ISA POLYGON 
pentagon ISA POLYGON 
circle ISA CONIC 
ellipse ISA CONIC 

COLOR red ISA PRIMARY $30 
blue ISA PRIMARY 
yellow ISA PRIMARY 

SIZE medium ISA ~SMALL $50 
big ISA ~ SMALL 
big ISA ~ MEDIUM 
small ISA ~ MEDIUM 

MATERIAL $100 

Table 4. Training examples of a classification problem. 

Forma Color Size Material Class 

square red big metal + 
square blue small plastic + 
triangle yellow medium metal + 
triangle pink big leather - 
square pink medium leather - 
circle red small plastic - 
circle blue small metal - 
ellipse yellow small plastic - 
ellipse blue big leather + 
ellipse pink medium wood + 
circle blue big wood + 
triangle blue medium plastic + 
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In Table 3 the user employs the operator for logical negation ' -~ '  (i.e., -~ SMALL, 
MEDIUM).  Note also that the value 'pentagon' has been defined in the background 

knowledge, despite that this observable value is not present in the training set. This situa- 
tion is usual when the user has divided the historical data into distinct sets for training 
and testing. ID3 cannot handle this situation. ID3 would classify an instance with shape 
pentagon as of "UNKNOWN CLASS." EG2 can handle this situation because it will try 
to generalize square, triangle and pentagon as polygons in order to build the decision tree. 

The fact that instances with shape pentagon are not present in the training set will decrease 
the completeness factor of the generalization POLYGON and therefore it is possible for 
this generalization to fail. Let us see what happens. 

In order to select the first attribute, the algorithm measures AI of each attribute, then 
it applies the economic criterion (ICF) mentioned above. 

4 I  = H(TI) - H(NI) 

3 2 2 + 1  1 
A I I =  - I ~ 2  l ° g ~ 2  + l ~ l ° g  l ~ l  - I - ~ - I ~ l ° g ~  ~ l ° g ~ l * 4  l 

= 0.061 

1 0 + 1  
ICF~ - 2oo6J _ 1 - 252.27 

Similar analysis gives 

AI2 = 0.119 = ICF2 = 360.54 

z513 = 0.167 = ICF3 = 415.57 

Z~I4 = 0.186 = ICF4 = 733.98 

Although the attribute MATERIAL has the highest ,51, SHAPE has the best relation 
"cost/benefit." EG2 selects attribute 1 (SHAPE) to build the decision tree, and tries to 
apply the associated abstract value (POLYGON). Then it selects the attribute COLOR, 
and tries its only abstract value (PRIMARY). Figure 6 shows this induction process. 

This subtree is consistent. EG2 calculates the completeness percentage of the generaliza- 
tions SHAPE = POLYGON and COLOR = PRIMARY as follows: 

completeness 2 values present in first leaf + 2 values present in second leaf 
of POLYGON 2 leaves below branch POLYGON * 3 values for generalization POLYGON 

completeness 

= 0.666 > ct (generalization accepted!) 

3 values present in the only leaf 
of PRIMARY 1 leaf below branch PRIMARY * 3 values for generalization PRIMARY 

= 1.0 > ct (generalization accepted) 
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SHAPE 

F ' O L Y G O 2 /  

COLOR 
A 

PR 1 M A R /  ~pin k 
/ \ 

(+) (-) 

SHAPE = POLYGON 

triangle! square ~entagon triangle 

,/ ¢ X 4 

COLOR = PRIMARY 

red blue yellow 

,¢ ¢ ,¢ 

SHAPE = POLYGON 

~uarc pentagon 

,/ X 

Figure 6 Generalization process of SHAPE = POLYGON and COLOR = PRIMARY. 

The next step is to select another abstract value. The only one remaining is SHAPE = 
CONIC. After constructing this branch, the algorithm selects the attribute SIZE. This attri- 
bute has two abstract values (-1 MEDIUM and --, SMALL) with a common observable 
value 'big" According to preferences for selecting abstract values, EG2 calculates the entropy 
of each subset --1 S M A L L  and --1 M E D I U M  (Figure 7). The entropy of --1 SMALL is 0.0 
and the entropy of "-1 MEDIUM is 0.971, therefore the algorithm selects SIZE = ~ SMALL 
in order to continue constructing the decision tree. The completeness measure for the gen- 
eralization "-1 S M A L L  is illustrated in Figure 8. 

completeness 2 values present in first leaf + 2 values present in second leaf 
of CONIC 2 leaves below branch POLYGON * 2 values for generalization POLYGON 

completeness 

= 1.0 > ct (generalization accepted) 

2 values present in the only leaf 
of -~ SMALL 1 leaf below branch PRIMARY * 2 values for generalization PRIMARY 

= 1.0 > ct (generalization accepted) 

The final decision tree is shown in Figure 9. The final classification cost of this tree is $50. 
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SHAPE 

P O L Y G O N ~  

COLOR 

PRIMAR Y~pink 

(+) (-) 

CONIC 

SIZE 

-7 SMALL 

Class 
+ 
+ 
+ 

entropy = 0.0 

Selected 
abstract value 

SMALL ? 

