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SUMMARY

It is our experience that in many settings, crossover trials that have within-period baseline measurements
are analyzed wrongly. A “conventional” analysis of covariance in this setting uses each baseline as a
covariate for the following outcome variable in the same period but not for any other outcome. If used
with random subject effects such an analysis leads to biased treatment comparisons; this is an example
of cross-level bias. Using a postulated covariance structure that reflects the symmetry of the crossover
setting, we quantify such bias and, at the same time, investigate potential gains and losses in efficiency
through the use of the baselines. We then describe alternative methods of analysis that avoid the cross-
level bias. The development is illustrated throughout with 2 example trials, one balanced and orthogonal
and one highly unbalanced and nonorthogonal.
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1. INTRODUCTION AND EXAMPLES

Crossover trials have been widely used in medical research for many years for the assessment of reversible
treatments for comparatively stable conditions. The literature on such designs is now large, with 2 standard
texts on the subject, Senn (2002) and Jones and Kenward (2003). A crossover study is distinguished
from the conventional parallel group design in having each subject randomly allocated to a “sequence”
of treatments. In spite of this difference, however, the goal of a crossover study, in nearly all settings,
remains the same as that of a parallel-group study to compare the effects of the “single” treatments, not
the effects of the sequences to which the subjects are randomized. Thus, in a crossover trial, subjects are
not randomized to the interventions under comparison and this has important implications for analysis and
interpretation. In particular, the crossover design shares important features with observational studies, yet
there is a tendency for those analyzing data from such studies to use modes of reasoning acquired from
completely randomized designs. This can lead to misconceptions and errors in the analysis. In this paper,
we focus on one such issue, the incorporation of baseline measurements into the analysis.
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2 M. G. KENWARD AND J. H. ROGER

Such covariates may be measured either at the beginning of the study (prior to randomization), which
we term prerandomization, or at the beginning of each treatment period, which we term period-dependent.
Commonly they will consist of the realizations of the outcome or response measurement itself, but as in
a parallel-group study, measurements on other quantities may also be collected, and may or may not be
period-dependent.

We will illustrate the results in the paper with 2 examples; the first, a simple balanced complete design
and the second, a highly unbalanced design with missing data.

The first example is taken from Jones and Kenward (2003, Example 5.6), and is from a trial for the
comparison of 3 treatments for high blood pressure, comprising the trial drug at 20 mg and 40 mg doses,
respectively, and a placebo. Two complete replicates of the Williams arrangement (Jones and Kenward,
2003, Section 4.2.1) were used in which all 6 possible sequences occur, that is, with 3 periods and 12
subjects in total. The original authors give no information on the overall length of the washout or treat-
ment periods. The measurements are of systolic blood pressure (in mm Hg), measured under each treat-
ment at 10 successive times: 30 and 15 min before treatment, and at 8 times posttreatment. Here, we
use the average of the 2 pretreatment measurements as the period-dependent baselines, and the measure-
ment at 90 min as the response. For the analyses, we will focus on the high- versus low-dose treatment
comparison.

The second example is taken from a first-in-human single-dose study organized as a 5-period crossover
in 2 cohorts, with 10 healthy volunteers in each cohort. This data set appeared in a plenary data analysis
session at the 2006 conference of Statisticians in the Pharmaceutical Industry (PSI) and has been made
available as supplementary material at Biostatistics online. The trial had 8 treatments: a negative control
(P), a positive control (G), and 6 increasing doses (A, B, C, D, E, and F), 3 in each cohort organized as
ascending doses within each subject, alternating between cohorts. The doses are 10, 30, 60, 150, 250, and
400 mcg of an inhaled substance. The design has 2 replicates of 5 sequences within each cohort of 10
subjects. Three subjects, on the sequences ACPEG, GBDFP, and BDPFG, respectively, withdrew after 1
period and 3 replacement subjects were added using the same 3 sequences. These subjects completed all
5 periods. One subject, on GBDFP, withdrew after 3 periods and was not replaced. Doses A, C, and E
only appear in Cohort 1, while doses B, D, and F only appear in Cohort 2. Both the negative and positive
control appear in every sequence. The design is as follows:

Cohort 1 Cohort 2
Period 1 2 3 4 5 Period 1 2 3 4 5
N = 2 P A G C E N = 2 P B G D F
N = 2 G A C E P N = 1++ G B D F P
N = 2+ A C P E G N = 2+ B D P F G
N = 2 A P C G E N = 2 B P D G F
N = 2 A G C P E N = 2 B G D P F

There was a 1 week interval between each test day, meaning that subjects in each cohort had a 14-day
washout interval. Within each period, lung function was measured using forced expiratory volume in 1 s
(FEV1 litres) 7 times, at baseline (0), 2, 6, 9, 12, 22, and 24 h. All subjects were dosed at time zero,
just after their baseline measurement had been taken. This start time was standardized across periods
within subject. The actual start time varied by up to an hour from subject to subject. Here, as the outcome
variable, we only consider the FEV1 measurement taken at 12 h. The design is highly unbalanced, so
we will focus on 2 treatment contrasts that reflect very different sources of information: (i) the differ-
ence between the positive and negative controls, both of which all subjects received (except those who
withdrew), with a design efficiency of 97% and (ii) the difference between the high and low doses, for
which no subject received both, with a design efficiency of 46%. We expect within-subject information to
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Baseline covariates in crossover studies 3

dominate in estimating the former, and between-subject information to be relatively more important for the
latter.

In Section 2, we set out a general modeling framework for the crossover setting with baselines. In
particular, we formulate an appropriate covariance structure for such data and fit the structure to a range
of examples, including the 2 illustrative examples introduced above. In Section 3, we briefly review the
use of baseline covariates in parallel-group studies, and we see how these ideas carry over to the partic-
ular case of prerandomization covariates in crossover studies. In Section 4, we then explore the role of
period-dependent covariates, in terms of change-from-baseline analyses, their use as covariates (condi-
tional) and as outcomes (unconditional). We also touch on the relevance of missing data from a modeling
(not inferential) perspective. We close in Section 5 with a brief discussion and summary of the main
conclusions.

2. NOTATION AND BASIC RESULTS

Suppose that we have a crossover trial with p periods. Denote by Yik , the vector of p response measure-
ments from the periods under active treatment from the kth subject in sequence i , i = 1, . . . , s. We assume
that both period and direct treatment effects are included in the model, but no other effects, such as carry
over. Similarly, denote by Xik , the corresponding set of baseline measurements. Denote the individual
measurements similarly by Xi jk and Yi jk for j = 1, . . . , p. We assume in the following that these have a
joint multivariate Gaussian distribution although, strictly, when using analysis of covariance, we require
only that the Y s have the appropriate conditional joint Gaussian distribution given the Xs.

