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Abstract

The role of biomarkers has increased in cancer clinical trials such that novel designs are needed to 

efficiently answer questions of both drug effects and biomarker performance. We advocate 

Bayesian hierarchical models for response-adaptive randomized phase II studies integrating single 

or multiple biomarkers. Prior selection allows one to control a gradual and seamless transition 

from randomized-blocks to marker-enrichment during the trial. Adaptive randomization is an 

efficient design for evaluating treatment efficacy within biomarker subgroups, with less variable 

final sample sizes when compared to nested staged designs. Inference based on the Bayesian 

hierarchical model also has improved performance in identifying the sub-population where 

therapeutics are effective over independent analyses done within each biomarker subgroup.
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1. Introduction

Clinical trials in cancer are designed to rigorously monitor and assess health interventions, 

whether as observational studies or randomized controlled trials. With expansive research in 

tumor biology over the past decades, cancer has increasingly been recognized as a 
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biologically heterogeneous disease (Golub et al., 1999; Perou et al., 2000; Vogelstein and 

Kinzler, 2004). Tissue and specimen collection are now commonplace in therapeutic trials, 

to answer correlative scientific objectives about the disease process and patient-specific 

responses. At the same time, the availability and decreasing costs of high-throughput 

technologies have enabled the evaluation of the entire genome, and of other cellular 

compartments such as the transcriptome, proteome, metabolome, or secretome, and has 

vastly increased the amount of molecular data derived from biospecimen. Guidelines have 

been issued on the collection and use of biospecimen for biomarker development (McShane 

et al., 2005; Schmitt et al., 2004; Simon et al., 2009); and ultimately, the molecular 

characterization of tumors has been postulated as providing information at the individual 

patient level to optimize care, and be a critical component of personalized medicine 

(Hamburg and Collins, 2010).

Biomarkers are broadly defined as chemical, physical, or biological assessments used as an 

indicator of a patients disease state. Their application in medicine is delineated as: 

prognostic markers providing information about the overall risk of a clinical outcome (e.g., 

cancer recurrence); or predictive markers providing information about the specific effect of 

a therapeutic intervention (e.g., response to a targeted therapy, or treatment-related toxicity). 

Many laboratory-based assays have been proposed as prognostic or predictive biomarkers of 

cancer (Ross et al., 2003; Amado et al., 2008), and some have been shown to have both 

prognostic and predictive value in specific clinical settings (Albain et al., 2010). Molecular 

assays can also serve as surrogate markers when they correlate with clinical outcomes of 

primary interest (e.g., overall survival). Thus, they can substitute as an earlier endpoint for 

evaluating therapeutic benefit, or be incorporated into the design that directs ongoing 

treatment regimen. For example, based on the results of ACOSOG Z1031 (Ellis et al., 2011), 

Ki-76 is proposed in the neoadjuvant ALTERNATE trial as a surrogate for response so that 

it directs the treatment course of patients on trial (DeCensi et al., 2011).

Traditionally, the predictive and prognostic value of molecular assays have been 

investigated in a retrospective manner, where biospecimen are banked during the course of 

the trial and evaluated on completion. This allows for a variety of study designs, e.g., nested 

case-control that can draw from larger randomized or observational studies when clinical 

outcome is rare (Pepe et al., 2001), or when laboratory resources are limited. However, only 

a prospective application of the biotechnologies will fully evaluate their clinical utility as an 

assay. This includes the accessibility of the biospecimen, evaluation of quality control of the 

assay, and the feasibility of making determinations from the molecular output (Simon et al., 

2009).

Response-adaptive trials designs have been advocated as a way to allocate patients such that 

more patients receive the better treatment. Wei and Durham (1978) extended the stochastic 

play-the-winner process of Zelen (1969) to randomization using urn models. These 

strategies were later used in developing the randomized Polya urn (Durham et al., 1998) and 

drop-the-loser rules (Ivanova, 2003) and the concept of optimal allocation was introduced by 

Rosenberger et al. (2001). As a second general approach, the doubly adaptive biased coin 

design was introduced by Eisele and Woodroofe (1995) and was further developed by Hu 

and Zhang (2004) among others.
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Bayesian methods for clinical trials have been well established in the statistical literature. 

For interim monitoring of trials, Spiegelhalter et al. (1986) advocated the use of predictive 

power for making decisions of early stopping. The Bayesian model was also used to 

determine sample size requirements during trial development (Spiegelhalter and Freedman, 

1986). Many subsequent methods were developed for sample size determination as 

summarized in the review given by Adcock (1997). Bayesian models have been proposed 

for alternative study designs including noninferiority trials of therapeutics and medical 

devices (Spiegel-halter et al., 2004; Chen et al., 2011), seamless phase II/III designs (Inoue 

et al., 2002), and adaptive designs that drop treatment arms or modify randomization (Berry, 

2005, 2006).

Under the Bayesian paradigm, Kass and Steffey (1989) established as a class “conditionally 

independent hierarchical models” for observations drawn from distinct units (e.g., sites, 

clusters, or geographic regions). More recently, this class of models has been proposed for 

phase II and III clinical trials with integral biomarkers. Thall et al. (2003) proposed the use 

of a hierarchical model for single arm phase II trials when subjects have multiple subtypes 

of the disease. Zhou et al. (2008) extended the hierarchical structure to consider multiple 

treatments in a probit regression model for the randomized phase II trial: Biomarker-

integrated approaches of targeted therapy of lung cancer elimination (BATTLE). The book 

by Berry (2011) includes several illustrations for using hierarchical models to borrow 

information across components of a trial, and most recently, the Bayesian paradigm is used 

to consider an evolving series of novel therapeutics and biomarkers in I-SPY 2: An Adaptive 

Breast Cancer Trial Design in the Setting of Neoadjuvant Chemotherapy (Barker et al., 

2009).

In the following sections, we state the motivation for considering adaptive-randomization 

(AR) strategies for biomarker-driven trials in the phase II setting. Using the general notation 

of Kass and Steffey (1989) we define the Bayesian components of the trial. We then use 

simulation to summarize operating characteristics under a variety of scenarios that represent 

combinations of predictive biomarkers. In particular, we argue that informative prior 

distributions are needed for AR and interim monitoring to control treatment assignment 

early in the trial, while final evaluations of efficacy should rely on noninformative priors 

when the frequentist paradigm for inference is desired. Lastly, using a specific investigation 

of a novel targeted therapy in metastatic breast cancer, we contrast the performance of the 

adaptive approach against traditional staged designs for phase IIs nested within the 

biomarker-defined subgroups (Mandrekar and Sargent, 2010).

2. Motivation

In cancer clinical trials, the research and regulatory environment have divided the process 

for evaluating new therapeutics into four phases, with phase II and III studies designated for 

giving preliminary and definitive evidence of efficacy, respectively. For efficacy trials that 

incorporate prospective biomarkers, the National Cancer Institute has designated two types. 

Integrated studies involve assays clearly identified as part of the primary objective of a 

clinical trial, and are often intended to validate biomarkers prior to their use in future trials. 

As such, they should be hypothesis-testing in nature, and not hypothesis-generating and 

Barry et al. Page 3

J Biopharm Stat. Author manuscript; available in PMC 2015 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



motivated by discovery. Assays are to be performed in real time and include complete plans 

for specimen collection, laboratory measurements, and statistical analysis. Integral studies 

have many of the same elements, but are also designed such that the assay must be 

completed before patients can proceed on the trial. Examples include biomarkers to establish 

eligibility, biomarkers used for patient stratification, and biomarkers that inform treatment 

assignment. The most common trial designs with integral biomarkers are listed below, with 

representative schema in Figure 1 (Freidlin et al., 2010).