MEDIUM ? 

.a,x_...__._. 

-7 MEDIUM 

Class 

+ 

+ 

entropy = 0.971 

Figure 7. Illustration of the criterion for selecting an abstract value among abstract values mutually exclusive. 

Figure 10 shows the decision tree generated by ID3 for the same problem. EG2 can also 
generate the tree of Figure 10, by inhibiting the economic induction and without applying 
climbing tree generalization nor union of values. 

The trees generated by EG2 are more general than those generated by ID3. The "rules" 
induced by EG2 are confirmed by more examples than the "rules" induced by ID3, and 
so the number of leaves of the EG2 tree is less than the number of leaves of the ID3 tree 
(i.e., in the example, 4 instead of 11). This example shows dramatically that ID3 cannot 
"see" that polygons have the same classifications or that conic items also have the same 
classifications in some circumstances. ID3 cannot apply operator for negation (i.e., 
--1 SMALL) or disjunction. 

EG2 can also generate a decision tree with economic optimization (o~ = 1), but without 
considering the background knowledge. This decision tree has a classification cost slightly 
lower ($45) than that of Figure 9 ($50), in which background knowledge is considered. 
This is because isolated observable values discriminate better than the generalization of 
these same values. 

Figure 11 shows that the more general a decision tree is, the more costly it is. Thus the 
more general decision trees (i.e., around ct = 0 which means that almost any generaliza- 
tion is accepted) are more costly than the specific ones (i.e., around ct --- 1 or those that 
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SHAPE 

P O L Y G O N ~  CONIC 

COLOR SIZE 

P R I M A R Y ~ p i n k  ~ SMALL/~ s m a l l / ~  

(+) (-) (+) (-) 

_9 
I SHAPE = CONIC 

circle ellipse 

¢ ,¢ 

SIZE = ---1 SMALL 

medium big 

¢ ¢ 

SHAPE = CONIC 

circle ellipse 

,¢ ¢ 

Figure ~ Analysis of the generalizations SHAPE = CONIC and SIZE = ~SMALL. 

SHAPE 

P O L Y G O N ~  CONIC 

COLOR SIZE 

P R I M A R Y ~  ~ S M A L L ~  s m a l l / ~  

(+) (-) (+) (-) 

Figure 9. Final decision tree generated by EG2 [o~ = 1, ct = 0.6] for the problem of Tables 3 and 4. The average 
classification cost of the tree is $50. 
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MATERIAL 

(+) SHAPE 

(-) (-) (+) 

SHAPE 

(0 (+) (+) 

SHAPE 

(+) (+) ( ) (-) 

Figure 10. Decision tree generated by ID3 tree or by EG2 without applying economic induction [w = 0], climbing 
tree generalization nor union of values for the problem of Tables 3 and 4. Classification cost: $108. 

c~ [c factor 
tt 

c 

without Domain Knowledge J ~  

Figure 11. Evolution of the economical performance for any combination of w and ct (completeness threshold). 

do not consider background knowledge).  However, a decision tree with generalizations 
can be more "logical" or easily understood, that is to say, it can best describe a concept. 
On the other hand, general descriptions can be more precise for testing instances not present 
in the training set than those less general descriptions (Bratko et al., 1987). 
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4.2. Performance of the economic criterion of EG2 

In order to test the attribute selection criterion of EG2, several domains were analyzed. 
We begin by showing in detail the results obtained in one of these domains (medicine). 
Then we shall show a comparison table contrasting the economical performance of three 
attribute selection criteria for building decision trees in two domains. 

4. 2.1. Gynecological diagnosis problem 

The learning set of the gynecology diagnosis problem is constituted of 352 cases of women 
with "amenorrhea" (failure in menses). Each case is described by six attributes and a class. 
Five classes have been considered, each one indicates an amenorrhea cause: pregnancy, 
menopause, psychological cause, low grade hormonal failure and "other pathologies." If  
the program cannot give a reliable diagnosis, it classifies the case in "other pathologies" 
because this application was thought to discriminate the routine, which are the majority 
of cases, from the complex ones. 

Associated with each attribute is an associated measurement cost. The most costly and 
also effective attribute is the Hormonal Profile Test which classifies every case (see Table 
5). Another attribute with a lower cost is the pregnancy test, which can only discriminate 
the class "pregnancy?' The other attributes had no cost. The selection of the first attribute 
is shown in the following table. 

The discrimination efficiency (2 aI - 1) of the Hormonal Profile Test is very high, but 
also very expensive; therefore the ICF is high. On the other hand, being the third in dis- 
crimination efficiency, "age" has cost = 0.0 and so the ICF function is very low; and thus 
"age" is selected as the first attribute. 

The learning set was tested on ID3 and EG2 [co = 1]. The generated trees were quite 
different. ID3 generated a very small tree with just one node in which the selected attribute 
was Hormonal Profile Test, which discriminated every case. EG2 [~0 = 1] generated a larger 
tree whose first selected attribute is "age" (with symbolic values). It is not a coincidence 
that one datum every gynecologist needs to know for this particular problem is the age 
of the patient. 