We further assume that E(Yik) = Aiβββ for design matrix Ai associated with the i th sequence and βββ,
the corresponding parameters, and E(Xik) = φφφ, a (p × 1) vector of means corresponding to the p times
of the baseline measurements. Then,⎛⎝Xik

Yik

⎞⎠ ∼ N

⎧⎨⎩
⎛⎝ φφφ

Aiβββ

⎞⎠ ;
⎛⎝���X X ���XY

���T
XY ���Y Y

⎞⎠⎫⎬⎭ . (2.1)

Three important expressions immediately follow from this. First, the marginal distribution of the Y s alone:

Yik ∼ N (Aiβββ; ���Y Y ) . (2.2)

Second, the marginal distribution of the p changes from baseline:

Yik − Xik ∼ N(Aiβββ − φφφ; ���Y Y + ���X X − ���XY − ���T
XY ). (2.3)

Third, the conditional distribution of Yik given Xik :

Yik | Xik ∼ N{Aiβββ − θθθ(φφφ − Xik); ���Y Y − ���T
XY ���−1

X X���XY }, (2.4)

for θθθ = ���T
XY ���−1

X X . The conditional distribution of the differences Yik − Xik given the baselines Xik is
identical to (2.4), except that the mean is shifted by Xik .

The comparative behavior of the 3 analyses that can be derived from these representations: (1) analysis
of the outcome Y only, (2) analysis of change from baseline Y − X , and (3) analysis of Y conditional on
X , depends on the model chosen and on the size and form of the covariance matrices ���X X and ���Y Y ,
and the covariances in ���XY . We explore the relevance of particular forms for these in the following. In
particular, we begin by making the assumption of variance and covariance homogeneity within the Xs
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4 M. G. KENWARD AND J. H. ROGER

and within the Y s, and between the Xs and the Y s. In other words, we assume a uniform, or compound
symmetry, structure for each of 3 matrices:

���X X = σxx Ip + ηxxJp, (2.5)

���Y Y = σyyIp + ηyyJp,

���XY = σxyIp + ηxyJp = ���T
XY ,

where Ip and Jp denote the p × p identity matrix and matrix of ones, respectively. We regard these as
the least constrained forms for these matrices that are compatible with the stability assumption inherent in
most analyses for crossover trials. Note that these expressions do not constrain the baseline and response
variables to have the same variances, although they are each assumed constant across periods. Nor is
the correlation between an adjacent baseline and a response measurement assumed to be the same as
that between a baseline and a response from a different period. To see this, more precisely, consider the
following variances and covariances implied by (2.5):

V(Yi jk) = σyy + ηyy, V(Xi jk) = σxx + ηxx ,

Cov(Yi jk, Xi jk) = σxy + ηxy, Cov(Yi jk, Xi j ′k) = ηxy .

From this, it can be seen that σxy determines the additional covariance due to a baseline and response
being from the same period; we will call these the “associated” baseline and response measurements,
indicating that they come from the same period.

We can get additional insight into this structure through the reformulation of the joint model for the
Y s and Xs in (2.1), imposing the structure in (2.5) on ���X X , ���XY , and ���Y Y . This is conveniently done in
terms of two 2 × 2 unstructured covariance matrices, ���W and ���B, where

���W =
(

σxx σxy

σxy σyy

)
and ���B =

(
ηxx ηxy

ηxy ηyy

)
. (2.6)

If the observations from a subject, Zik say, are then ordered by time, that is, Zik = (Xik1, Yik1, Xik2, . . . ,
Xikp, Yikp)

T , then in terms of these 2 covariance matrices

V(Zik) = ���W ⊗ Ip + ���B ⊗ Jp. (2.7)

In this way, ���W represents the covariance matrix for X and Y within a full treatment period and ���B,
the covariance matrix between baseline and response at the subject level. To fit the model in (2.1) with
this covariance structure, a fixed-effects model is then constructed with a categorical time effect with 2p
levels, 1 for each element of Z, and a categorical treatment term which applies to the Y s only. We give an
example using the SAS MIXED procedure for fitting such a model in the Appendix.

Many of our conclusions below will depend on the actual values taken by the 6 covariance parameters
in (2.5). It is therefore of interest to view estimates of these taken from a range of examples, with very
different types of endpoint. One thing to note is that the design of all these studies is a crossover, so there is
an automatic bias toward those where we may expect a strong subject effect. We present such estimates in
Table 1, which have been estimated from the 2 illustrative examples introduced above, and from a further
3 trials, 3–5, using very different types of measurement; FEV1 again and 3 new endpoints: Nitric oxide,
a pain visual analogue score (VAS), and QTc. The last of these is the measured time between the start of
the Q wave and the end of the T wave in the heart’s electrical cycle, corrected for the heart rate.

Where repeated measurements have been collected within periods, we have presented the covariance
parameter estimates separately for each repeated measurement; these will of course share the same base-
line measurement. These illustrate how correlations change across time, usually decaying as the observa-
tion moves further away from the baseline measurement.
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Baseline covariates in crossover studies 5

Table 1. Covariance parameters and correlations estimated from 5 example crossover trials

Source Covariance parameter XY correlation

σ̂xx η̂xx σ̂yy η̂yy σ̂xy η̂xy W-P B-P
Example 1: Systolic blood pressure (N = 12) 51.79 59.31 55.77 101.45 −12.14 64.06 −0.2260 0.8259

Example 2: FEV1 (N = 21) 0.0276 0.4534 0.0233 0.4992 0.0109 0.4756 0.4298 0.9997

Example 3: Nitric Oxide (N = 18)
Day 1 hour 1 0.0528 0.5348 0.0511 0.4774 0.0495 0.5046 0.9524 0.9986
Day 1 hour 2 0.0528 0.5348 0.0452 0.4608 0.0464 0.4943 0.9511 0.9957
Day 7 hour 1 0.0528 0.5348 0.0368 0.4545 0.0051 0.4966 0.1163 1.0072
day 7 hour 2 0.0528 0.5348 0.0335 0.4607 0.0051 0.5013 0.1214 1.0100

Example 3: FEV1 (N = 21)
Day 7 hour 0 0.0629 0.4954 0.0192 0.6065 0.0071 0.5393 0.2050 0.9840
Day 7 hour 1 0.0629 0.4954 0.0164 0.6331 0.0036 0.5441 0.1119 0.9716
Day 7 hour 2 0.0629 0.4954 0.0411 0.6458 0.0058 0.5539 0.1133 0.9793

Example 4: VAS (N = 43)
Week 1 0.6825 1.0179 1.1392 1.3001 0.4055 0.9059 0.4599 0.8397
Week 2 0.6825 1.0078 1.6368 1.5112 0.1047 1.2959 0.0991 1.0449