– Randomized-block designs are where the biomarker is used to define a stratification 

factor for randomization, but equivalent schemes are used within strata, such that 

globally, treatment assignment does not vary by biomarker status.

– Marker-enrichment designs are used to select a sub-population for investigation, 

whether it be a predictive marker for patient sensitivity to treatment, or prognostic 

markers to identify high-risk patients in which a new therapeutic may have the most 

clinical benefit.

– Marker-directed designs are where treatment assignment is determined by the integral 

biomarker; for example, assigning marker positive patients to the hypothesized optimal 

treatment (predictive marker), or to the more aggressive treatment (prognostic marker).

In deciding among the different integral biomarker designs, one must weigh the relative 

importance of validating the prognostic or predictive value of the biomarker, vs. using the 

information it provides to optimize efficacy of the treatments. Randomized-block designs 

provide the only direct evidence of marker performance, but are less efficient in terms of 

evaluating efficacy within target biomarker subgroups when compared to marker-directed 

designs. Conversely, it can be argued that in the phase II setting, where the goal is to provide 

evidence of efficacy for future phase III studies, marker-directed designs are restrictive in 

terms of the possible outcomes from conducting the study. A positive level of efficacy 

would lead to a randomized controlled trial within the marker subgroup, while insufficient 

levels of efficacy would not support moving to any phase III study. Based on these 

distinctions, the sensitivity and specificity of the assays should be known in advance of 

selecting between a randomized-block or marker-directed design. With this information, the 

efficiency of enrichment can be weighed against the fact that some patients who truly 

benefit from treatments would be excluded from receiving the regimen.

Because these are difficult considerations when developing phase II trials for new drugs or 

indications, we propose an adaptive strategy which allows for efficacy to be evaluated 

across all targeted subpopulations in an efficient manner. In essence, these methods allow 

for a single trial to gradually and seamlessly transition from a randomized-block design to a 

marker-directed design. As a result, more patients are randomized to optimal therapy when, 

and only when, biomarkers are predictive. The actual size of the trial will also vary less than 

a randomized-block design that uses multistage tests to reach similar levels of efficiency. 

Lastly, by using Bayesian models, trial flexibility that is induced by the data-driven 

adaptations will be taken into account in the statistical inferences.
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3. A Phase II Response-Adaptive Design

In a randomized phase II trial with integral biomarkers, suppose we have K patient 

subgroups that are mutually exclusive and exhaustive for all possible assay results. A total of 

J treatment regimens are to be considered in the randomized trial, whether they be 

designated as experimental or control arms. The primary objective is to evaluate the efficacy 

of each drug within the biomarker subgroups, i.e., a noncomparative multiarm phase II 

(Rubinstein et al., 2005; Mandrekar and Sargent, 2010).

Here, the primary clinical endpoint is considered to be a binary outcome, y ∈ {0, 1}. The 

target response rate of an effective treatment in a given subgroup will be defined as π1,jk, 

while an unacceptable response rate is defined as π0,jk. Without loss of generality, we will 

assume throughout that there are common target rates of interest:

Although we note that for prognostic markers, it may be more applicable to have different 

targets for the high- and low-risk patient subgroups.

Under the formulation of Kass and Steffey (1989), a random vector of n observations, yn, is 

conditionally independent given parameters, θ. Further, conditional on hyperparameters, φ, 

the {θi} are i.i.d., such that the elements of yn are exchangeable with a common density p(⋅).

3.1. Hierarchical Model for Binary Data

Let j denote treatment arm, j = 1 …J; and k denote biomarker group, k = 1 …K. Nested 

within treatment j and biomarker k, patients are indexed by i, i = 1 …njk, nj = Σk njk, and n = 

Σj nj. We will use n to refer to the number of patients at any point during enrollment up to a 

final sample size, N. The observed responses are denoted as

Let πijk be the response probability for yijk and a binary model with the link function θijk = 

f(πijk). The proposed hierarchical structure for multiple treatment and biomarker groups is

Barry et al. Page 5

J Biopharm Stat. Author manuscript; available in PMC 2015 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with hyperparameters, φ = {α, σ2, τ2}. The variance parameter σ2 controls the extent of 

borrowing across marker groups within each treatment; α and τ2 represent the second-stage 

prior distribution to the hierarchical model.

Bayesian binary hierarchical models are well characerized, and can be implemented in 

specialized software including BUGS (Lunn et al., 2000) or JAGS (Plummer, 2008). For the 

special case of a probit model, f(⋅) = Φ−1(⋅), the Gaussian priors are conjugate such that the 

full conditional distributions have closed forms. Correcting for an error that appears in Zhou 

et al. (2008) and keeping hyperparamaters unspecified, they take the form

We provide the Gibbs sampler for the probit model in the statistical language and 

environment R (see Appendix for source code). This code was used to run the simulations 

on scalable computing resources at the author institution.

3.2. Adaptive Randomization

Because the general hypothesis is that patients with certain biomarker profiles respond 

differently to the targeted treatments, randomization is conditional on biomarker group. 

Without a prior assumption of increased efficacy of certain treatments, equal randomization 

(ER) occurs at the beginning of the trial. After at least one patient is assessed for response in 

each treatment by biomarker group {njk ≥ 1}, the trial moves to AR. Under the Bayesian 

paradigm, randomization ratios at each step in enrollment, rn, are based on posterior 
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distributions for θ. The functional relationship one chooses for θ and rn was described by 

Rosenberger (1993) as the treatment effect mapping.

Here, we formulate two mappings to 0. Let Ωk,n represent the subset of nonsuspended 

treatments for marker group k at the time of randomization for patient n. For the BATTLE 

trial, randomization was based proportionally on the posterior mean for the response rate to 

each treatment

where π̂jk,n = E[f−1(µjk)∣yn]. With noninformative priors to the model, this formulation (we 

term “ratio-mapping”) is equivalent to the sequential maximum likelihood procedure 

(Rosenberger et al., 2001). Alternatively, one could base randomization on the probability a 

treatment is superior to all others (we term “max-mapping”),

which is derived from the full posterior distribution to θ. In contrasting the two formulations, 

we note that max-mapping will always approach 1 when one therapy is superior to all 

others, whereas the value ratio-mapping approaches will depend on J, π0, and π1. For this 

reason we favor max-mapping, and is used for the proposed trial in Section 5.

One criticism of Bayesian adaptive designs is that they are unstable for small amounts of 

data. A heuristic solution is to delay AR until a fixed number of patients are enrolled, and 

Cheung et al. (2006) suggested waiting until at least 10 patients are observed for every 

group. However, for phase II trials with integral biomarkers, this will typically not be 

feasible. For instance, in the BATTLE trial AR did not begin until 97 of 255 patients were 

enrolled (Kim et al., 2011), due to the requirement that njk ≥ 1 ∀jk for the Gibbs sampler 

defined in Zhou et al. (2008). We note that even at the completion of the trial, njk < 10 in 

approximately half of the subgroups. For this reason, we advocate the use of a class of 

informative prior distributions, termed “balanced priors” : 

. By increasing τ −2, one stabilizes the model so 

that ER occurs until data is accumulated from enough patients showing a difference in 

response rates.
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3.3. Interim Monitoring of Efficacy

During AR all active treatment arms are continuously monitored in order to update 

randomization ratios. Although biomarker subgroups will assign fewer patients to 

ineffective treatments as the trial proceeds, for administrative purposes it may be valuable to 

permanently suspend treatment arms once there is sufficient evidence of ineffectiveness. 