To assess the economic performance of the EG2 economic criterion, the variable co was 
set to 1 and to 0 (ID3). The average cost of each diagnosis using ID3 (or EG2 [w = 0]) 
was 8000 units, while it was 3840 units using EG2 [o~ = 1], realizing a 52 % improvement. 

Table 5. Measures of ICF for selecting the first attribute in the gynecology problem. 

Attribute AI 2 aI - 1 Cost ICF 

Menstruation delay 0.108 0,078 0 12.82 
Age 0.463 0.379 0 2.63 
Early Pregnancy Disorders 0.081 0.058 0 17.24 
/3.HCG Pregnancy Test 0.930 0,906 2000 2207.39 
Hormonal Profile Test 3.142 7,83 8000 1171.44 
Coitus Last Period (Yes/No) 0.365 0,288 0 3.47 
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Figures 12 and 13 show the general performance (average classification cost and average 
depth) using EG2, depending on the economy calibrator (to) and the number of attributes 
(n). The average classification cost for 0 < to < 1 is greater than the average classifica- 
tion cost for to = 1. 

4. 2.2. Comparative results 

Tan and Schlimmer 3 (1989, 1990) proposed another criterion for selecting attributes consider- 
ing costs, similar to the one used in the EG2 algorithm (Nufiez, 1988a, 1988b). According 
to this criterion, the algorithm selects the attribute with the highest AI2/cost. This criterion 
also constructs decision trees with less classification cost than ID3. 

To compare the three attribute selection criteria (ID3, EG2, and Tan and Schlimmer's), 
two domains were analyzed: The gynecology domain (problem 'a') analyzed above and 
another for classfying flags (Forsyth & Rada, 1986), for 10 different cost situations. Table 
6 shows the economic performance of the three attribute selection criteria in two domains 
for 10 different assignments of measuring attribute costs. 

The percentages show how much less expensive each decision tree is by using an evalua- 
tion function (Tan and Schlimmer's and EG2) compared to the tree generated using ID3. 
Table 6 shows that the decision trees generated by EG2 are cheaper than or equal to the 
decision trees generated by the Tan and Schlimmer approach. 

This approach is closer to ID3 than to EG2 [to = 1]. The average classification cost 
of the Tan and Schlimmer approach is between EG2 [to = 1] and ID3, and the average 
depth of the generated tree is also between EG2 [to = 1] and ID3. 
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Figure 12. Average classification cost as a function of ~, for several values of n (100% cost: ID3 tree). 
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Figure 13. Average depth as a function of w, for several values of n (depth 1:ID3 tree). 

Table 6 Economic performance of the three criteria for selecting attributes. 

Problem ID3 Tan & Schlimmer's EG2 [~0 = II 

Cost situation a.1 8000 4532 (56%) 3840 (48%) 
Cost situation a.2 4362 3576 (82%) 2312 (53%) 
Cost situation a.3 1501 1201 (80%) 930 (62%) 
Cost situation a.4 4157 3907 (94%) 3907 (94%) 
Cost situation a.5 119 98 (82%) 86 (72%) 
Cost situation a.6 73 55 (75%) 46 (63%) 
Cost situation b. 1 211 141 (67%) 84 (40%) 
Cost situation b.2 14026 12489 (89%) 8365 (60%) 
Cost situation b.3 27092 18029 (66%) 14903 (55%) 
Cost situation b.4 35484 30163 (85%) 27679 (78%) 

Average percentage ( 100 %) (77 %) (62 %) 

5. Conclusion 

A method of  inductive learning that focuses mainly  on economy of  resources has been 

presented.  Economy  is a very important  part of  common-sense  reasoning and should be 
included in learning systems. 

Background knowledge is a necessary component  of  inductive learning, as has been proved 

in previous systems (Michalski ,  1983; Kodratoff,  1986). The  method  descr ibed here uses 

background knowledge to provide information for per forming economic  induct ion and to 
provide constraints and guidance for building more  general  and suitable decis ion trees. 
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Notes 

1. It is redundant to calculate the exponential of a logarithmic formula (2/q); therefore g( ) can also be calculated 
as follows: 

TI 
g ( )  = ~ ] -  1 

Where: 
- ~p(i)'log(p(i)) 

TI = 2 H(TI) = 2 i 2 

Y'Pfr).[ -Ep(q,r).log(q,r))] 
NI = 2 H(NI) = 2 r q 2 

= 13[ p(i) -p(i) 
i 

= i-[ [17I p(q,r)-P(q'r)] p(r) 
r q 

2. Top Down Induction of Decision Tree. 
3. Tan and Schlimmer built a robot system (CSL) that learns to sense unknown objects and select grasping proce- 

dures for them. This Cost-Sensitive Learning System analyses which sensors to use, where to use them, and 
how to generate an inexpensive control procedure to accomplish its task. 
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