Example 5: QTcF (N1 = 145, N2 = 232)
Set 1a hour 0.5 64.803 211.48 61.179 201.39 4.175 203.52 0.0663 0.9862
Set 1a hour 1 52.755 211.34 58.293 207.79 10.769 199.78 0.1942 0.9534
Set 1a hour 2 60.924 213.42 58.998 216.38 1.709 212.15 0.0285 0.9872
Set 1a hour 3 50.603 224.72 58.333 205.66 2.737 205.38 0.0504 0.9554
Set 1a hour 4 60.561 200.03 53.182 196.86 −6.187 198.82 −0.1090 1.0019
Set 1a hour 6 63.166 186.12 48.999 188.87 −0.780 188.17 −0.0140 1.0036
Set 1a hour 12 42.786 221.15 58.496 200.96 5.172 208.21 0.1034 0.9877
Set 1a hour 18 70.859 178.07 61.655 198.30 12.436 183.09 0.1882 0.9743
Set 1a hour 24 61.841 222.32 43.693 235.02 15.407 223.26 0.2964 0.9767
Set 1b hour 0.5 26.012 197.78 61.997 201.34 4.837 198.71 0.1205 0.9957
Set 1b hour 1 25.854 199.00 58.236 209.10 −0.095 203.48 −0.0024 0.9975
Set 1b hour 2 25.626 200.00 59.558 215.48 0.832 205.59 0.0213 0.9903
Set 1b hour 3 26.015 198.21 58.190 205.85 1.371 200.38 0.0352 0.9920
Set 1b hour 4 25.992 198.39 53.955 196.10 0.963 194.30 0.0257 0.9851
Set 1b hour 6 25.485 198.00 49.697 189.97 0.927 183.59 0.0260 0.9466
Set 1b hour 12 26.475 234.58 58.037 201.66 5.048 204.99 0.1288 0.9425
Set 1b hour 18 23.856 181.74 61.991 197.08 7.653 180.66 0.1990 0.9546
Set 1b hour 24 27.209 232.57 44.180 234.40 7.231 218.33 0.2086 0.9351
Set 2 hour 0.5 46.420 182.62 72.845 182.67 20.131 182.32 0.3462 0.9982
Set 2 hour 1 46.373 182.75 64.495 182.77 22.229 179.89 0.4065 0.9843
Set 2 hour 2 46.248 182.82 50.689 183.94 17.285 181.87 0.3570 0.9918
Set 2 hour 3 46.446 182.53 57.164 168.22 17.708 173.42 0.3437 0.9897
Set 2 hour 6 45.612 182.78 53.149 191.74 6.282 168.44 0.1276 0.8997
Set 2 hour 24 46.334 183.36 51.044 179.77 2.817 176.61 0.0579 0.9727

W-P: within-period, B-P: between-period.

2.1 Example 3

This is a single center, randomized, double-blind, placebo-controlled, and 2 × 2 crossover study (AB/BA)
to investigate the effect of treatment with repeat doses of a treatment on bronchial hyperreactivity to
adenosine monophosphate (AMP) challenge. The AMP challenges were carried out 2 h after dosing on
Day 7 and again 24 h after this final dosing. All measurements presented here were obtained prior to the
AMP challenges. Each period consists of 7 days of dosing, with baseline measurements made in each
period prior to dosing on Day 1. Measurements are made after dosing on Day 1 and also on Day 7,
and there is a 14-day washout period between periods. We consider here 2 secondary endpoints: (1) the
exhaled nitric oxide (log of the arithmetic mean of 3 observations) at 1 and 2 h on both Day 1 and Day
7 and (2) FEV1 (litres) measured at 0 (prior to Day 7 dose), 1, and 2 h on Day 7. To maintain common
baseline variances, all subjects who do not have a complete set of data for all repeated measurements,
separately for each endpoint, have been removed.
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6 M. G. KENWARD AND J. H. ROGER

2.2 Example 4

This is a 2 × 2 crossover study on the treatment of pain. The treatment period consisted of 2 weeks with a
washout period of 2 to 4 weeks. The outcomes are the weekly average of a daily VAS, for weeks 1 and 2.
Again only completers were included.

2.3 Example 5

This is based on six 2×2 crossover trials, all comparing placebo to a single dose of 400 mg moxifloxacin,
which is a positive control for QT elongation. Washout between the 2 periods was 14 days in 2 cases,
7 days in 3 cases, while the remaining trial specified a washout of 3 to 7 days. They are taken from a
meta-analysis of 9 trials (Stylianou and others, 2008). The 6 trials separate into 2 sets of 3. The first 3
have a 24 h baseline where the same sequence of measurements is made 24 h earlier. So each repeated
measurement has a matching predose baseline repeated measurement. These have been analyzed using
as baseline the individual time matched baselines (set 1a), and also using throughout the average of the
predose measurements from the previous 24 hours (set 1b). In the second set, there is a pair of predose
observations, the average of which is used as the baseline. For simplicity, the gender effect has been
removed from the models used in Stylianou and others (2008).

As well as the estimates of the 6 covariance parameters, the associated within-period and between-
period correlations (ρW = σxy/

√
σxxσyy and ρB = ηxy/

√
ηxxηyy) are presented in Table 1. Note that

some correlation estimates are greater than one: the method of estimation does not constrain these to
the (−1, 1) interval; these should be interpreted as values very close to one.

Several broad points can be made from Table 1. The subject-level correlations (ρB) are consistently
very high indeed, often approaching one. Also, they do not vary across time for the 4 endpoints measured
repeatedly. By contrast, the within-period correlations are very much smaller, in some cases negligible.
This represents dependency that exists locally in time, once the overall subject-level dependency has been
accounted for. These correlations tend to decay with time as we move away from baseline measurement.
But also the correlation roughly a day later (18 or 24 h) can sometimes increase again (e.g. QTc in Example
5). This commonly observed feature might be due to some personalized diurnal rhythm. The variability
of the Xs and the Y s within a trial can be very similar, or quite different, depending on the example. We
return to a detailed discussion of the values from Examples 1 and 2 when we consider the analysis of these
trials in more detail below.

To simplify the essential discussion, we focus on crossover designs that are variance balanced with
respect to treatment, that is, for which all normalized treatment contrasts have the same variance. This
means that in considering the precision of different approaches to estimation of treatment effects, we
need to consider only a single treatment contrast, τ say, whose exact form is irrelevant to the compar-
isons of efficiency. Depending on the particular design used, and in the absence of period-dependent
covariates, information on τ may be present only in the within-subject stratum or in both the within-
subject and between-subject strata. We refer to designs that lead to the former as orthogonal and to
the latter as nonorthogonal, noting that, more generally, these terms do have a wider use and meaning.
The first illustrative example is both variance balanced and orthogonal, the second neither of
these.