Under the Bayesian paradigm, one can compute posterior odds or Bayes factors for 

hypotheses of ineffectiveness. Alternatively, the frequentist approach can be mirrored by 

defining a threshold for futility, and use the prior distributions and all accumulated data to 

compute credible sets for efficacy.

Decisions based on Bayesian interval estimation were proposed in Zhou et al. (2008) and 

can be generalized to binary models with f−1(µjk) as

where (1 − δL) is the size of a one-sided credible set, and Fn, jk is an indicator of suspension 

of assignment to treatment j in biomarker group k after n patients are enrolled on the trial. 

We further denote  as the cumulative event of suspension at any point in the 

trial. If all J treatments are suspended, then patients in marker group k are excluded from 

enrolling on the trial. In order to be conservative about suspension with small n, we advocate 

using informative “skeptical” priors (Spiegelhalter et al., 1994) which would be centered 

around π1 :φskep = {α =f(π1), 0 < σ−2, 0 < τ−2}.

3.4. Final Determination of Efficacy

A final evaluation is performed for all nonsuspended treatments after reaching target 

accrual, N, and once complete clinical information is obtained. Again, models can be 

contrasted using Bayes factors, or a determination of efficacy can be defined under the 

hierarchical model when a (1 – δU) sized one-sided credible set to f−1(µjk) excludes the 

unacceptable response rate,

For the final analysis, a noninformative prior where τ−2 approaches zero allows for the data 

from the trial to drive all inferences.

Using these interim and final analysis plans, there is no early stopping for highly effective 

treatments, which is analogous to frequentist staged designs as developed by Simon (1989). 

We advocate this for phase II trials, because any treatments demonstrating benefit within (or 

across) marker subgroups will have greater numbers of patients assigned, and consequently, 

a more precise declaration of efficacy in the final analysis. This provides the optimal 
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information to support the development of a phase III trial, whether it be in a general or 

selected patient population.

The main study characteristics of interest are common to noncomparative phase II designs: 

true positive and true negative findings of efficacy. Using the decision criteria noted above, 

the probabilities of making correct determinations of efficacy in each treatment and 

biomarker combination are

The complementary probabilities are analogous to the frequentist definitions of Type I and II 

error.

We can also define probabilities that are complementary to family-wise error rates, which 

relate to the chance of making correct determinations of efficacy across all marker 

subgroups where a treatment is effective (P3), or not effective (P4). Likewise, the overall 

probability of having both true positive and negative findings is their union (P5):

Operating characteristics and sample-size determinations for the proposed design can be 

determined by simulating a series of relevant scenarios to the trial design.

4. Simulation

The following are two simplified scenarios where J = K = 2 that are representative of the 

general research setting of predictive biomarkers in multiarm trials: (a) evaluating a novel 

targeted agent against standard-of-care with a single predictive biomarker; and (b) selecting 

among multiple targeted agents specific to complementary predictive biomarkers. A global 

null to each scenario would be no increased efficacy with either agent. To illustrate how 

simulation is used to tune model parameters and select sample-size, we will explore each 

scenario with true unacceptable and acceptable rates of response of (π0 = 0.25, π1 = 0.5), 

and (π0 = 0.05, π1 = 0.2).
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Characteristics are drawn from B=1000 simulations, where marker status is first sampled 

from a multinomial distribution defined by marker prevalence, p, which is here set to be p = 

(0.5, 0.5). Treatment assignment is made under the randomization scheme, and the observed 

responses are sampled as independent Bernoulli variables with {πjk}. Figure 2 displays the 

average randomization rates under the single-marker scenario for ratio- and max-mapping. 

Within each panel, trajectories are drawn for models using balanced priors: φbal = {α = 

(Φ−1(π1) + Φ−1(π0))/2, σ−2 = 1, τ−2 = 100}, or using noninformative priors with τ−1 = 0.01. 

With balanced priors, there is attenuation in the rate at which randomization approaches the 

true treatment effect to each mapping. Importantly, in subgroups where there is no increased 

efficacy, randomization ratios remain centered around 0.5 throughout enrollment. With 

ratio-mapping and balanced priors, randomization rates to the effective treatment approach 

the true ratios of 0.67 and 0.8 for π1 = 0.5 and π1 = 0.2, whereas max-mapping approaches 1 

in both cases. Lastly, Table 1 shows that with a strong balanced prior, randomization has 

minimal variation (IQR < 0.02) when the number of patients on study is very small (n = 5), 

but that an unacceptably large variation (IQR > 0.5) is seen early on with noninformative 

priors, which is only partially attenuated using a moderate prior with τ = 1.

Next, we evaluated the probabilities of truly and falsely determining efficacy (P1 and 1 – 

P2) when using the monitoring plans outlined above. Simulations focused on designs using 

balanced priors and max-mapping for randomization. By plotting P1 and 1 – P2 over a range 

of target sample sizes, one can use simulation to select the desired operating characteristics 

to a trial. For the target rates π1 = 0.5 and π0 = 0.25 we found that assessing futility with a 

threshold of δL = 0.025 and a skeptical prior: φskep = {α = (Φ−1(π1), σ2 = 1, τ−2 = 100} and 

making a final determination of efficacy using noninformative hyperprior φnon = {α = 

(Φ−1(π0), σ2 = 1, τ−2 = 0.01} and δU = 0.9 provided a good balance between controlling for 

false positive and negative results. In particular, P1 ≥ 80% and 1 – P2 ≤ 10% is achieved 

with N = 55 in the single marker scenario and with N = 59 patients in the complementary 

marker scenario. By simulating under a null of no efficacy, we note the probability of early 

stoppage before N = 55 or N = 59 is 47% and 55%, such that the average sample size would 

be 48.4 and 50.3, respectively.

We next compare our method to independent Simon “optimal” two-stage tests performed 

within a randomized-block design, as an efficient nonadaptive approach to minimize 

sample-size when treatments are ineffective. Under a null, H0 : πjk = 0.25, and powered on 

the alternative H1 : πjk = 0.5, this requires 8 subjects in the first stage and 21 subjects total 

per arm (target N = 84) in order to control Type I and II errors at 10% and 20%, 

respectively. Under the respective alternative hypotheses to the single and complementary 

marker scenarios, the expected sample sizes to the two-staged design are 57.1 and 65.4, 

respectively, and 48.7 when there is truly no efficacy with either agent. Thus, marginal 

improvements in efficiency are seen with our adaptive approach. As advantages, resources 

would need not be budgeted for the larger target sample size, and more importantly, 

considerably less variation is seen under our simulations than the actual sample sizes that 

can occur with 4 independent two-stage tests (Fig. 3).

Simulations under other true effective response rates show a slight attenuation in power 

when compared to the larger staged-tests: under π1 = 0.45, P1 ranged from 0.64 to 0.67 vs. 