We assume that τ is estimated using generalized least squares (GLS) with the appropriate known
covariance matrix. In practice, a consistent estimator of this covariance matrix would be used, implying
that the given measures of precision only hold asymptotically. This is acceptable for our goal of making
comparisons of precision of different estimators. When these methods are applied in practice, however,
some small sample adjustment will be needed in some settings for the estimated variances and associated
inferences; the appropriate corrections are given in Kenward and Roger (1997, 2009).
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3. PRERANDOMIZATION COVARIATES

In the context of parallel-group studies, 2 main roles for adjustment for baseline covariates have been
widely discussed, for example, Pocock and others (2002); namely reducing variability and adjusting for
baseline imbalance. In the current crossover context of prerandomization covariates, we are concerned
only with the former, that is, we assume that the role is to explain variability in the outcome measure-
ments and so increase precision in the treatment estimators. In the crossover setting, a prerandomization
covariate can influence only between-subject information and so has strictly limited value. This is in con-
trast to the situation we meet below with period level baselines, which can influence both between- and
within-subject information. In an orthogonal design, such as a complete Williams square, all information
on the treatment effects is wholly within-subject, and so a prerandomization covariate will have no effect
at all on the treatment estimators and their precision. It is surprising that this very obvious property of the
orthogonal crossover design is still not more widely understood. For example, in a very recent and influ-
ential publication, McCann and others (2007), pointless adjustment is made for several prerandomization
covariates in the analysis of data from a Williams design with, predictably, a negligible effect on the re-
sults. In this example, like many, a few missing observations remove the strict orthogonality of the design,
but the information that is then present in the between-subjects stratum is still nugatory, and its existence
does not change the overall message. When analyses need to be prespecified, however, it is possible that
such baselines might be included as covariates to allow for the possibility of extensive dropout.

Adjustment for prerandomization covariates will therefore make a worthwhile improvement to preci-
sion when there exists a nontrivial amount of information on the treatment effect in the between-subjects
stratum, which requires a highly nonorthogonal design, such as so-called “incomplete” designs for which
p < t (see Jones and Kenward, 2003, Section 4.2.2), or when there is a very high proportion of dropouts
from an originally orthogonal one. Consider, as an illustration, the balanced 3-treatment 2-period design
with each replicate consisting of all 6 possible sequences. With a single replicate of this design, and using
the model introduced in Section 2, the GLS estimator of any treatment difference has variance

σyy(σyy + 2ηyy)

2σyy + 3ηyy
= σyy

(
1 + ρY

2 + ρY

)
(3.1)

for ρY = ηyy/(σyy + ηyy). Even in the impossibly extreme case in which the covariate removes the
between-subject variability altogether, the ratio of variances of the unadjusted and adjusted estimators is
still only

1 + ρY

2 + ρY

which, with a correlation of 0.8, for example, is less than 1.3. From the estimates in Table 1, this quantity
is remarkably stable, ranging from 1.19 to 1.33. In practice, adjustment will be less effective than this,
possibly much less so. Thus, we do not usually expect a large gain in precision in such settings, but
adjustment may still be considered worthwhile in some examples. The problem is that the variability that
is being explained, that is, the between-subject component, is usually the far less important part of the
information contributing to the treatment estimator, even in nonorthogonal designs. On the other hand,
such adjustment should have a negligible effect as well on power, so it can be regarded as a relatively safe,
if pointless, exercise.

4. PERIOD-DEPENDENT BASELINE COVARIATES

We now consider the use of period-level baselines. In contrast to Section 3, we are now considering the
impact of these with respect to information at the between-subject and within-subject level, hence, both
variance reduction and baseline imbalance between treatments are potentially important.
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8 M. G. KENWARD AND J. H. ROGER

We also need at this point to clarify the use of baseline as a term. It is sometimes used to refer to
a measurement made in a trial (parallel or crossover) as part of the measurement process but following
treatment. Examples are measurements made at the start of exercise tests and before challenges. Such
baselines should never be used as covariates, and we exclude them from the current development. Al-
though the period-dependent baselines we consider here are made following randomization of the subject
to sequence, we are assuming that they are made before treatment is given within each period and that
the washout periods are sufficient to ensure that these baselines are not influenced by previous treatment,
that is, they are not affected by carryover. There are situations in which the washout is insufficiently long
firmly to rule out the possibility of baseline contamination through carryover effects. Such contamination
obviously makes such baselines unsuitable as covariates. Although one might test for this formally be-
fore deciding whether even to consider incorporating the baseline measurements in the analysis, such a
sequential procedure raises many of the issues associated with prior testing in the 2-period 2-treatment
design (Senn, 1988; Freeman, 1989) and should therefore be avoided.

4.1 Change from baseline

We begin by considering a conventional analysis of the change from baseline, D = Y − X . It follows
immediately from (2.3) that any least squares estimator of the direct treatment effect will be unbiased,
as the impact of φφφ in the expectation will be only to modify the intercept and period effects. Hence,
the design matrices for both approaches here coincide. The consequence on the analysis, in comparison
with that of the Y s only, will therefore only be in terms of precision. Under the covariance assump-
tions in (2.5), we see that the p changes Dik for one subject have the compound symmetry covariance
structure:

V(Dik) = V(Yik − Xik) = (σxx + σyy − 2σxy)Ip + (ηxx + ηyy − 2ηxy)Jp,

compared with that of the original Y s:

V(Yik) = σyyIp + ηyyJp.

It follows that in any given setting, depending on the relative sizes of these parameters, and on the par-
ticular design, either an analysis of the Y s or of the changes from baseline Y − X , may lead to more
precise estimators of the treatment effects. We need to consider what is likely to occur in common set-
tings. Suppose first that the design is orthogonal in the sense introduced in Section 2. In such designs,
the treatment estimators do not depend on the variance parameters. Let τ̂Y and τ̂D denote, respectively,
the GLS estimators from the response data alone and the changes from baseline. It follows immediately
that

R = V(̂τD)

V(̂τY )
= σyy + σxx − 2σxy

σyy
.

The analysis of the changes D will be more precise only when σxx < 2σxy . Recall that σxx is the within-
subject, or residual, variance of the baselines, and σxy represents the amount by which the covariance of
an associated baseline and response exceeds that of a response and baseline from different periods. This
inequality holds for only 3 of the examples in Table 1. These are the 2 Day 1 measurements of nitric
oxide in Example 3, and the Week 1 VAS in Example 4. In both cases, this feature has decayed by later
time points. Both parameters relate to the within-subject distribution and the property is generally about
the size of the local rather than long-term (or between-subject) correlation. If the variance of baseline is
the same as that of the response, then this is equivalent to the within-subject correlation of response with
baseline being greater than a half.
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Baseline covariates in crossover studies 9

Suppose that we have a completely uniform covariance structure across all 8 measurements, as would
be implied by a simple random subject effects model. This might be appropriate when the time interval
between baseline and associated response is of the same order as between a response and a baseline from
the following period, or both long enough although of different lengths, and the variance is stable across
all measurements. This would imply that σyy = σxx , ηyy = ηxx = ηxy , and σxy = 0. We call this the
“uniform assumption.” Under this, we have the ratio

R = V(̂τD)

V(̂τY )
= σyy + σxx − 2σxy

σyy
= σyy + σyy − 2 × 0

σyy
= 2;

the estimator from the differences D would have twice the variance of that based on the simple responses
Y alone.

In conclusion, the analysis of the differences will only be worth considering in those settings in which
σxx < 2σxy . This is most likely to happen if baselines are relatively close in time to that of the as-
sociated responses, compared to the gap between treatment periods, implying that σxy may plausibly be
nonnegligible. Note that this does not apply in Example 5, with the QTc data, for which the within-subject
correlation with 24-h previous baseline (set 1) is low. However, using same-day-averaged baseline, the
within-subject correlation is higher (set 2). This highlights the importance of the local (or serial) nature
of the correlation, for an analysis of difference from baseline to be appropriate. In addition to this, the
inequality is also more likely to hold if the baseline variables are considerably less variable than the re-
sponse measurements. This can happen when there is considerable heterogeneity of response to treatment
among a group of carefully selected subjects or the baseline measurement has been averaged over several
baseline measurements, as in Example 5 set 1b and set 2. Empirical examples of the former are given in
Kenward and Jones (1987). Although the results given here depend on exact balance and orthogonality,
mild departures from this due to dropout and incomplete replication of sequences would not be expected
to change this overall picture.

As an illustration, we consider the first example, the 3-treatment Williams design which is balanced
and orthogonal. The 6 covariance parameter estimates are presented in Table 1. Note that σ̂xy , the ad-
ditional within-subject covariance for associated X and Y , is negative but comparatively small. Conse-
quently, we would expect the analysis of change from baseline (D = Y − X ) to be far less precise that the
analysis of Y alone, and this is indeed what is found. Using restricted maximum likelihood (REML) to fit a
random subject effects model with categorical period and direct treatment fixed effects, the high–low dose
comparison is estimated (with accompanying standard error [SE]) for Y and D, as 6.67 (3.04) and 5.08
(4.61), respectively, showing a 52% increase in SE in the latter. Using Y alone, the effect is statistically
significant at 5% (P = 0.04), while using D, it is far from significance (P = 0.28). The use of change
from baseline is, for this example, clearly counterproductive.

When designs are used in which treatments and periods are highly nonorthogonal, such as Example 2
and those considered in Section 4, then it is harder to provide broad guidelines. In such settings, the GLS
estimators consist of weighted combinations of within-subject and between-subject information, with the
weights depending directly on the parameters of the covariance structure. It is possible that the changes
from baseline may remove considerable variability from the subject sums component, and hence markedly
increase the contribution of the between-subject information to the overall precision. However, this may
well be counterbalanced by the potential loss in precision of the within-subject differences, as seen above
in orthogonal designs. How these 2 contributions balance out in practice depends both on the covariance
parameters and the particular design. Consider again, as an example, the balanced 3-treatment 2-period
design with each replicate consisting of all 6 possible sequences. From (3.1), it can be seen that the ratio
of the variances from the estimators using the differences Y − D and Y alone, respectively, is in terms of
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10 M. G. KENWARD AND J. H. ROGER

the original covariance parameters,

R = (2σyy + 3ηyy)(σyy + σxx − 2σxy)(σyy + σxx − 2σxy + 2ηxx + 2ηyy − 4ηxy)

σyy(σyy + 2ηyy)(2σyy + 2σxx − 4σxy + 3ηxx + 3ηyy − 6ηxy)

= (σyy + σxx − 2σxy)

σyy

(1 + ρD)

(2 + ρD)

(2 + ρY )

(1 + ρY )
, (4.1)

where

ρD = ηyy + ηxx − 2ηxy

σyy + σxx − 2σxy + ηyy + ηxx − 2ηxy

is the within-subject correlation of the differences Y −X . Suppose now that the uniform assumption holds,
that is, as before, σyy = σxx , ηyy = ηxx = ηxy , and σxy = 0. Under these assumptions, R in (4.1) is equal
to (2 + ρY )/(1 + ρY ) which, for 0 < ρY < 1, is in the range 1.5 < R < 2. Again, we see that the use
of the changes from baseline increases the variance compared with the use of the Y s alone. The reduction
in between-subject variability makes some contribution, and so R is smaller than the value 2 seen above
for the orthogonal crossover designs, but never enough to counterbalance the increase in within-subject
variability. This is an inefficient design, with considerable between-subject information. Even in this set-
ting, we see that the use of change from baseline, under the uniform assumption, increases the variability.
Given this, we conjecture that only with the most extreme inefficient designs would the use of change
from baseline improve the precision relative to the use of Y alone, and our recommendation, if the uni-
form assumption approximately holds, is to use the latter not the former even with nonorthogonal designs.

In the general covariance setting (2.5), it is harder to draw broad conclusions because of the relative
complexity of (4.1). However, if we again assume that σxx < 2σxy , the condition under which the differ-
ences lead to more precise estimates than Y alone for orthogonal designs, then a sufficient condition for
greater precision from the analysis of the differences is that ρD < ρY , which in turn implies(

1 − ρY

ρY

)
(ηxx − 2ηxy) < σxx − 2σxy < 0.

The first term on the left-hand side, (1 − ρY )/ρY will always be less than 1 for ρY > 0.5, and this implies
that, depending on the size of ρY and ηxy , the covariance between any nonassociated X and Y must not
be much smaller than ηxx , the covariance between any 2 Xs. Given that an X must be measured in the
interval between any other X and a nonassociated Y , and given the symmetry in the assumed covariance
structure, it is plausible that ηxy will typically be less than ηxx , so this condition is not one which might
automatically be assumed to hold.

We now consider the second example, on lung function, in the light of these results. A random subject
effects model with categorical period and direct treatment fixed effects has again been fitted using REML.
We note first that the estimated residual and between-subject variance estimates are 0.023 and 0.503 for
the raw outcomes Y , and 0.030 and 0.001 for the differences D, respectively. There is very high correlation
between the baselines X and outcomes Y , and virtually all random between-subject variability has been
removed from the differences. The covariance parameter estimates are given in Table 1. Note, the size of
σ̂xy : this strongly suggests that the uniform assumption does not hold here. The key quantity σxx − 2σxy

is here estimated as 0.0057 which would suggest, for an orthogonal design, that subtracting the baseline
would have very little effect on precision. Here, we would expect this to apply to the first (efficiently
estimated) contrast. For the second contrast, it is harder to predict the effect of subtracting X . From the
analyses of Y and D, respectively, we get, for contrast (1), the estimates (and SEs) 0.126 (0.049) and 0.224
(0.055). Although these estimates are rather different, the use of change from baseline has increased the
variance only very slightly. For the second contrast, the estimates from Y and D are 0.055 (0.100) and
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Baseline covariates in crossover studies 11

−0.014(0.099), respectively. Again the estimates are somewhat different but there is very little difference
in precision. The differences we see between the treatment estimates (with and without change from
baseline) represent the differences between the baseline scores for these contrasts (−0.081 and 0.072). In
conclusion, analyzing change from baseline has had little effect on precision compared with the analysis
of response alone. The consequences for the estimates are not negligible however, and this is probably
due to the exceptionally high correlation between baseline and response at the subject level. We see in
Section 4.3 that this is estimated as 0.997. This very high value has other implications for the analysis of
these data which we will explore below.