Barry et al. Page 10

J Biopharm Stat. Author manuscript; available in PMC 2015 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



power of 0.69 with the Simon design. With a larger true effect size (π1 = 0.55), P1 ranged 

from 0.86 to 0.88 vs. power of 0.89 with a Simon design. The small differences may be due 

to P2 being slightly lower than the Type I error to the Simon design, or may be reflective of 

tuning the parameters and size of the adaptive design to optimize characteristics against the 

target response rates.

For target response rates of π0 = 0.05 and π1 = 0.2, simulations were repeated to 

parameterize the model and select samples sizes. Figure 2 and Table 2 show that informative 

balanced priors are needed to stabilize {rjk,n} early in the trial and remain 1:1 on average in 

the nontarget subgroup, and we focus on max-mapping to increase allocation to optimal 

therapy. Despite the lower event rates, similar gains in efficiency can be seen in the adaptive 

design when allowing for a higher false positive rate. Using thresholds of δL = 0.025 and δU 

= 0.8, we find that N = 74 and 71 control P1 ≥ 80% and 1 – P2 ≤ 15% for the two scenarios. 

In comparison, Simon two-stages tests would require a target N = 108 (E[N] = 70.2 and 

82.8, for the two scenarios) to control Type I and II errors at this level.

Lastly, when using noninformative priors for determinations of efficacy, the posterior means 

for the response rate are biased slightly downward for J = K = 2, as is known to occur with 

AR (Rosenberger and Lachin, 2002). At n = 100, median relative risks of 0.976 and 0.959 

are seen to π1 = 0.5 and π1 = 0.2, respectively, after randomizing patients under max-

mapping and balanced priors (Table 2). The extent of bias must be carefully considered if 

one reports Bayesian point-estimates from the hierarchical model at the completion of the 

study.

5. Example

Increasingly, both clinicians and laboratory scientists have recognized that breast cancer is a 

heterogeneous disease, which poses a challenge to the development of new therapies and to 

the appropriate application of existing treatments to individual patients. Using DNA 

microarray technology, Sorlie et al. (2001) identified five major subtypes of breast tumors, 

including basal-like, Her2 over expressing, luminal-like (including luminal A and B), and 

normal breast tissue-like. It was later shown that luminal B subtype tumors have a poor 

prognosis relative to other ER+/Her2– breast cancers, and represent a population that may 

derive benefit from novel treatments in the locally advanced setting (Bild et al., 2009).

Phosphatidylinositol 3-kinases (PI3Ks) have come to attention as both a marker of prognosis 

and a potential target for therapy in a variety of human cancers (Vanhaesebroeck et al., 

2010). Once activated, these kinases phosphorylate membrane lipids which in turn trigger a 

complex signaling cascade leading to cell cycle entry, growth, and survival. Mutations 

leading to constitutive activation of the pathway have been observed, with early studies 

reporting a 40% rate of somatic mutations in the gene in breast cancer, especially hormone 

receptor-positive breast cancer (Campbell et al., 2004). Multiple inhibitors of the PI3K 

pathway are in development that demonstrate anti-tumor activity in pre-clinical and clinical 

studies (Markman et al., 2010; Baselga et al., 2011). Among the most interesting targeted 

strategies for PI3K inhibition is the luminal B subtype of breast cancer. Although typically 

hormone receptor-positive, this subtype is more chemosensitive than luminal A breast 
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cancer (Fan et al., 2006), and recent studies implicate PI3K pathway signaling in 

proliferation and cell survival in this subtype (Bild et al., 2009). However, aberrations of 

PI3K pathway signaling are common across breast cancer subtypes, and a selection strategy 

for identifying those most likely to respond to inhibition of the PI3K pathway has not yet 

been defined.

We propose a randomized phase II to evaluate a PI3K inhibitor in advanced hormone 

refractory breast cancer patients. Activity of the agent will be assessed in combination with 

standard capecitabine in ER+/Her2– breast cancer defined by standard histological methods. 

Integral biomarkers will be used to evaluate whether increased efficacy is seen in molecular 

subgroups of greatest potential to provide a selection strategy. This includes intrinsic 

subtypes by mRNA expression and PI3K DNA sequencing, with the scientific hypothesis 

that greater efficacy is seen with either PI3K mutations over wild-type, or with luminal B 

and other subtypes relative to luminal A tumors.

The primary clinical endpoint for evaluating patient response to capecitabine alone (X) and 

capecitabine plus PI3K inhibitor (XP) will be objective response. Based on prior knowledge 

of the efficacy of capecitabine, we will consider a response rate of θ0 = 0.25 as 

unacceptable, and θ1 = 0.5 as a target level of efficacy for treatments within all marker 

subgroups.

5.1. Design and Operating Characteristics

In the Bayesian AR design, we set a threshold probability of δL = 0.01 for the futility 

monitoring, and δU = 0.9 for the threshold for concluding efficacy. The balanced, skeptical, 

and noninformative priors described above are used for randomization, interim monitoring, 

and final analysis, respectively.

One heuristic rule is applied over the AR scheme to further control enrollment to the trial. 

Since there are no interim rules for stopping for superiority, the total number of patients 

enrolled into a single treatment by subgroup will be capped at 35 to avoid oversam-pling. 

This threshold was selected under a reduced Bayesian model for a single treatment and 

single biomarker subgroup, as providing greater than 95% posterior probability of 

concluding efficacy when θ = Φ−1(π1).

Simulations were run to select a maximum target sample size based on the probabilities of 

truly and falsely concluding efficacy. Specifically, six scenarios define different 

relationships between clinical benefit of XP and the two integral biomarkers, as enumerated 

in Table 2. Based on anticipated accrual, and the length of follow-up needed to observe 

objective response, a lag of 10 patients is included into the simulation for randomization and 

interim monitoring of futility.

Table 3 shows that with a target sample size of N = 168, in all scenarios probabilities of 

falsely concluding efficacy in each ineffective treatment is less than 10%, while probabilities 

of concluding success in each effective treatment ranges from 82.1% to 92.8% varying 

largely by the marker prevalence. Across simulations, effective combinations were stopped 

at rates between 3.7% and 6.4% while ineffective treatments were stopped at some point 

Barry et al. Page 12

J Biopharm Stat. Author manuscript; available in PMC 2015 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



during the AR phase 17.8% to 87.3% of the time. In comparison, parallel Simon two-stage 

designs require greater maximum target sample sizes, needing to allocate 24 × 8 = 192 

patients to control Type I and II errors at 0.1 and 0.15 in every group. An even greater 

number of patients is needed to match the exact operating characteristics to each scenario 

that is given in Table 3, although the discrete binomial distribution prevents a direct 

comparison.

Finally, there is a distinctive advantage of using all available data across biomarker 

subgroups when making inferences under the hierarchical model (Table 4). For each 

scenario, the joint probabilities of correctly identifying all subgroups where XP is effective 

(P3), and where XP or X are ineffective (P4). Results are superior to independent analysis 

with the larger Simon two-stage designs. The largest improvements are see when multiple 

biomarker groups demonstrate increased efficacy. For instance, if intrinsic subtype and PI3K 

mutation are equally predictive (Scenario 5), the probability of identifying all three 

subgroups increases from 0.618 to 0.694, while under a global null (Scenario 1), the chance 

of a false discovery decreases from 54.4% down to 42.5%.