The appropriate route, therefore, is to introduce the baselines as covariates, whether for the raw re-
sponses (Y ) or the differences (Y − X ). In this way any baseline imbalance is accommodated, but the data
are being allowed to select between absolute and difference from baseline. This, however, introduces new
issues that need to be addressed, as we see below.

4.2 Baselines as covariates

Without particular constraints on the covariance structure, all p observed baselines appear in the expec-
tations of each element of Yik in the conditional distribution of Yik given Xik . This implies an analysis
of covariance in which all p baselines appear as covariates for all p response variables. Such an analysis
is rarely, if ever, done in practice however. Conventionally, only the associated baseline is used to adjust
the corresponding response. We therefore begin, for the covariance structure introduced in Section 2, by
considering what constraints on this structure would lead to this conventional analysis. From (2.4), we see
that the regression coefficients of Yik on Xik are given by the elements of θθθ = ���T

XY ���−1
X X , or in terms of

the expressions for the covariance components in (2.5)

θθθ = (σxyIp + ηxyJp)(σxx Ip + ηxxJp)
−1 (4.2)

= σxy

σxx
Ip + ηxyσxx − ηxxσxy

σxx (σxx + pηxx )
Jp.

For the conventional analysis of covariance model to hold, θθθ must be diagonal because each element of
Yik is regressed only on the element of Xik from the same period, which in turn implies that ηxyσxx −
ηxxσxy = 0. First, we note that this cannot hold under the uniform assumption, for which σxy = 0,
unless all measurements are mutually independent. More generally, this requirement implies that ���XY is
proportional to ���X X , and it is difficult to find a practical justification for this rather contrived assumption.

We consider next, the behavior of the conventional analysis of covariance under the covariance struc-
ture of Section 2, (2.5). To explore potential bias, we again examine separately the within-subject and
between-subject information. Let the fixed matrix K be any p × (p − 1) matrix satisfying KT K = Ip−1
and KT jp = 0, for jp a p-dimensional vector of one’s. The within-subject information for the ikth subject
can be represented by KT Yik , which has regression model

E(KT Yik | Xik) = KT Aiβββ − KT θθθφφφ + KT θθθXik .

Using (4.2), we see that the regression coefficient for the covariates reduces to a constant for the appro-
priate functions of the covariates:

KT θθθXik = σxy

σxx
KT IpXik + ηxyσxx − ηxxσxy

σxx (σxx + pηxx )
KT JpXik

= σxy

σxx
KT Xik

= θWXW
ik , say. (4.3)
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12 M. G. KENWARD AND J. H. ROGER

This implies that a conventional (i.e. each response adjusted by its associated covariate only) within-
subject analysis of covariance will be unbiased for the treatment effects. Such an analysis would be pro-
duced, for example, by using fixed subject effects with the original data.

We now consider the between-subject information, which can be represented by jT
p Yik . This has

regression model
E(jT

p Yik | Xik) = jT
p Aiβββ − jT

p θθθφφφ + jT
p θθθXik,

and the regression coefficient of the covariates reduces to

jT
p θθθXik = σxy

σxx
jT
p IpXik + ηxyσxx − ηxxσxy

σxx (σxx + pηxx )
jT
p JpXik

= σxy + pηxy

σxx + pηxx
jT Xik = θB XB

ik, say. (4.4)

This implies that, for designs in which treatments can be estimated using between-subject information
only, such as the main plot treatment in a split-plot design, these treatment estimators will be unbiased.

However, when both between-subject and within-subject information are combined in the conven-
tional REML analysis of covariance, the assumption is implicitly made that both the within-subject
covariate functions XW

ik and between-subject function XB
ik have the same regression coefficient, that is,

θW = θB, and it is clear from (4.3) and (4.4) that this can never be true unless the very artificial constraint
σxy = ηxy = 0 holds. Thus, in general, the conventional analysis of covariance will be biased for the
treatment effects. This is an example of so-called “cross-level bias”.

This bias can be avoided in 2 ways. In the first, the analysis is restricted to within-subject information,
that is, by using fixed subject effects. This is anyway the appropriate approach when there is little or
no relevant between-subject information in the data, such as with a Williams design. Second, if random
subject effects are used, then different coefficients must be allowed for the between- and within-subject
covariate regressions. This can be done simply by adding to the model the variate that consists of the value
of the covariate averaged over each subject. An alternative solution under the random subject effects model
is to introduce fixed sequence effects, but as this anyway removes all between-subject information from
the treatment estimators, it is a rather pointless exercise; it is then more logical to use fixed subject effects,
or use the baselines as outcomes.

We now return to the 2 illustrative examples. First, we consider the balanced, orthogonal Williams
design from the study on blood pressure. In the absence of covariates, treatment effects are, in this de-
sign, completely orthogonal to periods and subjects. The introduction of covariates will introduce some
nonorthogonality, but in a design like this it would not be expected to be great. Consequently, within-
subject information will still dominate the treatment estimates and so it is the size of the within-subject
covariate coefficient that will be critical when considering the impact of wrongly omitting the separation
of within-subject and between-subject covariate regressions. When a common covariate is fitted (we label
this coefficient θC), the estimated coefficient will be a weighted combination of the within-subject and
between-subject coefficients (labeled θW and θB, respectively in (4.3) and (4.4)) and the greater the rela-
tive precision of the former, the smaller the difference will be between the θ̂C and θ̂W, which in turn will
reduce the resulting bias of the common covariate analysis. For this example, fitting a single overall co-
variate results in an estimate (SE) of θ̂C = 0.08 (0.23), which is close to zero. However, the within-subject
and between-subject estimates are θ̂W = −0.23 (0.24) and θ̂B = 0.78 (0.31), respectively. In terms of
precision, the within-subject estimate remains negligible, but the between-subject coefficient is compar-
atively large and statistically significant. The consequences for the high–low treatment comparison are
as follows. For the common and separate covariate analyses, the estimated comparisons (SEs) are 6.53
(3.18) and 7.04 (3.07), respectively. The impact of the difference in covariate coefficient is, in the present
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Baseline covariates in crossover studies 13

example, not great, being equivalent to an increase in sample size of 7%. This is partly because the analy-
sis largely involves only within-subject information; it would typically be considerably greater in a highly
nonorthogonal design. The impact is however sufficient in this example to change the associated P-value
from P = 0.06 to P = 0.03 using for the analyses common and separate covariates, respectively. The
impact also depends however on the imbalance of the covariates between the treatments within periods:
if they are perfectly balanced, the covariate has no effect on the adjusted means. Here, the imbalance is
comparatively small.

For the second illustrative example, it is much harder to predict the impact of inappropriately using the
common covariate. Within-subject and between-subject information is combined in a complex way both in
estimating the effects of interest and in estimating the covariate coefficients, and the lack of balance means
that, in principle, the consequences can be quite different for different treatment effects. In this particular
example, the very large subject-level correlation between baseline and response noted earlier (0.997) will
have a large impact. Fitting a common covariate produces an estimated coefficient of θ̂C = 1.01 (0.03),
while fitting the covariate separately at the within-subject and between-subject levels produces estimated
coefficients of θ̂W = 0.42 (0.10) and θ̂B = 1.04(0.03), respectively. The latter coefficient is very close to
one and is far more precise than the within-subject coefficient, and that the combined estimate θ̂C is, as
seen, also close to one, implying that adjustment by the single covariate and change from baseline will,
in this very particular setting, be numerically very similar, implying in turn that the bias should not be
great using the single covariate in spite of the large difference between θ̂W and θ̂B. This is indeed what is
seen. For comparison between the positive and negative controls, the use of the single covariate produces
an estimate SE of 0.225 (0.055) which is almost identical to that seen in Section 4.1 from the analysis of
the change from baseline D: 0.224 (0.055). Adjustment using both within-subject and between-subject
covariates produces by comparison an estimate SE of 0.173 (0.046). There is an increase in precision
associated with the smaller estimated within-subject residual, and the change in estimated coefficient is
of the order of 1 SE. For the comparison between high dose and low dose, the corresponding 3 estimates
SEs are 0.011 (0.100), 0.014 (0.099), and 0.040 (0.084). The relative decrease in the size of the standard
error is the same for the 2 comparisons. But the change in estimated value is less extreme in the second
case than in the first because this comparison makes more use of the between-subject information. The
gain in precision through using the 2 baseline covariates is equivalent to a change in sample size of 40%.

4.3 Baselines as response variables

An alternative approach to inclusion of the baseline variables in the analysis is to treat them as additional
response variables without accompanying fixed treatment effects. Such an approach is well established
in the analysis of parallel group longitudinal studies (see e.g. Carpenter and Kenward, 2008, Chapter 3).
One important result is that in particular balanced orthogonal settings under certain models, the treatment
estimates obtained through the use of baselines as covariates or as responses are identical, with very
similar standard errors and a difference of one in degrees of freedom. A proof of this is given in Carpenter
and Kenward (2008, Appendix 4.4). In other settings, such as with unbalanced and/or nonorthogonal
designs, we typically expect very similar estimates and inferences that converge asymptotically. There
will be systematic differences between the 2 approaches, typically still small however, when numbers of
observations differ among subjects. We return to this issue in Section 4.4. Here, we assume that there are
no missing values and that numbers of periods are the same for all subjects.

The model, we use is precisely the joint one for the time-ordered data Zik described in Section 2, and
can be fitted using the generic SAS MIXED code given in the Appendix. Note that we do not in general
constrain the period effects associated with baseline and response to be the same, hence the presence of
the type-by-period interaction in the MIXED model statement.
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14 M. G. KENWARD AND J. H. ROGER

Applying this analysis to the first example from the blood pressure trial, we obtain an estimated high-
versus low-dose comparison (SE, degrees of freedom [DF]) of −0.949(1.793, 20), compared with that
from the analysis of covariance in Section 4.3 with separate within-subject and between-subject covari-
ates of −0.949(1.763, 19). In this very special balanced/orthogonal setting, we see, as predicted, that
the estimates are identical, the SEs are very similar, and the DF differ by one. With such a design, and
complete data, both analyses are, for practical purposes, identical.

The second example is neither balanced nor orthogonal. We begin with the first contrast, positive
versus negative control. Applying the above approach to the joint analysis of the baselines and outcomes
we get a contrast estimate (SE, DF) of 0.170 (0.045, 67.6), compared with the analysis of covariance
from Section 4.3: 0.173 (0.046, 66.1). The estimates and associated SEs are similar but the difference in
DF suggests that more is different between these 2 analyses than in the balanced/orthogonal case. This
is indeed the case, and the difference is partly due to the missing data. We return to this in Section 4.4.
A similar picture is seen with the second treatment contrast, the high- versus low-dose comparison. The
estimates (SE, DF) from the joint and covariance based analyses are 0.0343 (0.0825, 82) and 0.0270
(0.0830, 83.4), respectively. Here, the estimates show a greater difference. The patterns in these 2 sets
of comparisons reflect the range of influences on differences between these 2 types of analysis: lack of
balance, nonorthogonality, incompleteness, and estimated variance parameters. In spite of these however,
the differences remain small, and are negligible from a practical perspective.

We note finally that, strictly, the sample space is different in the 2 types of analysis, respectively
marginal and conditional, for the joint model and covariate-based analysis. This implies that we should be
careful in comparing, for example, precision from the 2 approaches. We see however, both from theory
and empirically, that in such settings the practical differences between the analyses in terms of estimates,
precision, and inferences are usually negligible, and so we do not regard this distinction as an important
issue in the current setting.

4.4 Incomplete data

As pointed out in Sections 1 to 4.2, without specific constraints on the covariance structure of the 2p
repeated measurements, all p baselines Xik will appear as covariates in the analysis of covariance of
Yik , and the coefficients of these may be different among the Y s within a subject. The reduction of these
to just 2 common coefficients for the within-subject baselines (XW

ik ) and for the average baseline (XB
ik)

depends on the particular form of covariance structure specified in (2.5), with the relevant coefficients
presented in (4.3) and (4.4), respectively. For the derivation of these, and the consequences on the anal-
ysis, it was assumed in Section 4.2 that p was a constant, that is, that all subjects had a complete set of
measurements. When data are missing, which is a common occurrence in practice, this will no longer be
the case and we examine here, the implications of this for the results presented so far. Because of the
symmetry of our covariance structure, the implication of missing data will be the same (in terms of the
covariate structure of the analysis of covariance) from whichever periods the data are missing. So it is
only the total number of periods observed for a particular subject, pik say, that is relevant, not the pattern
of missingness, and we can apply the arguments leading to (4.3) and (4.4) subject-by-subject, replacing p
by pik in each case. It follows immediately that the reduction to the within-subject and between-baseline
covariates, (XW