6. Discussion

We have presented a novel approach to studying the efficacy of treatments in the context of 

integral biomarkers. By adopting a Bayesian response adaptive model, flexibility in the trial 

design allows for a seamless transition from investigating agents in a general population 

toward a marker-directed strategy where patients are randomized with greater probability to 

their optimal therapy. To meet the requirements of randomized phase II studies, the model 

incorporates a continuous monitoring for futility and a final analysis of efficacy that are 

conditioned on the integral biomarkers. Simulations demonstrate the properties of the model, 

and its advantages over using parallel and independent staged designs.

Adaptive trial designs give a framework whereby the mathematical models account for 

flexibility required in phase II screening trials, and with modern computational resources the 

numerical routines can be implemented as easily as exact binomial tests. Adaptive trials do 

require a larger informatics structure to continuously monitor enrolled patients in order to 

maximize gains in efficiency. However, adaptive approaches can be seamless and do not 

require suspension of enrollment until complete outcome information is obtained and 

evaluated, thus removing a large operational barrier to the study team and common 

hindrance to study accrual with staged phase II trials.

We have shown under simulation that adapting with a Bayesian hierarchal model lowers the 

total target sample sizes over traditional designs. Further, in staged designs, interim looks 

that occur early in the trial to optimize the characteristics can cause wide variations in final 

sample sizes. Flexibility and robust performance of our Bayesian AR model is demonstrated 

by the consistent operating characteristics seen across a variety of relationships between 

treatment efficacy and biomarker subgroups. Conversely, it may not be feasible to use 

parallel multistage tests for biomarker groups with unequal prevalence. We also propose that 

adaptive designs will be more robust to marker misspecification than a randomized-block 

design, based on the flexibility and gains in power from the hierarchical model. Future 
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simulation studies are planned to demonstrate and quantify this assertion using the 

biomarker prevalences reported by Kim et al. (2011). All these points allow for such trials to 

be planned and budgeted for more easily using Bayesian hierarchical models and response-

AR.

The greatest benefit of our approach is that by jointly modeling efficacy of treatments in the 

Bayesian hierarchical model, improved statistical inferences can be made about the 

predictive or prognostic value of biomarkers over designs that focus on efficacy within or 

across patient subgroups. This will be critical for clinical contexts where integral biomarkers 

can be used to identify the proper study population for definitive phase III studies of 

efficacy. Finally, we note that as a conservative element to the adaptive approach, if the 

clinical data are missing or delayed (completely at random to treatment assignment), the AR 

will transition more slowly from ER.

Future efforts are to apply the Bayesian hierarchical structure to statistical models for other 

clinical endpoints that are continuous and right-censored. However, the advantages of 

adaptive design are maximized when endpoints can be assessed early. With the expansion of 

rationally identified therapeutic targets, the simultaneous identification of rational 

biomarkers naturally follows. Indeed, the FDA has released a draft guidance document “In 

Vitro Companion Diagnostic Devices” to encourage development of biomarkers (molecular 

or otherwise) as diagnostics for guiding treatment decisions and patient selection. The 

flexibility and efficiency of adaptive clinical trial designs provide important advances for 

guiding and accelerating this complex co-development process.
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Appendix: Sample R Code

####################

## Dependent function for simulation in R

####################

MCMCfun <- function(n_i, y, group2, theta.0, theta.1, phi) {

 require (msm)

 alpha <- phi[1]; sigma2 <- phi[2]; tau2 <- phi[3]

 mu <- pr.eff <- pr.stop <- pihat <- rmax <- rep(0, J* K)

 psi <- rep (0, J)
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 n.jk <- table (group2)

 n.j < - tapply (n.jk, rep(1:J, each=K), sum)

 sd.mu <- (n.jk + 1/sigma2) ˆ (-.5)

 sd.phi <- (n.j + 1/tau2) ˆ (-.5)

 for (b in 1:(n.burn+ (skip + 1) * n.iter)) {

 z <- rtnorm(n_i, mu[group2], lower = c(-Inf, 0) [1+y], upper = c(0, Inf) 

[1+y])

 mu <- rnorm(J* K, mean = (sigma2 * tapply(z,group2,sum) + 

rep(psi,each=K) ) /

 (sigma2 * n.jk + 1),sd=sd.mu)

 psi <- rnorm(J,mean = (tau2 * tapply(mu* n.jk,rep(1:J, each=K),sum) + 

alpha ) /

 (tau2 * n.j + 1),sd= sd.phi)

 if(b > n.burn & trunc((b-n.burn)/(skip+1)) == (b-n.burn)/ (skip + 1)){

 pr.eff <- pr.eff + (mu > qnorm(theta.0))/n.iter

 pr.stop <- pr.stop + (mu > qnorm(theta.1))/n.iter

 pihat <- pihat + pnorm(mu) / n.iter

 rmax <- rmax + (mu == rep(tapply(mu,rep(1:K,J),max), J)) / n.iter

 }

 }

return(list(pr.eff = pr.eff, pr.stop = pr.stop, pihat = pihat, rmax = rmax))

}

####################

## Simultations for Figures 2 and 3, and Table 1

## (parameterized for left-most column

####################
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## Parameters

Nmax = 100

J = 2; K = 2; ## Indexes for groups

prob.K = c(0.5,0.5) ## Proportion of genotype groups (length K)

p0 = 0.25; p1 = 0.2 ## Target response rates

off =0 ## Offset between target and true rate.

pi = c(p1 + off, p0, ## True response rates

 p0 , p1+off) ## ordered as trt(group)

phi.r = c(alpha = (qnorm(p0)+qnorm(p1))/2,

 sigma2 = 1, tau2 = 0.01) ## Hyperparameters for randomization

r.method =2 ## Mapping (1=ratio, 2=max)

phi.f = c(alpha = qnorm(p1),

 sigma2 = 1, tau2 = 0.01) ## Hyperparameters for futility

phi.e = c(alpha = qnorm(p0),

 sigma2 = 1, tau2 = 0.01) ## Hyperparameters for efficacy

delta.U = 0.9 ## Decision rule [efficacy]

delta.L = 0.025 ## Decision rule [stop]

n.burn = n.iter = 5000; skip =0 ## MCMC parameters

#### Simulation

set.seed(seed)

group <- assign <- group2 <- y <- rep(NA,Nmax)

stop1 <- rep(0,J* K); fail1 <- 0

theta.0 = rep(p0,J* K); theta.1 = rep(p1,J* K)

group[1:(J* K)] <- rep(1:K,J)
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assign[1:(J* K)] <- rep(1:J,each=K)

group2[1:(J* K)] <- group[1:(J* K)] + K * (assign[1:(J* K)]-1)

y[1:(J* K)] <- runif(J* K) < pi[group2[1:(J* K)]]

## Adaptive Randomization

i <- J* K

while((i < Nmax) & (fail1==0)){

 post.f <- MCMCfun(i,y[1:i], group2[1:i],theta.0, theta.1,phi.f) ## 1. Run 

MCMC for futility

 stop1[stop1==0] <- (post.f [[2]] [stop1==0] < delta.L) * i ## 2. Check 

futility in active arms

 drop <- tapply(stop1,rep(1:K,J),prod) ## 3. Drop groups with stopped arms

 if(prod(drop)) {fail1 <- 1} else { ## 4. If all arms not dropped

 if(sum(!drop)>1){ ## 4a. Draw new patients group

 group[i + 1] <- sample((1:K)[!drop], 1,prob=prob.K[!drop])

 } else group[i+1] <- (1:K)[!drop]

 post.r <- MCMCfun(i,y[1:i], group2[1:i],theta.0,theta.1,phi.r) ## 4b. Run 

MCMC for randomization

 if(r.method == 1){

 rand <- post.r[[3]]

 } else if(r.method == 2) rand <- post.r[[4]]

 rand[stop1>0] <- 0

 assign[i + 1] <- sample(1:J,1, prob=rand[rep(1:K,J) ==group[i + 1]]) ## 4c. 

Assign treatment

 group2[i + 1] <- group[i + 1] + K* (assign[i + 1]-1)

 y[1+i] <- runif(1) < pi[group2[1+i]] ## 4d. Simulate outcome

 post.e <- MCMCfun(i + 1,y[1:(i + 1)], group2[1:(i + 1)],theta.0,theta.

1,phi.e)
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 write(paste(c(i + 1, ## 4e. Output:

 table(group2[1:(1+i)]), #Sizes

 (post.e[[1]] > delta.U)* (stop1==0), # Dec of Eff

 (stop1>0), # Dec of Fut

 post.e[[3]], # PostMean of Eff

 rand), # Rand weights

 collapse=” “),outfile, append=T)

 print(paste(” “, i + 1, “patients analyzed”))

 }

 i <- i + 1

}

####################

## Simulation of PI3K trial design: Scenario #3: LumB ONLY

####################

## Parameters

Nmax = 200 ## Maximum possible total sample size

J = 2; K = 4 ## Indexes for groups

prob.K = c(0.161,0.393,0.200,0.244) ## Proportion of biomarker subgroups

pi = c(0.25,0.25,0.25,0.25, ## True response rates (length J * K)

 0.50,0.50,0.25,0.25) ## ordered as trt(group) -

r.method =2 ## Treatment effect mapping

phi.r = c(alpha = (qnorm(0.25)+qnorm(0.5))/2,

 sigma2 = 1,tau2 = 0.01) ## Hyperparameters for rand

phi.f = c(alpha = qnorm(0.5),
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 sigma2 = 1,tau2 = 0.01) ## Hyperparameters for fut

phi.e = c(alpha = qnorm(0.25),

 sigma2 = 1,tau2 = 100) ## Hyperparameters for eff

delta.U <- 0.90 ## Decision rule [success]

delta.L <- 0.02 ## Decision rule [stop]

lag <- 10 ## Lag - estimated accrual before ORR

Imin <- 0 ## Minimum number of patients before AR

cap <- 35 ## Maximum number of patients per arm

n.burn = n.iter = 5000; skip =0 ## MCMC parameters

#### Simulation

set.seed(seed)

theta.0 <- rep(0.25,J * K); theta.1 <- rep(0.5,J * K)

group <- sample(1:K,Nmax,replace=T,prob=prob.K)

stop1 <- stop2 <- rep(0,J * K); screen <- fail1 <- 0

assign <- y <- rep(NA,Nmax)

## Phase 1) ER phase until rule for interim monitoring triggered

 group2 <- factor(assign,levels=1:(J * K))

 i < - 0;

 while(i < (Nmax-lag-1) & (sum(table(group2)==0) | i < (Imin))){

 i <- i + 1

 assign[i] <- sample(1:J,1)

 group2[i] <- group[i] + K * (assign[i]-1)

 y[i] <- runif(1) < pi[group2[i]]

 }
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 start <- (i + lag)

 print(paste(“ “, start, “patients in ER phase”))

 assign[i+ (1:lag)] <- sample(1:J,lag,replace=T)

 group2[i+ (1:lag)] <- group[i+ (1:lag)] + K * (assign[i+ (1:lag)]-1)

 y[i+ (1:lag)] <- runif(lag) < pi[group2[i+ (1:lag)]]

## Phase 2) AR phase, arms are dropped by futility analysis

 while((i < (Nmax-lag)) & (!fail1)){

 post.f <- MCMCfun(i,y[1:i],group2[1:i],theta.0,theta.1, phi.f)

 stop1[stop1==0] <- (post.f[[2]][stop1==0] < delta.L) * i

 stop2 <- table(group2[1:(i + lag)]) >= cap

 drop <- tapply(stop1 + stop2,rep(1:K,J),prod)

 if(prod(drop)){ fail1 <- i } else {

 j <- i + 1 + lag

 if(drop[group[j]]){

 screen <- screen + 1

 c <- 1; while(c){

 group[j] <- sample((1:K),1,prob=prob.K)

 if(drop[group[j]]) screen <- screen + 1 else c <- 0

 }

 }

 post.r <- MCMCfun(i,y[1:i],group2[1:i],theta.0, theta.1,phi.r)

 if(r.method == 1){

 rand <- post.r[[3]]

 } else if(r.method == 2) rand <- post.r[[4]]
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 rand[(stop1>0) |stop2] <- 0

 assign[j] <- sample(1:J,1,prob=rand[rep(1:K,J) ==group [j]])

 group2[j] <- group[j] + K * (assign[j]-1)

 y[j] <- runif(1) < pi[group2[j]]

 post.e <- MCMCfun(j,y[1:j],group2[1:j],theta.0,theta.1, phi.e)

 print(paste(“ ”, j, “patients analyzed”))

 write(paste(c(j,screen, table(group2[1:j]), ## Total, screened and subgroup 

sizes

 (post.e[[1]] > delta.U) * (stop1==0), ## Decision of efficacy

 (stop1>0), ## Decision of futility

 rand), ## Randomiztion ratios

 collapse=“\t”),outfile, append=T)

 }

 i <- i + 1

}

References

Adcock CJ. Sample size determination: a review. Statistician. 1997; 46(2):261–283.

Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, Ravdin P, Bugarini R, 

Baehner FL, Davidson NE, Sledge GW, Winer EP, Hudis C, Ingle JN, Perez EA, Pritchard KI, 

Shepherd L, Gralow JR, Yoshizawa C, Allred DC, Osborne CK, Hayes DF. Prognostic and 

predictive value of the 21-gene recurrence score assay in postmenopausal women with node-

positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a 

randomised trial. The Lancet Oncology. 2010; 11(1):55–65. [PubMed: 20005174] 

Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, 

Radinsky R, Patterson SD, Chang DD. Wild-type KRAS is required for panitumumab efficacy in 

patients with metastatic colorectal cancer. Journal of Clinical Oncology. 2008; 26(10):1626–1634. 

[PubMed: 18316791] 

Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ. I-spy 2: An adaptive breast 

cancer trial design in the setting of neoadjuvant chemotherapy. Clinical Pharmacology & 

Therapeutics. 2009; 86(1):97–100. [PubMed: 19440188] 

Baselga J, Campone M, Piccart M, Burris HA, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard 

KI, Lebrun F, Beck JT, Ito Y, Yardley D, Deleu I, Perez A, Bachelot T, Vittori L, Xu Z, 

Mukhopadhyay P, Lebwohl D, Hortobagyi GN. Everolimus in postmenopausal hormone-receptor-

positive advanced breast cancer. The New England Journal of Medicine. 2011; 366(6):520–529. 

[PubMed: 22149876] 

Barry et al. Page 21

J Biopharm Stat. Author manuscript; available in PMC 2015 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Berry DA. Introduction to Bayesian methods III: use and interpretation of Bayesian tools in design and 

analysis. Clinical Trials. 2005; 2(4):295–300. discussion 301–304, 364–378. [PubMed: 16281428] 

Berry DA. Bayesian clinical trials. Nature Reviews Drug Discovery. 2006; 5(1):27–36.