ik and XB
ik), still holds. Next, we note that the coefficient for XW

ik does not depend on p, so
this remains the same irrespective of missing data, and therefore holds across all subjects. In contrast, we
see that the coefficient of XB

ik does depend on p. The coefficient of this covariate therefore depends on
the number of missing data and, strictly, in the analysis of covariance should be allowed to have different
values for each of the possible values of p. Holding this to a constant value, as we have done above in the
analysis of the second example introduces bias into the estimates which does not disappear with increasing
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Baseline covariates in crossover studies 15

sample size if the proportion and pattern of missing data is maintained. We conjecture, however, than in
practice such bias will be very small indeed, and the simpler analysis presented earlier will provide a
perfectly acceptable approximation. There are 2 main reasons for this. First, in the simpler analysis, the
bias only comes from the contribution of the between-subject information, which is typically the much
less important component. Second, unless an unusually high proportion of subjects have missing data, the
estimate of the common covariate coefficient will anyway be dominated by subjects with complete data,
and so be close to the required coefficient for these subjects. Finally, in the approach of Section 4.4 in
which the baselines are treated as responses, this modification of the between-subject covariate coefficient
is (implicitly) done correctly and this source of bias does not arise.

Only the second illustrative example has missing data, but there are 2 main reasons why we expect
the bias discussed here to be negligible in this case. First, only 4 subjects have missing data. Second,
the between-subject covariance parameters (ηxx , ηyy , and ηxy) dominate the within-subject parameters
(σxx , σyy , and σxy) and, if the coefficient (4.4) is re-written as

θB = ηxy + σxy/p

ηxx + σxx/p
,

it is clear that in such circumstances the coefficient is almost independent of p. We see this reflected in the
analysis. Looking at the first treatment comparison, positive versus negative control, the previous analysis
of covariance gave an estimate (SE, DF) of 0.173 (0.046, 66.1). Allowing θB to differ for the subject with
incomplete data gives, by comparison, 0.170 (0.045, 67.6), which is very similar.

In conclusion, strictly, when there are missing data, the between-subject covariate coefficient should be
allowed to differ according to the size of pik . We suggest, however, that, in practice, the simpler analysis
with common coefficient will provide a very good approximation to such approach. If there are concerns
about such bias, the coefficient can be allowed to differ in the analysis, or the marginal analysis of Section
4.3 can be used.

Finally, we note that when baselines are missing but their associated response variables are ob-
served, the joint analysis of Section 4.3 does have an advantage over the analysis of covariance. The
analysis of covariance will discard the associated responses, while the joint approach will lead to their
inclusion.

5. DISCUSSION

A crossover study generates repeated measurements data which, from the second period onward, have
much in common with data from an observational study. In particular, baseline measurements made at
the start of treatment periods beyond the first are postrandomization observations. Using the framework
of causal inference (e.g. Greenland and others, 1999), we would say that these later baselines lie on the
causal pathway, and as a consequence great care needs to be made when inferences are made conditionally
upon them. This is a distinct issue to that of carryover, which we have been assuming throughout to
be negligible. The problem can also be seen as one of estimating separate regression coefficients at 2
structural levels in a hierarchical model as has been considered in the past by a number of authors. For
example, Goldstein (1987, Section 3.7) discusses it in the context of survey data, Skrondal and Rabe-
Hesketh (2004, Chapter 3) introduce it in the more general problem of endogeneity with reference to
econometrics, and Galwey (2006, Section 7.4) presents an example in an experimental setting.

To explore the use of such covariates in practice, we have postulated a 6-parameter covariance structure
for repeated measurements from a crossover trial that reflects the exchangeability one would expect to
find but, at the same time, does not impose unnecessary constraints on this structure. Several empirical
examples of the fitted covariance structure are presented.
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16 M. G. KENWARD AND J. H. ROGER

In a crossover setting a conventional analysis of covariance mimics the one that would apply to data
from a parallel-group study: each baseline is used as a covariate for the following outcome and for no
other. We have shown that such an analysis will lead to biased treatment comparisons in all but the most
contrived and unrealistic settings if random subject effects are used. In many crossover trials, we expect
the between-subject correlation to be very large. The remaining within-period (or local) correlation will
typically be much smaller and in many cases quite close to zero. This means that the regression coeffi-
cient for baseline from the single baseline covariate analysis (θC in our notation) will be overestimated
and subsequently the adjustment of treatment effects for baseline imbalance will be exaggerated, lead-
ing to bias. This will be especially true in simple orthogonal designs such as Williams squares where
the treatment differences are estimated at the within-subject level. We show that this bias is an exam-
ple of so-called cross-level bias (e.g. Sheppard, 2003), and we quantify it in terms of the design and the
6 parameters of our covariance structure. We demonstrate how the bias can be removed in 3 different
ways. First, fixed subject effects can be used. This removes all between-subject information from the
analysis, which will have a nonnegligible impact on precision in all but the most inefficient of designs.
Second, if random effects are to be retained, then separate regression coefficients are required for within-
period and between-period (subject-average) covariates. Strictly, a small refinement to this is required
when subjects have different numbers of measurements, due to dropout, for example, but ignoring this
is likely to introduce only a nugatory bias. A modification of these 2 approaches uses random subject
effects together with fixed sequence effects. We do not recommend this approach because it is essentially
self-contradictory: random effects are included to allow the incorporation of between-subject informa-
tion, while fixed sequence effects remove this information. In our third approach, the baselines are also
treated as outcome variables but without associated treatment effects. This route has the advantage of
automatically producing the correct analysis where there are missing data, that is, avoiding the approx-
imation implicit in the first method, and allows the incorporation of outcomes with missing associated
baselines.

The saving in terms of precision through the appropriate use of baseline measurements can, in certain
settings, be quite large, depending on the particular design and outcome variable. In one of our examples,
this gain was equivalent to a 40% increase in sample size.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org
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APPENDIX

The following SAS PROC MIXED code will fit the model in (2.1) using the covariance structure given
by (2.5) expressed in the form (2.6). We define the following variates: Subjid, the subject identifier;
Pernum, the period label, with baseline and outcome sharing the same period; Group, the treatment
identifier associated with the outcome variable with a separate level (zero, say) for baseline; Type, an
indicator variable taking the value 1 for outcome (Y ) and 0 for baseline (X ). The data, Z, consist of the
baselines and outcomes in time order.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/11/1/1/226526 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Baseline covariates in crossover studies 17

proc mixed data = RM;
class Subjid Pernum Group Type;
model Z = Pernum*Type Group*Type /solution ddfm = kr;
random Type /subject = Subjid Type = UN;
repeated Type /Subject = Subjid*Pernum Type = UN;
run;
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