Berry, SM. Chapman & Hall/CRC bio-statistics series. Boca Raton: CRC Press; 2011. Bayesian 

Adaptive Methods for Clinical Trials. 

Bild AH, Parker JS, Gustafson AM, Acharya CR, Hoadley KA, Anders C, Marcom PK, Carey LA, 

Potti A, Nevins JR, Perou CM. An integration of complementary strategies for gene-expression 

analysis to reveal novel therapeutic opportunities for breast cancer. Breast Cancer Research. 2009; 

11(4):R55. [PubMed: 19638211] 

Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS, Cristiano BE, 

Pearson RB, Phillips WA. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer 

Research. 2004; 64(21):7678–7681. [PubMed: 15520168] 

Chen MH, Ibrahim JG, Lam P, Yu A, Zhang Y. Bayesian design of noninferiority trials for medical 

devices using historical data. Biometrics. 2011; 67(3):1163–1170. [PubMed: 21361889] 

Cheung YK, Inoue LYT, Wathen JK, Thall PF. Continuous Bayesian adaptive randomization based on 

event times with covariates. Statistics in Medicine. 2006; 25(1):55–70. [PubMed: 16025549] 

DeCensi A, Guerrieri-Gonzaga A, Gandini S, Serrano D, Cazzaniga M, Mora S, Johansson H, Lien 

EA, Pruneri G, Viale G, Bonanni B. Prognostic significance of Ki-67 labeling index after short-

term presurgical tamoxifen in women with ER-positive breast cancer. Annals of Oncology. 2011; 

22(3):582–587. [PubMed: 20716629] 

Durham SD, Flournoy N, Li W. A sequential design for maximizing the probability of a favourable 

response. Canadian Journal of Statistics-Revue Canadienne De Statistique. 1998; 26(3):479–495.

Eisele JR, Woodroofe MB. Central limit-theorems for doubly adaptive biased coin designs. Annals of 

Statistics. 1995; 23(1):234–254.

Ellis MJ, Suman VJ, Hoog J, Lin L, Snider J, Prat A, Parker JS, Luo JQ, DeSchryver K, Allred DC, 

Esserman LJ, Unzeitig GW, Margenthaler J, Babiera GV, Marcom PK, Guenther JM, Watson MA, 

Leitch M, Hunt K, Olson JA. Randomized phase II neoadjuvant comparison between letrozole, 

anastrozole, and exemestane for postmenopausal women with estrogen receptor-rich stage 2 to 3 

breast cancer: Clinical and biomarker outcomes and predictive value of the baseline PAM50-based 

intrinsic subtype—ACOSOG Z1031. Journal of Clinical Oncology. 2011; 29(17):2342–2349. 

[PubMed: 21555689] 

Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, Nobel AB, van't Veer LJ, Perou CM. Concordance 

among gene-expression-based predictors for breast cancer. The New England Journal of Medicine. 

2006; 355(6):560–569. [PubMed: 16899776] 

Freidlin B, McShane LM, Korn EL. Randomized clinical trials with biomarkers: design issues. Journal 

of the National Cancer Institute. 2010; 102(3):152–160. [PubMed: 20075367] 

Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing 

JR, Caligiuri MA, Bloomfield CD, Lander ES. Molecular classification of cancer: class discovery 

and class prediction by gene expression monitoring. Science. 1999; 286(5439):531–537. [PubMed: 

10521349] 

Hamburg MA, Collins FS. The path to personalized medicine. The New England Journal of Medicine. 

2010; 363(4):301–304. [PubMed: 20551152] 

Hu FF, Zhang LX. Asymptotic properties of doubly adaptive biased coin designs for multitreatment 

clinical trials. Annals of Statistics. 2004; 32(1):268–301.

Inoue LY, Thall PF, Berry DA. Seamlessly expanding a randomized phase II trial to phase III. 

Biometrics. 2002; 58(4):823–831. [PubMed: 12495136] 

Ivanova A. A play-the-winner-type urn design with reduced variability. Metrika. 2003; 58(1):1–13.

Kass RE, Steffey D. Approximate bayes-inference in conditionally independent hierarchical-models 

(parametric empirical bayes models). Journal of the American Statistical Association. 1989; 

84(407):717–726.

Kim ES, Herbst RS, Wistuba I, Lee JJ, Blumenschein GRJ, Tsao A, Stewart DJ, Hicks ME, Erasmus 

JJ, Gupta S, Alden CM, Liu S, Tang X, Khuri FR, Tran HT, Johnson BE, Heymach JV, Mao L, 

Fossella F, Kies MS, Papadimitrakopoulou V, Davis SE, Lippman SM, Hong WK. The BATTLE 

Barry et al. Page 22

J Biopharm Stat. Author manuscript; available in PMC 2015 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



trial: personalizing therapy for lung cancer. Cancer Discovery. 2011; 1(1):44–53. [PubMed: 

22586319] 

Lunn DJ, Thomas A, Best N, Spiegelhalter D. Winbugs – a Bayesian modeling framework: concepts, 

structure, and extensibility. Statistics and Computing. 2000; 10(4):325–337.

Mandrekar SJ, Sargent DJ. Randomized phase II trials: time for a new era in clinical trial design. 

Journal of Thoracic Oncology. 2010; 5(7):932–934. [PubMed: 20581575] 

Markman B, Atzori F, Perez-Garcia J, Tabernero J, Baselga J. Status of pi3k inhibition and biomarker 

development in cancer therapeutics. Annals of Oncology. 2010; 21(4):683–691. [PubMed: 

19713247] 

McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations 

for tumor marker prognostic studies (REMARK). Journal of the National Cancer Institute. 2005; 

97(16):1180–1184. [PubMed: 16106022] 

Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, Winget M, Yasui Y. Phases of 

biomarker development for early detection of cancer. Journal of the National Cancer Institute. 

2001; 93(14):1054–1061. [PubMed: 11459866] 

Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, 

Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, 

Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000; 406(6797):

747–752. [PubMed: 10963602] 

Plummer, M. JAGS Version 1.0.3 Manual. Lyon: IARC; 2008. 

Rosenberger WF. Asymptotic inference with response-adaptive treatment allocation designs. Annals of 

Statistics. 1993; 21(4):2098–2107.

Rosenberger, WF.; Lachin, JM. Wiley series in probability and statistics. New York: Wiley; 2002. 

Randomization in Clinical Trials : Theory and Practice. 

Rosenberger WF, Stallard N, Ivanova A, Harper CN, Ricks ML. Optimal adaptive designs for binary 

response trials. Biometrics. 2001; 57(3):909–913. [PubMed: 11550944] 

Ross JS, Fletcher JA, Bloom KJ, Linette GP, Stec J, Clark E, Ayers M, Symmans WF, Pusztai L, 

Hortobagyi GN. Her-2/neu testing in breast cancer. American Journal of Clinical Pathology. 2003; 

120(Suppl):S53–71. [PubMed: 15298144] 

Rubinstein LV, Korn EL, Freidlin B, Hunsberger S, Ivy SP, Smith MA. Design issues of randomized 

phase II trials and a proposal for phase II screening trials. Journal of Clinical Oncology. 2005; 

23(28):7199–7206. [PubMed: 16192604] 

Schmitt M, Harbeck N, Daidone MG, Brynner N, Duffy MJ, Foekens JA, Sweep FC. Identification, 

validation, and clinical implementation of tumor-associated biomarkers to improve therapy 

concepts, survival, and quality of life of cancer patients: tasks of the Receptor and Biomarker 

Group of the European Organization for Research and Treatment of Cancer. International Journal 

of Oncology. 2004; 25(5):1397–1406. [PubMed: 15492831] 

Simon R. Optimal 2-stage designs for phase-II clinical-trials. Controlled Clinical Trials. 1989; 10(1):

1–10. [PubMed: 2702835] 

Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive 

biomarkers. Journal of the National Cancer Institute. 2009; 101(21):1446–1452. [PubMed: 

19815849] 

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, 

Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-

Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical 

implications. Proceedings of the National Academy of Sciences of the United States of America. 

2001; 98(19):10869–10874. [PubMed: 11553815] 

Spiegelhalter, DJ.; Abrams, KR.; Myles, JP. Statistics in practice. Hoboken, NJ: Wiley, Chichester; 

2004. Bayesian Approaches to Clinical trials and Health Care Evaluation. 

Spiegelhalter DJ, Freedman LS. A predictive approach to selecting the size of a clinical-trial, based on 

subjective clinical opinion. Statistics in Medicine. 1986; 5(1):1–13. [PubMed: 3961311] 

Spiegelhalter DJ, Freedman LS, Blackburn PR. Monitoring clinical-trials – conditional or predictive 

power. Controlled Clinical Trials. 1986; 7(1):8–17. [PubMed: 3956212] 

Barry et al. Page 23

J Biopharm Stat. Author manuscript; available in PMC 2015 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Spiegelhalter DJ, Freedman LS, Parmar MKB. Bayesian approaches to randomized trials. Journal of 

the Royal Statistical Society: Series A (Statistics in Society). 1994; 157:357–387.

Thall PF, Wathen JK, Bekele BN, Champlin RE, Baker LH, Benjamin RS. Hierarchical bayesian 

approaches to phase II trials in diseases with multiple subtypes. Statistics in Medicine. 2003; 

22(5):763–780. [PubMed: 12587104] 

The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. 

Nature. 2012; 490(7418):61–70. [PubMed: 23000897] 

Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of 

isoform-specific PI3K signalling. Nature Reviews Molecular Cell Biology. 2010; 11(5):329–341.

Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nature Medicine. 2004; 

10(8):789–799.

Wei LJ, Durham S. Randomized play-winner rule in medical trials. Journal of the American Statistical 

Association. 1978; 73(364):840–843.

Zelen M. Play winner rule and controlled clinical trial. Journal of the American Statistical Association. 

1969; 64(325):131.

Zhou X, Liu SY, Kim ES, Herbst RS, Lee JL. Bayesian adaptive design for targeted therapy 

development in lung cancer – a step toward personalized medicine. Clinical Trials. 2008; 5(3):

181–193. [PubMed: 18559407] 

Barry et al. Page 24

J Biopharm Stat. Author manuscript; available in PMC 2015 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 

Schema for integral biomarker trials designs that incorporate randomized treatment arms, 

including randomized-block (left panel), marker-enrichment (top-right), and marker-directed 

designs (bottom-right).
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Figure 2. 

The average randomization ratio from N = 5 to N = 100 under the single marker scenario for 

the target subgroup (solid line) vs. nontarget subgroup (dotted-line). In each panel, 

trajectories are drawn for noninformative priors (τ−2 = 0.01, red) and for balanced priors 

(τ−2 = 100, green). Results are displayed for ratio-mapping (left panels) and max-mapping 

(right panels); and for true efficacy levels of π0 = 0.25 and π1 = 0.5 (top panels) and for π0 = 

0.05 and π1 = 0.2 (bottom panels).
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Figure 3. 

Operating characteristics of Bayesian adaptive vs. fixed staged designs. The probabilities of 

determining efficacy are shown for target samples sizes ranging from N = 5 to 100. In both, 

the single marker (left panels) and complementary marker (right panels) scenarios, effective 

treatment-marker combinations are shown in green, vs. ineffective combinations in red. 

Vertical lines show the target and expected sample sizes (dark and light gray) that give 80% 

power and control Type I error at 10% in four parallel Simon two-stage tests. Lower panels 

display the cumulative distribution function (CDF) of sample sizes for the parallel Simon 

design (gray) under each scenario, vs. sample sizes seen under simulation for adaptive 

designs (blue) with target N = 55 and 59, respectively.
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Figure 4. 

Schema for the adaptive randomized phase II to evaluate capecitabine (X) with and without 

a PI3K inhibitor across four biomarker-defined subgroups of ER+/Her2– breast cancer.
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Table 2

Hypothetical relationships between intrinsic subtype, PI3K mutation status, and efficacy of the inhibitor 

(π XP,k below). Subgroups with clinical benefit over capecitabine alone (π X,k = 0.25 in all subgroups) are 

highlighted in gray. The joint prevalence was reported by TheCancer Genome Atlas Network (2012), and 

accounts for inclusion into the luminal B* subgroup basal and Her2-enriched subtypes which are seen more 

rarely in ER+/Her2– disease by IHC

Luminal B* Luminal A

Prevalence PI3K mut. 16.1% PI3K wt. 39.3% PI3K mut. 20.0% PI3K wt. 24.4%

Global Null 0.25 0.25 0.25 0.25

No Biomarker 0.50 0.50 0.50 0.50

Single Biomarker

 Luminal B only 0.50 0.50 0.25 0.25

 PI3K mut. only 0.50 0.25 0.50 0.25

Joint Biomarker

 Either marker 0.50 0.50 0.50 0.25

 Both markers 0.50 0.25 0.25 0.25
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Table 3
Probabilities of concluding efficacy by treatment and biomarker subgroup under the six 

scenarios defined in Table 2. All effective treatments by subgroups per scenario are 

shaded in gray

Luminal B* Luminal A

PI3K mut. PI3K wt. PI3K mut. PI3K wt.

Global Null

XP 0.058 0.073 0.072 0.066

X 0.071 0.069 0.076 0.063

No Biomarker

XP 0.821 0.928 0.892 0.899

X 0.057 0.085 0.053 0.06

Luminal B only

XP 0.856 0.928 0.094 0.094

X 0.064 0.066 0.061 0.059

PI3K mt only

XP 0.870 0.085 0.909 0.069

X 0.074 0.059 0.07 0.055

Either marker

XP 0.847 0.923 0.884 0.085

X 0.061 0.074 0.068 0.072

Both markers

XP 0.874 0.075 0.067 0.074

X 0.076 0.066 0.057 0.072
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Table 4
Family-wise operating characteristics of the AR design vs. parallel Simon two-stage 

designs

P3 P4x P4xp P5

Global Null

 AR −NA− 0.748 0.760 0.575

 Simon −NA− 0.676 0.676 0.456

No Biomarker

 AR 0.625 0.771 −NA− 0.497

 Simon 0.527 0.676 −NA− 0.356

Luminal B only

 AR 0.798 0.786 0.820 0.536

 Simon 0.726 0.676 0.822 0.403

PI3K mt only

 AR 0.789 0.766 0.855 0.521

 Simon 0.726 0.676 0.822 0.403

Either marker

 AR 0.694 0.750 0.915 0.485

 Simon 0.618 0.676 0.907 0.379

Both markers

 AR 0.874 0.763 0.802 0.526

 Simon 0.852 0.676 0.745 0.429
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